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Abstract

This paper presents a methodology to determine the parameters to be used in

the constitutive equations of Cohesive Zone Models employed in the simulation

of delamination in composite materials by means of decohesion finite elements. A

closed-form expression is developed to define the stiffness of the cohesive layer. A

novel procedure that allows the use of coarser meshes of decohesion elements in

large-scale computations is also proposed. The procedure ensures that the energy

dissipated by the fracture process is computed correctly. It is shown that coarse-

meshed models defined using the approach proposed here yield the same results as

the models with finer meshes normally used for the simulation of fracture processes.

Key words: Delamination, Fracture, Decohesion elements

Preprint submitted to Elsevier Science 16 June 2005



1 Introduction

Delamination, or interfacial cracking between composite layers, is one of the

most common types of damage in laminated fibre-reinforced composites due

to their relatively weak interlaminar strengths. Delamination may arise un-

der various circumstances, such as low velocity impacts, or bearing loads in

structural joints. The delamination failure mode is particularly important for

the structural integrity of composite structures because it is difficult to detect

during inspection.

The simulation of delamination using the finite element method (FEM) is

normally performed by means of the Virtual Crack Closure Technique (VCCT)

[1], or using decohesion finite elements [2]-[10].

The VCCT is based on the assumption that the energy released during de-

lamination propagation equals the work required to close the crack back to its

original position. Based on this assumption, the components of the energy re-

lease rate are computed from the nodal forces and nodal relative displacements

[1]. Delamination growth is predicted when a combination of the components

of the energy release rate is equal to a critical value.

There are some difficulties when using the VCCT in the simulation of pro-

gressive delamination. The calculation of fracture parameters requires nodal

variables and topological information from the nodes ahead and behind the

crack front. Such calculations are tedious to perform and may require remesh-

ing for crack propagation.

The use of decohesion finite elements can overcome some of the above difficul-
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ties. Decohesion finite elements can predict both the onset and the non-self-

similar propagation of delamination. However, the simulation of progressive

delamination using decohesion elements poses numerical difficulties related

with the proper definition of the stiffness of the cohesive layer, the require-

ment of extremely refined meshes, and the convergence difficulties associated

with problems involving softening constitutive models.

This work addresses the proper definition of interface stiffness. A closed-form

expression for the interface stiffness is developed, replacing the empirical defi-

nitions of the stiffness of the cohesive layer that are normally used. In addition,

a solution that allows the use of coarse meshes in the simulation of delamina-

tion is proposed.

The kinematics and constitutive model of a previously proposed decohesion

element [11]-[12], formulated for three-dimensional (3D) elements, is adapted

to be used with two-dimensional (2D) finite element models. Finally, several

simulations of specimens with and without initial cracks were performed, in

order to demonstrate that the methodology proposed can accurately predict

both crack initiation and propagation using coarse meshes.

2 Selection of Cohesive Zone Model parameters

2.1 Cohesive Zone Model approach

Decohesion finite elements are used to model material discontinuities. Consider

a domain Ω containing a material discontinuity, Γd, which divides the domain

Ω into two parts, Ω+ and Ω− , as shown in Figure 1.
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[Figure 1 about here]

Prescribed tractions, ti, are imposed on the boundary ΓF , whereas prescribed

displacements are imposed on the boundary Γu. The stress field inside the

domain, σij, is related to the external loading and to the closing tractions

τ+
j , τ−j in the material discontinuity through the equilibrium equations:

σij,j = 0 in Ω (1)

σijnj = ti on ΓF (2)

σijn
+
j = τ+

i = −τ−i = σijn
−
j on Γd (3)

The formulation of the decohesion finite elements is based in the Cohesive

Zone Model (CZM) approach. The CZM approach [13]–[15] is one of the most

commonly used tools to investigate interfacial fracture. The CZM approach

assumes that a cohesive damage zone, or softening plasticity, develops near

the crack tip. The CZM links the microstructural failure mechanism to the

continuum fields governing bulk deformations. Thus, a CZM is characterized

by the properties of the bulk material, the crack initiation condition, and the

crack evolution function.

Cohesive damage zone models relate traction, τ , to displacement jumps, ∆, at

an interface where a crack may occur. Damage initiation is related to the in-

terfacial strength, τ 0, i.e., the maximum traction on the traction-displacement

jump relation. When the area under the traction-displacement jump relation

is equal to the fracture toughness, Gc, the traction is reduced to zero, and

new crack surfaces are formed. There are several types of constitutive equa-

tions used in decohesion elements: Tvergaard and Hutchinson [16] proposed a
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trapezoidal law, Cui an Wisnom [17] a perfectly plastic rule, Needleman first

proposed a polynomial law, [18], and later an exponential law [19]. Goyal et al.

[10] adopted Needleman’s exponential law to account for load reversal with-

out restoration of the cohesive state. The law used in this paper is a bilinear

relation between the tractions and the displacement jumps [6],[9],[11],[12],[20],

(see Figure 2).

[Figure 2 about here]

2.2 Cohesive zone model and FEM

In a finite element model using the CZM approach, the complete material

description is separated into fracture properties captured by the constitutive

model of the cohesive surface and the properties of the bulk material, captured

by the continuum regions.

There are two conditions to obtain a successful FEM simulation using CZM

[21]: (a) The cohesive contribution to the global compliance before crack prop-

agation should be small enough to avoid the introduction of a fictitious compli-

ance to the model, and (b) the element size needs to be less than the cohesive

zone length.

(a) Stiffness of the cohesive zone model

Different guidelines have been proposed for selecting the stiffness of the in-

terface. Daudeville et al. [23] calculated the stiffness in terms of the thickness

and the elastic modulus of the interface. The resin-rich interface between plies
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is of the order of 10−5m. Therefore, the interface stiffness obtained from the

Daudeville equations is very high. Zou et al. [24], based on their own expe-

rience, proposed a value for the interface stiffness between 104 and 107 times

the value of the interfacial strength per unit length. Camanho and Dávila [9]

obtained accurate predictions for Graphite/Epoxy specimens using a value of

106N/mm3.

The effective elastic properties of the whole laminate depend on the properties

of both the cohesive surfaces and the bulk constitutive relations of the plies.

Although the compliance of the cohesive surfaces can contribute to the global

deformation, its only purpose is to simulate fracture. Moreover, the elastic

properties of the cohesive surfaces are mesh-dependent because the surface

relations exhibit an inherent length scale that is absent in homogeneous de-

formations [22].

If the cohesive contribution to the compliance is not small enough compared

to that of the volumetric constitutive relation, a stiff connection between two

neighboring layers before delamination initiation is not assured. The effect of

compliance of the interface on the bulk properties of a laminate is illustrated

in the one-dimensional model shown in Figure 3. The traction continuity con-

dition requires:

σ = E3ε = K∆ (4)

where σ is the traction on the surface, t is the thickness of an adjacent sub-

laminate, ε = δt
t

is the transverse strain, K is the interface stiffness that

relates the resulting tractions at the interface with the opening displacement
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∆, and E3 is the through-the-thickness Young’s modulus of the material. For

a transversely isotropic material E3 = E2.

[Figure 3 about here]

The effective strain of the composite is:

εeff =
δt

t
+

∆

t
= ε +

∆

t
(5)

Since the traction continuity condition requires that σ = Eeffεeff, the equivalent

Young’s modulus Eeff can be written as a function of the Young’s modulus of

the material, the mesh size, and the interface stiffness. Using equations (4)

and (5), the effective Young’s modulus can be written as:

Eeff = E3

(
1

1 + E3

Kt

)
(6)

The effective elastic properties of the composite will not be affected by the

cohesive surface whenever E3 ¿ Kt, i.e:

K =
αE3

t
(7)

where α is a parameter much larger than 1 (α À 1). However, large values of

the interface stiffness may cause numerical problems, such as spurious oscilla-

tions of the tractions [4]. Thus, the interface stiffness should be large enough

to provide a reasonable stiffness but small enough to avoid numerical problems

such as spurious oscillations of the tractions in an element.
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The ratio between the value of the Young modulus obtained with equation (6)

and the Young modulus of the material, as a function of the parameter α is

shown in Figure 4. For values of α greater than 50, the loss of stiffness due to

the presence of the interface is less than 2%.

[Figure 4 about here]

The use of equation (7) is preferable to the guidelines presented in previous

work [9],[23]-[24] because it results from mechanical considerations, and it pro-

vides a sufficient stiffness (α times the stiffness of the material) while avoiding

spurious oscillations caused by an excessively stiff interface. The values of the

interface stiffness obtained with equation (7) and those used by other authors

for a carbon/epoxy composite are shown in Table 1. The material’s transverse

modulus is 11GPa, its nominal interfacial strength is τ 0 = 45MPa, and α is

taken as 50.

[Table 1 about here]

Equation (7) gives a range of the interface stiffness between 105 and 5x106N/mm3

for a sub-laminate thickness between 0.125mm and 5mm. These values are

close to the interface stiffness proposed by Camanho and Dávila and the val-

ues obtained from Zou’s guidelines (between 4.5x105 and 4.5x108N/mm3).

(b) Length of the cohesive zone

Under single-mode loading, interface damage initiates at a point where the

traction reaches the maximum nominal interfacial strength, τ 0. For mixed-

mode loading, interface damage onset is predicted by a criterion established
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in terms of the normal and shear tractions. Crack propagation occurs when the

energy release rate reaches a critical value Gc. The CZM approach prescribes

the interfacial normal and shear tractions that resist separation and relative

sliding at an interface. The tractions, integrated to complete separation, yield

the fracture energy release rate, Gc. The length of the cohesive zone lcz is

defined as the distance from the crack tip to the point where the maximum

cohesive traction is attained (see Figure 5).

[Figure 5 about here]

Different models have been proposed in the literature to estimate the length

of the cohesive zone. Irwin [25] estimated the size of the plastic zone ahead

of a crack in a ductile solid by considering the crack tip zone within which

the von Mises equivalent stress exceeds the tensile yield stress. Dugdale [13]

estimated the size of the yield zone ahead of a mode I crack in a thin plate of an

elastic-perfectly plastic solid by idealizing the plastic region as a narrow strip

extending ahead of the crack tip that is loaded by the yield traction. Barenblatt

[14] provided an analogue for ideally brittle materials of the Dugdale plastic

yield zone analysis. Hui [26] estimated the length of the cohesive zone for soft

elastic solids, and Falk [21] and Rice [27] estimated the length of the cohesive

zone as a function of the crack growth velocity. The expressions that result

from these models for the case of plane stress are presented in Table 2. It is

assumed that the relation between the critical stress intensity factor Kc and

the critical energy release rate Gc can be expressed as K2
c = GcE.

All of the models described above to predict the cohesive zone length lcz have

the form:
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lcz = ME
Gc

(τ 0)2 (8)

where E is the Young modulus of the material, Gc is the critical energy release

rate, τ 0 is the maximum interfacial strength, and M is a parameter that

depends on each model. The most commonly used models in the literature are

Hillerborg’s model [15] and Rice’s model [27]. In these models, the parameter

M is either close or exactly equal to unity. A summary of the different models

commonly used in the literature, and the equivalent parameter M for plane

stress are shown in Table 2. In this paper, Hillerborg’s model is used in the

following analysis.

For the case of orthotropic materials with transverse isotropy, the value of the

Young’s modulus in equation (8) is the transverse modulus of the material,

E2.

[Table 2 about here]

In order to obtain accurate FEM results using CZM, the tractions in the

cohesive zone must be represented properly by the finite element spatial dis-

cretization. The number of elements in the cohesive zone is:

Ne =
lcz
le

(9)

where le is the mesh size in the direction of crack propagation.

When the cohesive zone is discretized by too few elements, the fracture energy

is not represented accurately and the model does not capture the continuum
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field of a cohesive crack. Therefore, a minimum number of elements, Ne, is

needed in the cohesive zone to get successful FEM results.

However, the minimum number of elements needed in the cohesive zone is not

well established: Moës and Belytschko [28], based on the work of Carpinteri

and Cornetti [29], suggest using more than 10 elements. However, Falk et

al. [21] used between 2 and 5 elements in their simulations. In the parametric

study by Dávila and Camanho [30], the minimum element length for predicting

the delamination in a double cantilever beam (DCB) specimen was 1mm,

which leads, using equation (8) with M = 1, to a length of the cohesive zone

of 3.28mm. Therefore, 3 elements in the cohesive zone were sufficient to predict

the propagation of delamination in Mode I.

2.3 Guidelines for the selection of the parameters of the interface with coarser

meshes

One of the drawbacks in the use of cohesive zone models is that very fine

meshes are needed to assure a reasonable number of elements in the cohesive

zone. The length of the cohesive zone given by equation (8) is proportional

to the fracture energy release rate (Gc) and to the inverse of the square of

the interfacial strength τ 0. For typical graphite-epoxy or glass-epoxy com-

posite materials, the length of the cohesive zone is smaller than one or two

millimeters. Therefore, according to equation (9), the mesh size required in

order to have more than two elements in the cohesive zone should be smaller

than half a millimeter. The computational requirements needed to analyze

a large structure with these mesh sizes may render most practical problems

intractable.
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Alfano and Crisfield [8] observed that variations of the maximum interfacial

strength do not have a strong influence in the predicted results, but that low-

ering the interfacial strength can improve the convergence rate of the solution.

The result of using a lower interfacial strength is that the length of the cohe-

sive zone and the number of elements in the cohesive zone increase. Therefore,

the representation of the softening response of the fracture process ahead of

the crack tip is more accurate with a lower interface strength although the

stress distribution in the regions near the crack tip might be altered [8].

It is possible to develop a strategy to adapt the length of the cohesive zone

to a given mesh size. The procedure consists of determining the value τ 0 of

the interfacial strength required for a desired number of elements (N0
e ) in the

cohesive zone. From equations (8) and (9), the required interface strength is:

τ 0 =

√
EGc

N0
e le

(10)

Finally, the interfacial strength is chosen as:

T = min {τ 0 , τ 0} (11)

The interfacial strength is computed for each loading mode, replacing the value

of the fracture toughness, Gc, in equation (10) by the value corresponding to

the loading mode.

The effect of a reduction of the interfacial strength is to enlarge the cohesive

zone, and thus, the model is better suited to capture the softening behaviour

ahead of the crack tip. Moreover, if equation (7) is used to compute the in-

terface stiffness, the interface stiffness will be large enough to assure a stiff
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connection between the two neighboring layers and small enough to avoid

spurious oscillations.

3 FEM implementation

The cohesive zone model used here is based on the model that was previously

proposed by the authors [11]-[12]. The model has been adapted to be used in

2D finite element models. A brief description of the model, with special focus

on the kinematics and constitutive damage model, is presented.

3.1 Kinematics and constitutive relation of cohesive zone models

The displacement jump across the interface of the material discontinuity re-

quired in the constitutive model, [[ui]], can be obtained as a function of the

displacement of the points located on the top and bottom side of the interface,

u+
i and u−i , respectively:

[[ui]] = u+
i − u−i (12)

where u±i are the displacements with respect to the fixed Cartesian coordinate

system. A co-rotational formulation is used in order to express the compo-

nents of the displacement jumps with respect to the deformed interface. The

coordinates x̄i of the deformed interface can be written as [31]:

x̄i = Xi +
1

2

(
u+

i + u−i
)

(13)
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where Xi are the coordinates of the undeformed interface.

The components of the displacement jump tensor in the local coordinate sys-

tem on the deformed interface, ∆m, are expressed in terms of the displacement

field in global coordinates:

∆m = Θmi [[ui]] (14)

where Θmi is the rotation tensor.

The constitutive operator of the interface, Dji, relates the element tractions,

τj, to the displacement jumps, ∆i:

τj = Dji∆i (15)

A requirement of the constitutive relations of cohesive zone models is that the

energy dissipated in the process of fracture needs to be computed accurately.

Under single-mode loading, controlled energy dissipation is achieved assur-

ing that the area under the traction-displacement jump relation equals the

corresponding fracture toughness, as illustrated in Figure 6.

[Figure 6 about here]

Under mixed-mode loading, a criterion established in terms of an interaction

between components of the energy release rate needs to be used to predict

crack propagation.

14



The constitutive damage model used here, formulated in the context of Dam-

age Mechanics (DM), was previously proposed by the authors [11],[12]. All

the details of the constitutive model are presented in references [11] and [12]

and will not be repeated here. The formulation presented in previous refer-

ences is adapted to use the decohesion elements together with 2D plane strain

elements.

The constitutive model prevents interpenetration of the faces of the crack

during closing, and a Fracture Mechanics-based criterion is used to predict

crack propagation. The formulation of the damage model is summarized in

Table 3, where ψ and ψ0 are the free energy per unit surface of the damaged

and undamaged interface, respectively. δ̄ij is the Kronecker delta, and d is

a scalar damage variable. The parameter λ is the norm of the displacement

jump tensor (also called equivalent displacement jump norm), and it is used to

compare different stages of the displacement jump state so that it is possible to

define such concepts as ‘loading’, ‘unloading’ and ‘reloading’. The equivalent

displacement jump is a non-negative and continuous function, defined as:

λ =
√
〈∆1〉2 + (∆2)

2 (16)

where 〈·〉 is the MacAuley bracket defined as 〈x〉 = 1
2
(x + |x|). ∆1 is the

displacement jump in mode I, i.e., normal to midplane, and ∆2 is the dis-

placement jump in mode II.

[Table 3 about here]

The evolution of damage is defined by G(·), a suitable monotonic scalar func-

tion, ranging from 0 to 1. µ̇ is a damage consistency parameter used to define
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loading-unloading conditions according to the Kuhn-Tucker relations. rt is the

damage threshold for the current time, t, and r0 denotes the initial damage

threshold. The initial damage threshold is obtained from the formulation of

the initial damage surface or initial damage criterion. ∆0 is the onset displace-

ment jump, and it is equal to the initial damage threshold r0. ∆f is the final

displacement jump, and it is obtained from the formulation of the propagation

surface or propagation criterion. Further details regarding the damage model

used here can be found in references [11]-[12].

4 Simulation of the double cantilever beam specimen

The influence of mesh size, interface stiffness, interface strength, and the selec-

tion of the parameters of the consitutive equation according to the proposed

methodology were investigated by analyzing the Mode I delamination test

(double cantilever beam, DCB). The DCB specimen was fabricated with a

unidirectional T300/977-2 carbon-fiber-reinforced epoxy laminate. The spec-

imen was 150-mm-long, 20.0 mm-wide, with two 1.98-mm-thick arms, and it

had an initial crack length of 55mm. The material properties are shown in

Table 4 [32].

[Table 4 about here]

The FEM model is composed of two layers of four-node 2D plane strain ele-

ments connected together with four-node decohesion elements. The decohesion

elements were implemented using a user-written subroutine in the finite ele-

ment code ABAQUS [33].
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Three sets of simulations were performed. First, a DCB test was simulated

with different levels of mesh refinement using the material properties shown in

Table 4 and interfacial stiffness of K=106N/mm3. Then, equations (9) and (7)

were used to calculate an adjusted interfacial strength and interface stiffness.

Finally, a set of simulations with a constant mesh size using different interface

stiffnesses were performed in order to investigate the influence of the stiffness

on the calculated results.

To study the effects of mesh refinement, several analyses were carried out for

element sizes ranging between 0.125mm and 5mm. The corresponding load-

displacement curves are shown in Figure 7. The results indicate that a mesh

size of le ≤ 0.5mm is necessary to obtain converged solutions. The predictions

made with coarser meshes overpredict significantly the experimental results.

The length lcz of the cohesive zone for the material given in Table 4 is close

to 1mm. Therefore, for a mesh size greater than 0.5mm, fewer than two el-

ements would span the cohesive zone, which is not sufficient for an accurate

representation of the fracture process [29]-[30].

[Figure 7 about here]

4.1 Effect of interface strength

To verify the effect of the interface strength on the computed results, simu-

lations were performed by specifying the desired number of elements within

the cohesive zone to be N0 = 5 and reducing the interface strength according

to equation (11). The load-displacement curves obtained for several levels of
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mesh refinement are shown in Figure 8. Accurate results are obtained for mesh

sizes smaller than 2.5mm.

[Figure 8 about here]

[Figure 9 about here]

A comparison of the load-displacement curves for the DCB specimen calcu-

lated using the nominal interface strength and the strength obtained from

equation (11) is shown in Figure 9. The specimen’s failure load obtained by

keeping the maximum interfacial strength constant increases with the mesh

size. Mesh dependence is especially strong for mesh sizes greater than 2mm.

However, the failure loads predicted by modifying the interfacial strength ac-

cording to equation (11) are nearly constant for element sizes smaller than

3mm. In addition, the global deformation and the crack tip position are also

nearly independent from mesh refinement, as illustrated in Figure 10.

[Figure 10 about here]

4.2 Effect of interface stiffness

The DCB test was simulated with a mesh size of 2.5mm for various values

of the interface stiffness in order to investigate the influence of the stiffness
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on the predicted failure load. The results of the simulations are presented in

Figure 11.

The load-displacement response curves obtained from simulations using an

interface stiffness greater than 104N/mm3 are virtually identical. However,

smaller values of the interface stiffness have a strong influence on the load-

displacement curves, since a stiff connection between the two neighboring lay-

ers is not assured. Moreover, the number of iterations needed for the solu-

tion when using an interface stiffness smaller than 104N/mm3 is greater than

the number of iterations needed for a range of the interface stiffness between

106 and 1010N/mm3. For values of the interface stiffness significantly greater

than 1010N/mm3, the number of iterations needed for the solution increases

(see Figure 12). The stiffness that results from equation (7) with α = 50 is

5.55x105N/mm5, which is ideal for good convergence of the solution procedure.

[Figure 11 about here]

[Figure 12 about here]

5 Simulation of free-edge delamination

In order to demonstrate the mesh size effect and to further validate the accu-

racy of the methodology proposed, simulations were performed of the fracture
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of specimens without initial cracks. One of the causes of the initiation of de-

lamination in specimens without initial cracks is the effect of free edge stress

distributions. Delamination induced by the free-edge effect was investigated

by many authors [34]-[36].

5.1 Problem statement

Crossman et al. investigated the free edge effects in a [+25/-25/90]s graphite-

epoxy laminate subjected to uniaxial strain [35]. The laminates were fabricated

from Fiberite T300/934 prepreg tape using an autoclave. The cross-section

of the specimen was 25.0-mm-wide and 0.792-mm-thick (see Figure 13). No

initial cracks were induced in the laminate. The material properties are shown

in Table 5 [34],[37].

Tensile tests were performed by applying a controlled displacement in the

x-direction. Due to the stacking sequence, the through the thickness free-

edge stress distribution produces high σzz in the 90o ply. Therefore, important

tractions occur at the 90o/90o interface, leading to the onset of delamination

at the free-edge.

[Figure 13 about here]

[Table 5 about here]
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5.2 Numerical predictions

A FEM model was developed using six layers of 4-node generalized plane strain

elements [38]. The 90o/90o interface was modelled with 4-node decohesion

elements presented in previous sections. The elastic properties of each layer

were defined by means of the 3D stiffness matrix. The decohesion elements

were implemented using a user-written subroutine in the finite element code

ABAQUS [33]. Due to the symmetry of the laminate, only half of the cross-

section was modelled.

Two sets of simulations were performed. First, tensile tests were simulated

with different levels of mesh refinement. Then, equations (9) and (7) were

used to calculate the interface strength and the interface stiffness.

Several analyses were carried out for mesh sizes ranging between 0.05mm

and 0.5mm. The load-displacement curves obtained are shown in Figure 14.

An interfacial stiffness of K=106N/mm3, an interface strength of 51.7MPa,

a critical energy release rate of 0.175N/mm [34], and the material properties

shown in Table 5 were used. The length of the cohesive zone obtained with

these properties, using equation (8), is 0.361mm. A mesh size smaller than

0.1mm is needed in order to have three or more elements in the cohesive

zone. The predictions obtained using different levels of mesh refinement are

shown in Figure 14. Using meshes coarser than 0.1mm, the correct solution is

significantly overpredicted. For a mesh size greater than 0.5mm the maximum

applied load is greater than two times the maximum load obtained with meshes

smaller than 0.1mm.

[Figure 14 about here]
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The ultimate tensile strength calculated using a mesh size of 0.1mm is 404MPa.

Delamination onset occurs when a point in the interface is not able to carry

any traction, which changes the stress distribution. The stress maps in a plane

perpendicular to the interface and normal to the load direction are represented

in Figure 15 for three stages of deformation. At the first stage, before delam-

ination onset, the stresses near the free edge are tensile due to the mismatch

effect of the Poisson ratio (black zones in Figure 15). At delamination on-

set, a region of the free edge is unable to carry load and the stresses become

compressive, as shown in Figure 15b). The predicted onset of delamination is

εxx = 0.6%, and the corresponding stress is 392MPa. The experimental results

obtained by Crossman and Wang [35] reported a delamination onset tensile

stress of 409MPa and an ultimate tensile strength of 459MPa. The predicted

and experimental onset and failure stresses and strains are summarized in

Table 6. Unstable delamination propagation and the corresponding structural

collapse occurs at a strain of 0.6183%.

[Figure 15 about here]

[Table 6 about here]

To verify the effect of interface strength on the predicted results, simulations

were performed by specifying the desired number of elements spanning the

cohesive zone to be N0 = 5 and reducing the interface strength according

to equation (11). The load-displacement curves obtained for several levels of

mesh refinement are shown in Figure 16. A comparison of the maximum load

obtained using the nominal interface strength and the strength obtained from
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equation (11) is shown in Figure 17. Accurate predictions are obtained using

the modified interface strength instead of the nominal interface strength.

[Figure 16 about here]

[Figure 17 about here]

A similar study of mesh size effect was repeated by the desired number of

elements spanning the cohesive zone to be N0 = 10. Although the results

presented in Figures 18 and 19 are more accurate than those for N0 = 5, the

improvement is insignificant.

[Figure 18 about here]

[Figure 19 about here]

6 Concluding remarks

An engineering solution for the simulation of delamination using coarse meshes

was developed. Two new guidelines for the selection of the parameters for the

constitutive equation used for the simulation of delamination were presented.
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First, a new equation for the selection of the interface stiffness parameter K

was derived. The new equation is preferable to previous guidelines because

it results from mechanical considerations rather than from experience. The

approach provides an adequate stiffness to ensure a sufficiently stiff connec-

tion between two neighboring layers, while avoiding the possibility of spurious

oscillations in the solution caused by overly stiff connections.

Finally, an expression to adjust the maximum interfacial strength used in the

computations with coarse meshes was presented. It was shown that a minimum

number of elements within the cohesive zone is necessary for accurate simula-

tions. By reducing the maximum interfacial strength, the cohesive zone length

is enlarged and more elements span the cohesive zone. The results obtained

by reducing the maximum interfacial strength show that accurate results can

be obtained with a mesh ten times coarser than by using the nominal inter-

face strength. The drawback in using a reduced interfacial strength value is

that the stress concentrations in the bulk material near the crack tip are less

accurate.
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Fig. 1. Body Ω crossed by a material discontinuity Γd in the undeformed configu-
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Fig. 4. Ratio between the equivalent elastic modulus and the Young’s modulus of the

material, as a function of the parameter α.
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Fig. 7. Load-displacement curves using the nominal interace strength (τ0=60MPa)

for a DCB test with different mesh sizes.
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Fig. 8. Load-displacement curves obtained for a DCB test with different mesh sizes

with the interface strength modified to keep Ne ≥5.
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Fig. 9. Maximum load obtained in a DCB test for two cases: a) with constant inter-

facial strength, b) with interfacial strength calculated according to Eq. (11).
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Fig. 11. Influence of the interface stiffness on the load-displacement curves.
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Fig. 12. Influence of the interface stiffness on the number of iterations.
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Fig. 13. Cross-section of the laminate.
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Fig. 14. Load-displacement curves obtained for a free-edge test with different mesh

sizes using nominal interface strength properties.
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Fig. 15. Evolution of stresses during delamination onset and propagation.
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Fig. 16. Load-displacement curves obtained for a free-edge test with different mesh

sizes and with the interface strength adjusted for Ne =5.
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Fig. 17. Maximum load obtained in a free-edge test for two cases: a) with constant

interfacial strength, b) with interfacial strength calculated according to Eq.(11) with

Ne=5.
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Fig. 18. Load-displacement curves obtained for a free-edge test with different mesh

sizes and with the interface strength adjusted for Ne =10.
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Fig. 19. Maximum load obtained in a free-edge test for two cases: a) with constant

interfacial strength, b) with interfacial strength calculated according to Eq.(11) with

Ne=10.
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Tables
Table 1

Interface stiffness K proposed by different authors (N/mm3) and those calculated

from equation (7).

t(mm) 0.125 1 2 3 5

Equation (7) 4.43x106 5.5x105 2.75x105 1.83x105 1.1x105

Zou et al. [24] 4.5x105 ≤ K ≤ 4.5x108

Camanho and Dávila [9] 106 106 106 106 106
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Table 2

Length of the cohesive zone and equivalent value of the parameter M.

lcz M

Hui [26] 2
3πE Gc

(τ0)2
0.21

Irwin [25] 1
πE Gc

(τ0)2
0.31

Dugdale [13], Barenblatt [14] π
8 E Gc

(τ0)2
0.4

Rice [27], Falk [21] 9π
32 E Gc

(τ0)2
0.88

Hillerborg [15] E Gc

(τ0)2
1
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Table 3

Definition of the constitutive model.

Free Energy ψ (∆, d) = (1− d) ψ0 (∆i)− dψ0
(
δ̄1i 〈−∆1〉

)

Constitutive equation τi = ∂ψ
∂∆i

= (1− d) δ̄ijK∆j − dδ̄ijKδ̄1j 〈−∆1〉

Displacement jump norm λ =
√
〈∆1〉2 + (∆2)

2

Damage criterion F̄ (λt, rt) := G (λt)− G (rt) ≤ 0 ∀t ≥ 0

G (λ) =
∆f(λ−∆0)
λ(∆f−∆0)

Evolution law ḋ = µ̇∂F̄ (λ,r)
∂λ = µ̇∂G(λ)

∂λ ; ṙ = µ̇

Load/unload conditions µ̇ ≥ 0 ; F̄ (λt, rt) ≤ 0 ; µ̇F̄ (λt, rt) = 0

rt = max
{
r0, maxs λs

}
0 ≤ s ≤ t
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Table 4

Mechanical and interface material properties of T300/977-2 [32].

E11 E22 = E33 G12 = G13 G23

150.0GPa 11.0GPa 6.0GPa 3.7GPa

ν12 = ν13 ν23 GIC τ0
3

0.25 0.45 0.352N/mm 60MPa
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Table 5

Mechanical properties of T300/934 Graphite Epoxy [34], [37].

E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23

140.0GPa 11.0GPa 5.5GPa 3.61GPa 0.29 0.52
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Table 6

Summary of predicted and experimental values of tension tests on T300/934 lami-

nates.

Predicted Experimental Difference

Strain at delamination onset (%) 0.6 0.59 2%

Stress at delamination onset (MPa) 392 404 -3%

Ultimate strain (%) 0.6183 0.66 -6%

Ultimate strength (MPa) 409 459 -10%
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