

An Overview of the CBERS-2 satellite and comparison of the CBERS-2 CCD data with the L5 TM data

Mar 16, 2006

Gyanesh Chander, SAIC U.S. Geological Survey, EROS Sioux Falls, SD

U.S. Department of the Interior

Outline

- Background
- Orbit and Payload
- Sensor Overview
- RSR Profiles comparison
- Data Products
- Conversion to Radiance
- Calibration based on image statistics
- References

CBERS: China-Brazil Earth Resources Satellite

• CBERS-1, was launched on Oct. 14, 1999

- The spacecraft was operational for almost 4 years
- The CBERS-1 images were not used by user community
- On Aug. 13, 2003, CBERS-1 experienced an X-band malfunction causing an end of all image data transmissions

CBERS-2 (or ZY-1B) was launched successfully on Oct. 21, 2003 from the Taiyuan Satellite Launch Center

The spacecraft carries the identical payload as CBERS-1

• CBERS Orbit

- Sun synchronous
- Height: 778 km
- Inclination: 98.48 degrees
- Period: 100.26 min
- Equator crossing time: 10:30 AM
- Revisit: 26 days
- Distance between adjacent tracks: 107 km

CBERS- Sensor Compliment

- CBERS satellite carries on-board a multi sensor payload with different spatial resolutions & collection frequencies
 - HRCCD (High Resolution CCD Camera)
 - IRMSS (Infrared Multispectral Scanner)
 - WFI (Wide-Field Imager)
- The CCD & the WFI camera operate in the VNIR regions, while the IRMSS operates in SWIR and thermal region
- In addition to the imaging payload, the satellite carries a Data Collection System (DCS) and Space Environment Monitor (SEM)

Work Share (70% China, 30% Brazil)

High Resolution CCD (HRCCD)

- The HRCCD is the highest-resolution sensor offering a GSD of 20m at nadir (Pushbroom scanner)
- Quantization: 8 bits
- Ground swath is 113 km with 26 days repeat cycle
 - Steerable upto +/- 32° across track to obtain stereoscopic imagery
- Operates in five spectral bands one pan & four VNIR
 - CCD has one focal plane assembly
 - The signal acquisition system operates in two channels
 - Channel 1 has Bands 2, 3, 4
 - Channel 2 has Bands 1,3,5
 - Four possible gain settings are 0.59, **1.0**, 1.69 & 2.86

Infrared Multispectral Scanner (IRMSS)

- The IRMSS is a moderate-resolution sensor offering a GSD of 80m (pan/SWIR) & 160m (thermal)
- Quantization: 8 bits
- Ground swath is 120 km with 26 days repeat cycle
- Operates in four spectral bands one pan, two SWIR & one thermal
 - The four spectral bands has eight detector staggered arrays mounted along track
 - IRMSS has three focal plane assemblies
 - The Pan band (Si photodiodes detectors) is located on the warm focal plane
 - The SWIR bands & the thermal band (HgCdTe detectors) are located on cold focal planes with cryogenic temps of 148K & 101K respectively
 - Four of eight thermal detectors are spare

IRMSS On-board Calibrator

 The IRMSS incorporates an onboard radiometric calibration system

Internal Calibrator (IC) and a Solar calibrator

- The IC includes cal lamp & blackbody that acquire real time cal data during the scan-turn around interval
 - During that time a rotating shutter is driven to prevent the Earth flux from being incident on the focal plane and the flux from calibration lamp and blackbody is reflected to the focal plane
 - The lamp calibrator has 4 operation states corresponding to different flux output (each state lasts about 16 seconds)
- The solar calibrator is designed to provide cal reference with the Sun upon ground command
 - As the satellite passes over the north polar regions, the solar cal collects the solar flux & reflects it onto the Pan/SWIR band detectors
 - The solar calibration also provides a check on the stability of the onboard lamp calibration (It is performed once every 13 day)

Wide-Field Imager (WFI)

- The WFI camera provides a synoptic view with spatial resolution of 260m
- Ground swath is 885km with 3-5 days repeat cycle
- Operates in two spectral bands (Band 3 & 4)
 - 0.63 0.69 µm (red) and 0.77 0.89 µm (infrared)
 - Similar bands are also present in the CCD camera providing complementary data

Overview of the CBERS instruments

Parameter	HRCC	IRMSS	WFI
	0.51 - 0.73 (PAN)	0.50 - 1.10 (PAN)	0.63 - 0.69
	0.45 - 0.52	1.55 - 1.75 (SWIR)	0.76 - 0.90
Spectral Bands (µm)	0.52 - 0.59	2.08 - 2.35 (SWIR)	
	0.63 - 0.69	10.4 - 12.5 (TIR)	
	0.77 - 0.89		
Spatial Pasalution	20 m	80 m (PAN & SWIR)	09C m
Spatial Resolution	20 m	160 m (TIR)	200 m
Swath Width (FOV)	113 km (8.32°)	120 km (8.78°)	885 km (60°)
Temporal Resolution	26 days	26 days	3-5 days
Cross-Track Pointing	±32°		
Data Rate	2 x 53 Mbit/s	6.13 Mbit/s	1.1 Mbit/s
Carrier Frequency (X-band)	8.103 and 8.321 GHz	8.216 GHz	8.203 GHz
EIRP	43 dBm	39.2 dBm	31.8 dBm
Modulation	QPSK	BPSK	QPSK
Tracking Beam Frequency	8.196 GHz	8.196 GHz	8.196 GHz

		Spectra	nl Range (um) and	l Ground Sample	e Distance (m)		
	Lan	dsat		CBERS		SPOT-4	IRS-P6
Band	L5 TM	L7 ETM+	HRCC	IRMSS	WFI		LISS-III
RC	16	16	26	26	5	26	24
1	0.450-0.520 (30)	0.450-0.515 (30)	0.45-0.52 (20)				
2	0.520-0.600 (30)	0.525-0.605 (30)	0.52-0.59 (20)			0.50-0.59 (20)	0.52-0.59 (23.5)
3	0.630-0.690 (30)	0.630-0.690 (30)	0.63-0.69 (20)		0.63-0.69 (260)	0.61-0.68 (20)	0.62-0.68 (23.5)
4	0.760-0.900 (30)	0.775-0.900 (30)	0.77-0.89 (20)		0.76-0.90 (260)	0.79-0.89 (20)	0.77-0.86 (23.5)
5	1.550-1.750 (30)	1.550-1.750 (30)		1.55-1.75 (80)		1.58-1.75 (20)	1.55-1.70 (23.5)
6	10.40-12.50 (120)	10.40-12.50 (60)		10.4-12.5 (160)			
7	2.080-2.350 (30)	2.090-2.350 (30)		2.08-2.35 (80)			
Pan		0.520-0.900 (15)	0.51-0.73 (20)	0.50-1.10 (80)		0.51-0.73 (10)	0.50-0.75 (5.8)

L7 ETM+ & L5 TM & CCD RSR (Band-3)

L7 ETM+ & L5 TM & CCD RSR (Band-4)

L7 ETM+ & CCD/IRMSS RSR (Pan)

Relative Spectral Response (RSR) Profiles

CBERS-2 Data Product Levels

Product Level	Product Level Explanation
Level 0	Not corrected raw data
Level 1	Radiometrically corrected and geometrically raw data
Level 2	Radiometrically and geometrically corrected using system model
Level 3	Radiometrically and geometrically corrected using Ground Control Points (GCPS)
Level 4	Radiometrically and geometrically corrected using GCPS and Digital terrain Model (DTM) for terrain
Level 5	Deeply processed remote sensing thematic mapper and image
Output Media	4-mm tape, 8-mm tape, 9-track CCT, CD-ROW

CBERS-2 CCD, Minas Gerais, Brazil

CBERS-2 CCD image, Louisiania

Obtained from onboard data recorder

IRMSS sensor

CB2-IRM-157/124, 24/3/2004, Catanduva (Brazil)

WFI sensor CBERS2-WFI – 157/124, 18/01/2004, São Paulo

HRCCD Detector Arrangment

- Focal plane has five spectral bands with three staggered CCD arrays, each with 2048 detectors
 - ◆ 2048 x 3 = 6144
- 14 pixels in the third array are not received by the station
 - ♦ 6144 14 = 6130
 - ♦ 6130 bytes are received in each line of the image
- There is a superposition region of 154 detectors
 - ♦ 154 x 2 = 308
- There is a dark current region of 8 detectors in each array
 - 8 pixels are dark (8 x 3 = 24)
- The final image contains 5798 pixels in a line
 - 6130-308-24=5798

Striping in the CCD data

Black lines in the CCD INPE data

Band 1

Band 2

Band 3

Band 4

- CBERS-2 images processed from INPE have black lines
 - The problem is worse in B1 and B3, sometimes in B2
 - INPE has tried several relative calibration tables to avoid these black lines, in some cases they disappear completely!
- CBERS-2 images from CRESDA do not have black lines
 - CRESDA uses scene dependent relative calibration techniques
 - They process the images one by one.
 - Each image (path/row) has its own relative calibration table

Calibration issues with CCD camera

Spectral range for band 2 is broader than specs

- Specification = 0.52 0.59 um / Measurement = 0.515 0.635 um
 - Technical difficulties in meeting the project specification by CAST
- The wider the spectral band the greater the radiance seen by detector
 - Decreases the instrument dynamic range in the spectral band
 - Thus, saturation is reached much lower than expected

Signal to Noise Ratio (SNR)

- Bands 1,3,4 has SNR 4 db, 2 db and 1 db lower than specifications
- Max spectral radiance values for all bands are lower than specs
- The random noise level measured was 2.7mV (equivalent to 0.7DN)
- Therefore, saturation level is reached lower than expected

CCD images (band 4) has high saturation problem

Due to high gain determined during prelaunch

Absolute Calibration Coefficients

• Independent studies are carried out by INPE & CRESDA

- INPE used calibration sites in the west part of State Bahia
- CRESDA used Gobi desert (Dunhuang) test site in China

L* = DNn / CCn

Where

L* = spectral radiance at the sensors aperture W/(m2.sr.um)

DN = Digital number extracted from the image in band n

CCn = absolute calibration coefficient for band n

CBERS-2 CCD Vid	
	Test
Pre-launch	
Brazil	
25th June 2004	Bal
16th August 2004	
Oct_3th New	
Oct_3th Old	
Oct_6th New	
Oct_6th Old	
China	
19th August 2004	
25th August 2004	Dunh
24th August 2005	Dunh

Radiance to TOA Reflectance

ESUN Un	
CCD_1	CCD
1934,03	1787;
IRMSS_1	IRMSS
1347,75	222,3
WFI_1	WFI_
1563,95	1068,

			So
Units:			
Model:	Neckel	and Labs	
Band	L4 TM	L5 TM	L4 TI
1	1958	1957	1957
2	1828	1829	1825
3	1559	1557	1557
4	1045	1047	1033
5	219.1	219.3	214.
7	74.57	74.52	80.7
Pan			
1P			
4P			
5P			

CBERS & Landsat coincident images

- It is very difficult to get image's from the two satellite at the same time
- CRESDA has collected a coincident image from L5 TM and CBERS-2 satellite on August 25, 2004 at the Gobi desert (Dunhuang) test site
 - Performed side-looking (off-nadir-look-angle=-6.0333) for CCD
 - No images from IRMSS (Nadir looking)
- Dunhuang test site is very big and homogenous. The atmosphere is mostly clear and the aerosol loading is typically low. It is a very wellcharacterized site, CRESDA has performed several field campaigns for various satellites (CBERS-1/2, SPOT, Landsat, a series of FY meteorological satellite etc.)
 - During the overpass, ground reflectance measurements were collected using ASD
 - A manual (CE317) photometer were used for tracking sun at regular intervals

Agency	Sensor	Da
CRESDA	CBERS-2 CCD	8/25/
	L5 TM	8/25/
INPE	CBERS-2 CCD	12/30
	L5 TM	12/29
INPE	CBERS-2 CCD	11/16
	L5 TM	11/16

L5 TM and CBERS-2 CCD Image Pairs

L5 TM WRS Path = 137 Row = 032 Nadir looking CBERS-2 CCD Path = 23 Row = 55

side-looking (off-nadir-look-angle=-6.0333)

Gobi (Dunhuang) desert test site Data acquired on Aug 25, 2004 (20 min apart)

L5 TM and CBERS-2 CCD Image Pairs

L5 TM WRS Path = 219 Row = 076 Nadir looking Acquisition Date: Dec 29, 2004 CBERS-2 CCD Path = 154 Row = 126 Acquisition Date: Dec 30, 2004

L5 TM and CBERS-2 CCD Image Pairs

L5 TM WRS Path = 217 Row = 076 Nadir looking Acquisition Date: Nov 16, 2005 CBERS-2 CCD Path = 151 Row = 126 Acquisition Date: Nov 16, 2005

CBERS-2 CCD absolute calibration accuracy relative to L5 TM

Uncertainties in the cross-calibration results

- Differences due to the Relative Spectral Responses (RSR) were not taken into account
- Atmospheric changes between the two image-pairs were not accounted
 - acquisition time between the two sensors were 20-min apart
- Registration problems while selecting the regions of interest (ROI)
 - image statistics based on large areas in common between the image pairs
- INPE scenes were acquired over dark regions and water bodies

Minutes from USGS-INPE meeting São José dos Campos, April 22nd 2005 (XII BRSS)

- INPE and USGS jointly agreed to pursue the below three actions in the spirit of GEOSS and to hold further discussions that are directed towards long-term and open data exchange agreements
 - Trial data reception at Sioux Falls: USGS and INPE agreed on a trial reception of CBERS data at USGS ground station. INPE will provide the prototype data ingest system and data production software for this test
 - USGS received the bit-synch from INPE
 - Dr. Gilberto Camara is the new Director of INPE
 - USGS and INPE agreed on a joint calibration campaign
 - General information on CBERS program and data policy: INPE will provide further information to USGS on aspects related to CBERS data availability and ground station infrastructure

Challenges and Future Plans

Challenges

- CBERS-2 High Density Data Recorder (HDDR) is not in use due to power limitations
- The IRMSS stopped working in Apr, 2005 due to power supply failure
- Limited coincident Landsat/CBERS image-pairs
 - Limited data distribution policies outside the country
 - Limited documentation available
 - No L7 data downlink in Brazil

Future Plan

- CBERS-2 test downlink at USGS EROS
- Evaluate the raw data (artifacts, noises)
 - Evaluate the relative calibration of the CCD data
 - Evaluate Bias estimates
 - Night time acquisitions
- Perform similar cross-calibration experiment
 - Data processed from INPE
 - Data processed from CRESDA
 - Same datasets processed at INPE and CRESDA
 - Temporal scale (image pairs from 2003-2005)
- Perform Vicarious calibration

References

Personal communication

- Flavio Ponzoni (INPE)
- Fu Qiaoyan (CRESDA)

World Wide Web (WWW)

- http://www.cbers.inpe.br/
- http://www.cresda.com/

Documents

- Radiometric Quality Assessment of CBERS-2
- The CCD & IRMSS for CBERS
- CALIBRAÇÃO ABSOLUTA DOS SENSORES CBERS-2
- In-flight absolute calibration of the CCD/CBERS-2 sensor

