Spatial Resolution Characterization for Aerial Digital Imagery

Slawomir Blonski, Kenton Ross, Mary Pagnutti Science Systems and Applications, Inc.

Thomas Stanley
NASA Stennis Space Center, Mississippi

Acknowledgements
Robert Ryan, SSAI SSC
Vicki Zanoni, NASA GSFC

Spatial Characterization Approach

- NASA and the U.S. Geological Survey (USGS) have jointly developed capability for characterization of aerial digital imagery:
- USGS defines characterization requirements and interfaces with industry.
- NASA performs characterizations of image products using the Stennis Space Center (SSC) test range.
- Analysis includes geopositional accuracy and spatial response:
- Radiometric characterization is to be performed in the future.
- Spatial response is characterized based on measurements of Relative Edge Response (RER):
- RER is one of the engineering parameters used in the General Image Quality Equation (GIQE) to provide predictions of imaging system performance expressed in terms of the National Imagery Interpretability Rating Scale (NIIRS).
- RER is estimated using the SSC edge targets and the tilted edge technique:
- RER is a geometric mean of normalized edge response differences measured in two directions of image pixels (X and Y) at points distanced from the edge by -0.5 and 0.5 ground sample distance (GSD).

SSC Edge Targets

Image of the SSC edge targets acquired by the QuickBird satellite (60 cm GSD).

- Two pairs of edge targets painted on a concrete surface
- Orientation differs by 4 degrees to accommodate images with various pixel directions (Universal Transverse Mercator (UTM)-projected and others)

20 m

Tilted Edge Technique

\boldsymbol{x} - pixel's distance from edge (in GSD)

Problem: Digital cameras

 undersample edge targetSolution: Image tilted edge to improve sampling

Relative Edge Response

$$
R E R=\sqrt{\left[E R_{X}(0.5)-E R_{X}(-0.5)\right]\left[E R_{Y}(0.5)-E R_{Y}(-0.5)\right]}
$$

RER estimates effective slope of the imaging system's edge response, since the distance between the points for which the differences are calculated is always equal to the GSD.

Effects of RER on Civil NIIRS

Meaning of RER in Remote Sensing

Radiance measured for each pixel is assumed to come from the Earth's surface area represented by that pixel. However, because of many factors, actual measurements integrate radiance L from the entire surface with a weighting function provided by a system's point spread function (PSF):

$$
L_{T}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \operatorname{PSF}(x, y) L(x, y) d x d y
$$

Part of radiance that originates in the pixel area is given by:

$$
L_{P}=\int_{-0.5}^{0.5} \int_{-0.5}^{0.5} P S F(x, y) L(x, y) d x d y
$$

One can show that the Relative Edge Response squared ($R E R^{2}$) can be used to assess the percentage of the measured pixel radiance that actually originates from the Earth's surface area represented by the pixel:

$$
L_{P} / L_{T} \approx R E R^{2}
$$

A simple example:
Box PSF
Width $=2 \mathrm{GSD}$

$E R(0.5)-E R(-0.5)=$
$0.75-0.25=0.50$

$$
R E R=0.50
$$

$R E R^{2}=0.25$ means that 25% of information collected with the pixel PSF (blue square) comes from the actual pixel area (shadowed square)

Example: 15 cm GSD Panchromatic Image

Example: 30 cm GSD Multispectral Image

Spatial Characterization Results

Image Acquisition Date	Sensor	Company	GSD (cm)	RER
22-Nov-2002	Leica ADS40	EarthData International ${ }^{\circledR}$	25	$\begin{aligned} & 0.5 \text { (BW) } \\ & 0.6 \text { (IR) } \\ & 0.5 \text { (RGB) } \end{aligned}$
24-Nov-2003	DAIS	Space Imaging ${ }^{\circledR}$ (GeoEye ${ }^{\text {™ }}$)	50	0.7 (VNIR)
5-Dec-2003	IKONOS*	Space Imaging (GeoEye)	100	0.7 (pan)
18-Feb-2004	Z/I Imaging DMC	AERO-METRIC, INC. ${ }^{\text {® }}$	15	0.4 (pan)
8-Nov-2004	Z/I Imaging DMC	3001, Inc. ${ }^{\text {® }}$	$\begin{aligned} & 15 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \text { (RGB), } 0.4 \text { (CIR) } \\ & 0.6 \text { (RGB), } 0.5 \text { (CIR) } \end{aligned}$
23-Feb-2005	Z/I Imaging DMC	Florida Department of Transportation	30	0.6 (RGB)
*satellite Reports with the characterization results have been delivered by NASA to USGS.			GSD - Ground Sample Distance RER - Relative Edge Response BW - Black, White IR - Infrared RGB - Red, Green, Blue VNIR - Visible/Near Infrared CIR - Color Infrared	

