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CLOSED-FORM INTEGRATOR FOR THE
QUATERNION (EULER ANGLE)
KINEMATICS EQUATIONS

ORIGIN OF INVENTION

The invention described herein was made in the perfor-
mance of work under a NASA contract, and is subject to the
provisions of Public Law 96-517 (35 U.S.C. 202) in which
the Contractor has elected to not retain title.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates in general to inertial navi-
gation systems (INS), and more particularly to a kinematics
equations integrator device and method for obtaining the
attitude of a vehicle from the closed-form integration of
kinematics equations utilizing a four-dimensional operator
such that the magnitude of said four-dimensional operator is
always equal to unity.

2. Background Art

Inertial navigation systems (INS) are widely used in
several flight vehicle applications such as aircraft, missiles,
spacecraft and satellites. These self-contained navigation
systems determine the attitude or position of the flight
vehicle relative to some reference coordinate frame. The
INS works by integrating the angular velocity or rates of
acceleration, measured by onboard sensors, to obtain posi-
tion with respect to a body-centered coordinate frame.

In order to determine the attitude of vehicle relative to
Earth-centered coordinates, the body axes are transformed
into a Earth-axes coordinate frame by using the Euler angles.
The Euler angles are angles through which one coordinate
frame must be rotated to bring its axes to coincidence with
another coordinate frame. Euler angles describe the body
axes coordinates, namely longitudinal (roll), lateral (pitch)
and normal (yaw) axes, with respect to Earth axes
coordinates, or the local tangent plane of the Earth and true
north, namely north, east and down axes. FIG. 1 illustrates
the body axes and the Earth axes coordinate systems.

The direction cosine matrix that allows the transformation
from Earth axes to body axes is the product of three
successive rotations about the pitch, roll and yaw axes. The
transformation is given by the equation:

Vioty=M[0, ¢, V]Veym
where M(0,$,) is the direction cosine matrix,

@

M@, ¢, ) = {my} @

(cosfcosy) (cosfsing) —(sinf)
sindsinfcosy — sindsinfsing +
( i ] ( ] (sindcosé)
= cosbsiny cosbeosys

cosbsinfcosy + cosdsinfsinyg —
( ] ( ] (cosbcosf)

sindsing sindcosy

Here, 0 is the pitch angle, ¢ is the roll or bank angle, and
is the yaw or heading angle.

The onboard sensors used to measure the angular velocity
about the pitch, roll and yaw axes are usually accelerometers
and gyroscopes. For most INS applications, these sensors
are mounted on the vehicle in one of two ways: the platform
INS or the strap-down INS. The platform INS maintains the
sensors in the same attitude relative to the surroundings.
This is achieved by placing the sensors in a gimbal housings.
Depending on the application several gimbal housings may
be required.
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The strap-down INS fixes the sensors on each of the three
body axes and does not require gimbal housings. As a result,
the strap-down INS has lower weight, lower power con-
sumption and higher accuracy than the platform INS.
Consequently, in most modern applications the strap-down
INS is preferred. Because, however, of the need to calculate
coordinate transformations, the strap-down INS places
maximum burden on the computational system. Thus, high-
speed processors, significant amounts of computer memory
and complex software generally are required for the strap-
down INS.

One recurring problem of both types of INS is that they
are neutrally stable systems and any bias or systematic errors
in the angular velocity measurements remain and are not
damped out. This causes the INS to drift, meaning that the
error increases with time. One solution is to use the platform
INS and stabilize the sensors in gimbal housings. The
problem is this arrangement is subject to a physical locking
up of the gimbal when the pitch angle of the vehicle is
vertical, or 90 degrees. This “gimbal lock,” as it is known in
the art, is particularly problematic for missiles, spacecraft
and other flight vehicles that often assume a pitch angle of
90 degrees for extended periods of time. Thus, platform INS
is rarely used in modem applications.

Strap-down INS is not subject to a physical “gimbal lock”
like the platform INS. However, there are other problems
with the strap-down INS. First, because the kinematics
equations have a division by zero when the pitch angle is 90
degrees, the strap-down INS is subject to a mathematical
“gimbal lock.” For example, the measured angular velocity
vector (p, g, r) in body axes, where p is the roll rate, g is the
pitch rate, and r is the yaw rate, is expressed in Earth axes
by the following kinematics equations:

©)

cosgsing

cosf (singsind)
cosf

p
0 cospcosf —singbcos@] \ q]
0 sing

cosp r

[
o=
v

In equation 3, the 1/cos 6 term has a singularity when the
pitch angle 6 passes through +7/2, in other words when the
pitch angle is vertical. This singularity makes equation 3
difficult to integrate to obtain the attitude of the vehicle.

Second, in addition to the singularity problem, there is
computational difficulty in trying to obtain the Euler angles
from the integration of equation 3. In general, no closed-
form solution for equation 3 exist and it must be numerically
integrated. However, equation 3 is highly non-linear, and the
sine and cosine terms must be evaluated as Taylor series
expansions. For example, the numerical integration of equa-
tion 3 using a fourth-order numerical integration scheme
requires that each sine and cosine term be evaluated four
different times at each time step. These computations require
a great deal of computational expense and time.

The prior art avoids these foregoing problems in integrat-
ing equation 3 by formulating the kinematics equations in
terms of quaternion parameters. In general, a quaternion is
a four-element vector with one real and three imaginary
components. The quaternion provides a four-parameter
operation of coordinate transformation that is a more effi-
cient representation for rotation than the three-dimensional
orthonormal matrix with nine parameters and six orthonor-
mal constraints. The quaternion formulation transforms t
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hree quantities into four quantities with only one constraint.
This four-space vector and constraint can be written as:

Q)

MX
b sin6/2 uy
A=ia+ jb+ke+d=> =
C u;
d cosd /2
U

gl =a®+ P +c*+d* =1

Where, u,, u, u,, are the components of the unit vectors
pointing along the body axis of the vehicle, and the one
constraint is that the norm of the quaternion be equal to
unity.

The quaternion formulation transforms the three-
dimensional attitude of pitch, roll and yaw (0, ¢, ) into a
set of quaternion parameters (a,b,c,d) with the single con-
straint. Instead of the usual three rotations, using quaternions
accomplishes the coordinate transformation from Earth axes
to body axes in a single rotation.

The quaternions are defined in terms of the direction
cosine matrix of equation 2 as:

®

mp3 —msp
4d
a mzp —my3
b B 4a
el myy — My
d | 4d
5\/1 +myy + My +ms3
with,
sinf = —m3 = 2(bd — ac) (6)
mip 2(ab + cd)
tanp = — = ————
my 2@ +dr)-1
mas 2bc + ad)
tang= — = ———
myy 2t +d?)-1

and the direction cosine matrix, equation 2, reduces to:

at+d? b - ¢? 2ab + cd) 2ac - bd) @
M0, ¢, ) = 2ab - cd) P +d>-at-c? 2be + ad)
2ac + bd) 2be - ad) A+dr-a® -1
=Ma, b, c,d)

In geometric terms, the quaternion formulation maps the
kinematic equations of three-dimensional space onto the
surface of a unit hypersphere in four-dimensional space,
with the constraint that the radius of the hypersphere is equal
to unity. The result is that non-linear sine and cosine terms
as well as the singularity of equation 3 disappear. The3-D
kinematics equations of equation 3 become in terms of a 4-D
quaternion formulation:
®

a

0 r —g plfa
b 1l-r 0 p ql|]|b
¢ B 2 g -p 0 r||c =
q -p —q -r 0]|d

Equation 8 can be written in vector form as:

AMB=0(pq.n) A ©

w
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4

Equation 9 looks like a linear, time-varying system com-
mon in dynamics. However, integration of equation 9 is
actually quite difficult because of the unique properties of
quaternions. Quaternion parameters are on the surface of a
unit hypersphere in four-dimensional space. All operations,
therefore, must be rotational and must take place on the
surface of the unit hypersphere. This non-Euclidean quater-
nions space doe., not follow the rules of vector algebra.
Essentially, normal linear Euclidean operations of addition
and subtraction do not exist in quaternion space.

Traditional approaches of the prior art in solving the
quaternion kinematics equations of equation 9 have been to
use numerical integration schemes such as Runge-Kutta and
Adams-Bashforth. These methods, however, violate the
mathematics of the quaternion space. Nevertheless, the prior
art continues to use these and a number of other numerical
integration schemes to integrate the quaternion kinematics
equations.

All of these numerical integration schemes require the
approximation of integrals by summation. But because
addition does not exist in the quaternion space, the single
constraint that a+b+c+d=1 (i.e., normalization of the
quaternion) is not guaranteed. Geometrically, this occurs
because addition is not a rotational operation, and the
summation performed by the integration scheme does not
take place on the surface of tie unit hypersphere. Therefore,
the integration scheme must renormalize the quaternions
after each time step to ensure the quaternion norm is equal
to unity.

The problem with renormalization after each time step is
that it introduces error into the integration in the form of
analytical drift. Left unchecked, this drift accumulates over
time and eventually leads to divergence of the integration
and instability. The prior art integration schemes manage
this drift through a variety of ad hoc methods. Usually these
ad hoc methods involve trading error between the axes by
adding or subtracting correction terms at each time step in
order to artificially preserve quaternion normality.

The primary disadvantage of the prior art integration
schemes is that none actually preserve quaternion normality.
In fact, the best that these method can do is to correct the
drift in quaternion normalization after it has occurred. This
renormalization procedure, however, is an artificial opera-
tion that violates the mathematics of the quaternion space,
and therefore always introduces additional errors into the
integration. Furthermore, the need to renormalize the quater-
nions after every time step greatly reduces the integration
speed.

Another disadvantage to existing numerical integration
schemes is that most of them are proprietary. Each method
is designed for a specific computational system based on the
noise of the integration, noise of the system and how many
bits contained in the processor. This means an integration
scheme designed for a specific computational system may
not work on another computational system, thereby reducing
the portability of the integration scheme.

Still another disadvantage to prior art integration schemes
is that powerful and expensive computational systems are
needed to implement them. This is because the error from
the normalization drift must be corrected by performing
several operations on various terms in the equation after
each time step. This need for additional computational
capability can add a great deal of weight to the INS and to
the vehicle.

Another disadvantage of the prior art schemes is that the
lines of source code and the complexity of the software
required to implement these integration methods are gener-
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ally quite large. The memory, therefore, required to store this
software is substantial. In addition, the cost of code main-
tainability is high because of the length and complexity of
the source code. Moreover, if transportation of the code
between computational systems requires the code to be in a
different language the cost of rewriting the code in another
language can be high.

Therefore, what is needed is a kinematics equations
integrator device and method that preserves the quaternion
normalization. This closed form integrator device and
method would obey the mathematical properties of the
quaternion space and therefore would not require correction
terms or renormalization ever. Moreover, because the need
for renormalization and correction terms would not exist,
this integrator device and method would greatly increase the
integration speed, decrease the amount and complexity of
the software required, and require only basic computational
systems on which to operate. Further, the integrator device
and method would be portable between-various computa-
tional systems.

Whatever the merits of the above mentioned systems and
methods, they do not achieve the benefits of the present
invention.

SUMMARY OF THE INVENTION

To overcome the limitations in the prior art as described
above, and to overcome other limitations that will become
apparent after reading and understanding the present
specification, the present invention is embodied in a kine-
matics equations integrator device and method for obtaining
the attitude of a vehicle from the closed-form integration of
kinematics equations utilizing a four-dimensional operator
such that the magnitude of said four-dimensional operator is
always equal to unity.

An inertial navigation system (INS) suitable for utilizing
the kinematics equations integrator device and method of the
present invention includes sensor for supplying angular
velocity and initial vehicle attitude data. The kinematics
equations device and method receives this data and outputs
the updated attitude information of the vehicle, usually in the
form of Euler angles. These are received by the navigational
processor which determines whether a course correction is
required. If so, then the navigational processor instructs the
control system to correct the course. Course correction is
effected through movement of the actuators and the vehicle
control surfaces.

The kinematics equations integrator device of the present
invention is capable of receiving data from and supplying
updated vehicle attitude information to the INS. One way the
integrator device does this is by receiving angular velocity
and initial attitude data supplied by the INS. This data is
received by an initial computation logic that computes the
3-D kinematics equations and transforms the initial Euler
angles into a quaternion vector.

The data from the initial computation logic is then sent to
an integration loop logic performs a continuous integration
loop. The 3-D kinematics are transformed into 4-D quater-
nion kinematics equations, an integrating factor is calculated
and a state transition matrix for aiding in the solution of the
4-D quaternion Kinematics equations is computed. Using the
state transition matrix, the updated quaternion is calculated.
At all times the norm of the quaternion remains equal to
unity.

The data from the integration loop logic is received by a
reverse transformation logic that determines whether the
navigational processor requires updated Euler angles. If so,
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then the reverse transformation logic transforms the updated
quaternion into the updated Euler angle and sends them to
the navigational processor to be used as described above. In
addition, the reverse transformation logic determines
whether the integration loop needs reinitializing. If so, then
the updated Euler angles are sent to the initial computation
logic for use in reinitializing the kinematics equations inte-
grator. Meanwhile, the integration loop logic continues its
integration loop.

The kinematics equations integrator method of the present
invention can be implemented in the integrator device as
dedicated logic circuit or a field programmable gate array
(FPGA). Alternatively, the integrator device can contain a
microprocessor and memory for storing the software coded
with the integrator method.

The integrator method is capable of interacting with the
INS as part of the kinematics equations integrator device by
receiving information from and supplying information to the
INS. The INS then uses this information supplied by the
kinematics equations integrator device and method to deter-
mine whether the vehicle is on course and to effect needed
changes.

Similar to the integrator device described above, the
kinematics equations integrator method of the present inven-
tion is divided into an initial computation function, an
integration loop function and a reverse logic function. The
initial computation function receives the initial Euler angle
and angular velocity data from the INS and constructs 3-D
kinematics equations and transforms the initial Euler angles
into a quaternion vector.

The integration loop function constructs 4-D quaternion
kinematics equations and integrates them while preserving
the norm of the quaternion. The updated quaternion is, then
sent to the reverse transformation function which send the
update Euler angles to the navigational processor if they are
requested. The output from the reverse transformation func-
tion is used by the navigational processor to determine
whether a course correction is needed.

The device and method of the present invention always
preserve the norm of the quaternion because the mathemat-
ics of the quaternion space is not violated. This critical
feature of the present invention allows the integration of the
kinematics equations to be faster and more accurate than
prior art methods.

In summary, the invention is embodied in a method of
integrating kinematics equations for updating a set of
vehicle attitude angles of a vehicle using 3-dimensional
angular velocities of the vehicle, which includes computing
an integrating factor matrix from quantities corresponding to
the 3-dimensional angular velocities, computing a total
integrated angular rate from the quantities corresponding to
3-dimensional angular velocities, computing a state transi-
tion matrix as a sum of (a) a first complementary function of
the total integrated angular rate and (b) the integrating factor
matrix multiplied by a second complementary function of
the total integrated angular rate, and updating the set of
vehicle attitude angles using the state transition matrix.
Preferably, the method further includes computing a quater-
nion vector from the quantities corresponding to the
3-dimensional angular velocities, in which case the updating
of the set of vehicle attitude angles using the state transition
matrix is carried out by (a) updating the quaternion vector by
multiplying the quaternion vector by the state transition
matrix to produce an updated quaternion vector and (b)
computing an updated set of vehicle attitude angles from the
updated quaternion vector. The first and second trigonomet-



6,061,611

7

ric functions are complementary, such as a sine and a cosine.
The quantities corresponding to the 3-dimensional angular
velocities include respective averages of the 3-dimensional
angular velocities over plural time frames. The updating of
the quaternion vector preserves the norm of the vector,
whereby the updated set of vehicle attitude angles are
virtually error-free.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring to the drawings in which like reference numbers
represent corresponding parts throughout:

FIG. 1 illustrates the body-axis and Earth-axis coordinate
frame definitions and the Euler angles;

FIG. 2 is an overview of an inertial navigational system
suitable for utilizing the device and method of the present
invention;

FIG. 3 is an overview structural block diagram of the
kinematics equations integrator of the present invention;

FIG. 4 is a detailed block diagram of the initial compu-
tation logic of the kinematics equations integrator of the
present invention;

FIG. 5 is a detailed block diagram of the integration loop
logic of the kinematics equations integrator of the present
invention;

FIG. 6 is a detailed block diagram of the reverse trans-
formation logic of the kinematics equations integrator of the
present invention;

FIG. 7 is a detailed flow diagram of the operation of the
initial computation function of the kinematics equations
integrator of the present invention;

FIG. 8 is a detailed flow diagram of the operation of the
integration loop function of the kinematics equations inte-
grator of the present invention; and,

FIG. 9 is a detailed flow diagram of the operation of the
reverse transformation function of the kinematics equations
integrator of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the following description of the preferred embodiment,
reference is made to the accompanying drawings that form
a part hereof, and in which is shown by way of illustration
a specific embodiment whereby the invention may be prac-
ticed. It is to be understood that other embodiments may be
utilized and structural changes may be made without depart-
ing from the scope of the present invention.

Structural Overview

FIG. 2 is an overview of an inertial navigational system
202 suitable for utilizing the device and method of the
present invention. The inertial navigational system 202 is
carried within the flight vehicle 200. The inertial naviga-
tional system 202 includes accelerometers 204 and gyro-
scopes 208 located on each of the three body axes that
measure the angular velocity (p,q,r) on each axis at any
instant in time. The Euler angle processor 210 determines
the attitude of the vehicle 200 at any given time in terms of
the Euler angles ( These Euler angles may be entered by the
user or preferably determined by an alternative navigational
system, such as a regular Global Positioning System (GPS)
or carrier-phase GPS.

Both the accelerometers 204, gyroscopes 208 and Euler
angle processor 210 are connected to the kinematics equa-
tions integrator 212. This device receives the necessary data
from the accelerometers 204, gyroscopes 208 and Euler
angle processor 210, computes the necessary kinematics
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8

equations and integrates them in order to obtain updated
vehicle attitude information in the form of the Euler angles.
The navigational processor 216, which is linked to the
kinematics equations integrator 212, receives data from the
kinematics equation integrator 212, processes the supplied
attitude data and determines whether the vehicle 200 is
following the desired course.

The control system 220 is controls actuators 224 located
at various locations on the vehicle 200. If the control system
220 is activated by the navigational processor 216, the
control system 220 activates the actuators 224 which in turn
move the control surfaces 228. This adjustment of the
control surfaces continues until the vehicle 200 is on the
desired course.

1. Kinematics Equations Integrator

FIG. 3 is an overview structural block diagram of the
kinematics equations integrator 212 portion of the inertial
navigational system 202 of the present invention. This
kinematics equations integrator 212 is comprised of an
initial computation logic 304, an integration loop logic 308
and a reverse transformation logic 312.

The accelerometers 204 and gyroscopes 208 are con-
nected to the integrator 212 to provide angular velocity data.
The Euler angle processor 210 is linked to the integrator 212
to provide attitude information. As shown in FIG. 2 and FIG.
3 the navigational processor 216 is connected to the output
of the kinematics equations integrator 212 to process the
information produced by the integrator 212. Moreover, as
explained further below, the reverse transformation logic
312 is linked to the initial computation logic 304 to provide
updated attitude information as required.

The various logic modules of the kinematics equations
integrator 212 will now be explained in further detail.

a. Initial Computation Logic

In order to compute the attitude of the vehicle certain
initial data is required by the integration loop logic 308. As
shown in FIG. 4, this initial data is provided by the initial
computation logic 304. In general, the initial computation
logic 304 takes the data received from the accelerometers
204, gyroscopes 208 and the Euler angle processor 210 or
reverse transformation logic 312 and computes the 3-D
kinematics equations and the quaternions.

Specifically, the accelerometers 204 and gyroscopes 208
send the angular velocity vector (p,q,r) data to the initial
computation logic 304. In addition, the Euler angle proces-
sor 210 determines the initial attitude of the vehicle 200 in
terms of Euler angles. In general, the Euler angle informa-
tion from the Euler angle processor 210 is required at
start-up. Updated Euler angle data is supplied to the initial
computation logic 304 whenever the navigational system
requests update. As stated earlier, this initial or updated
Euler angle information may come from the user or an
alternative navigational system. The criteria for determining
when to update the navigational system is well-known to
one skilled in the navigational art, and may involve the
amount of accumulated systemic error, the vehicle exceed-
ing a predetermined attitude, or after an elapsed time.

Updated Euler angle data also may be supplied to the
initial computation logic 304 by the reverse transformation
logic 312. This will be discussed below in connection with
the reverse transformation logic 312.

The angular velocity and Euler angle data is supplied to
the initial computation logic 304 and used to compute the
3-D Euler angle kinematics equations. The 3-D kinematics
equations module 404 computes these equations as given in
equation 3:
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[ cosf (singsind) cosgsinf [ p 3
9 |= —\ 0 cospcos —singcosd “ q ]

cosf .
b 0 sing cosg r

The 3x3 matrix of the equation is defined as the M matrix.
In addition, 0 is the pitch angle, ¢ is the roll or bank angle,
and 1 is the yaw or heading angle while p is the roll rate, q
is the pitch rate and r is the yaw rate.

The elements of the M matrix are sent to the quaternion
transformation module 408 and used to calculate the quater-
nion vector (a,b,c,d). This transformation is given by equa-
tion 5:

mo3 —m3y (©)
-
m3; —my3

4a
myz —my|

4d

2

)
5\/1+m11 + myy +ms3

The quaternion vector (a,b,c,d) and the angular velocity
vector (p,g,t) are then sent to the integration loop logic 308.

b. Integration Loop Logic

The heart of the kinematics equations integrator 212 is the
integration loop logic, 308. As shown in FIG. §, this logic
includes six modules which perform several operations over
a small time step to obtain a time-advanced solution to the
kinematics equations.

The data from the initial computation logic 304 are sent
to the quaternion kinematics equations module 504 of the
integration loop logic 308. Depending on whether the navi-
gational system requires initialization, the angular velocity
vector may be required from the accelerometers 204 and
gyroscopes 208. Thus, if initialization is required, the
quaternion kinematics equations module 504 uses both the
quaternion vector (a,b,c,d) and the angular velocity vector
(p,q,r) from the initial computation logic 304. If initializa-
tion is not required, only the quaternion vector is used. The
angular velocity vector information is obtained from the
accelerometers 204 and gyroscopes 208. The criteria for
whether initialization is required is discussed above.

The quaternion kinematics equations module 504 receives
the quaternion vector (a,b,c,d) and angular velocity vector
(p,q,r) and computes the four-dimensional quaternion kine-
matics equations. The quaternion kinematics equation for
the angular velocity is given by equation 8:

®

0 r —g plfa
b 1l-r 0 p ql|]|b
¢ B 2 g -p 0 r||c =
q -p —q -r 0]|d

which can be expressed in vector form as:

AMO=v(p.q,1) AD) ©

Rather than use ad hoc numerical integration schemes that
do not preserve the norm of the quaternion, as is done in the
prior art, a better way of integrating equation 9 is to use the
integrating factor:
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(10)
1(1) = exp f—w(p, g, ndt
10
where,
0 r-qp (1
1I|-r 0 p g
w= =
2l g -p 0 r
-p —g —-r 0

Applying equation 10 to equation 9 yields:

. 12
eXp[f—w(p, q, r)dt}/\(t) = eXP[f—w(p, q, r)dt}w(p, g, DA )
i i

Equation 12 integrates from some initial time to to time t to
give the result:

[ 3 (13)
A(r) = exp f w(p, q, r)dt}/\(to)
)

0 r-qgp
1l -r 0
= exp - ba d1A(tg)
2l g -p 0 r
1
l-p —qg —-r o0

The averaging module 508, shown in FIG. 5, is an
optional module that simply averages the angular velocity
components (p,q,r) over some time interval (t-ty). Thus, the
components of the time-averaged angular velocity vector
(P,Q,R) are defined as:

R_ t r(Dd 1 Q_ g()dt P_ pdt (14)
5=f,0 2 ’3=f,0 2 ’5=f,0 2

Because the averaging module 508 is optional, in all the
following equations (P,Q,R) could be replaced with (p,q,r).
However, for this discussion the averaging module will be
used because the averaging of the angular velocity compo-
nents avoids a phase change in the calculations.

Using the averaging module 508, equation 13 reduces to:

0 R Q P (15)
2 2 2
R P
5033
Ar) = exp f o P R d1}Ato)
ol = -2 0 =
2 2 2
P R
Pe Ry
2 2 2

= exp[Q(p, g, H]Ay)

Here, the integrand of equation 15 is known as the £ matrix,
and may be called the integrating factor matrix.

The € matrix module 512 receives the time-averaged
angular velocity vector (P,Q,R) from the averaging module
508 and computes the €2 matrix.

Expanding the exponential of equation 15 in a McLau-
rin’s series:



o 0 o
exp[ﬂ]=1+ﬁ+§+§+..
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Here, I is the identity matrix, and ||w|| is the total integrated
angular rate magnitude. This quantity is computed by the

total integrated angular rate magnitude (TTARM) module .

524 using the equation:

lo|PP2+Q%*+R?

Exploiting the structure provided by equation 17, the
McLaurin’s series of equation 16 becomes:
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Substituting equations 20 and 21 into equation 19:
o ol 2 el

=cos— 1+ —sin— Q0 = d(z, 1,
e cos 2 ”w”sm 2 (1, 7o)

@22

and equation 15 reduces to the simple homogenous equa-
tion:

( [leoll 2 el ]
A1) = D(z, 10)A(1p) = |cos——T + —sin—Q [A(zo)
2 lleoll ™ 2

@3

Equation 23 is the general solution to equation 9.
Moreover, the solution of equation 23 is in closed form and
does not violate any of the mathematical properties of the
quaternion space. Thus, the solution stays on the surface of
the unit hypersphere and guarantees that quaternion normal-
ization will always be preserved.

The solution of equation 23 represents a four-space vector
with components (a,b,c,d). This integrator can be made
recursive over a small time step At by using the trapezoidal
rule to integrate the angular rates:

Ar
Wyy1f = ?\/(pk + PP+ (G + Q)P+ e+ 11)? 25
and,
_ Ar _ Ar (25)
Riv1h = 7["([/() Fr(te )l Qg = E[Q([k) +q(tir1)]s
_ Ar
Py = 7[4(&)*—4([/&1)]
gives the equation for the state transition matrix:
_ [y 2 [ _
Bty = COS||wk+1,k|| - Sin”wkﬂ,kunkﬂk (26)
’ 2 @411l 2 ’

The state transition matrix module 520 receives the Q
matrix from the Q matrix module and ||| from the TIARM
module. The module 520 then computes the state transition
matrix @, . over a time step using equation 26. This
results in recursive solution over a small time step that
preserves the norm of the quaternion.

Note that the state transition matrix @, ; r of equation 26
contains only a single cosine and a single sine term. Thus,
the computation of the state transition matrix is less com-
putationally intensive and less time-consuming than numeri-
cal integration schemes of the prior art.

Once the state transition matrix @y,  has been calcu-
lated by the state transition module 520, the quaternion
update module 516 computes the updated quaternions using
the equation:

[a,b,C,d]k+1=®1<+1,1<[a>b,c;d]k

Once the quaternion update module 516 has calculated the
updated quaternions [a,b,c,d],,; they are either sent to the
quaternion kinematics equations module 504 or the reverse
transformation logic 312. If requested by the quaternions
kinematics equations module 504, the updated quaternions
[a,b,c,d],,; are used along with the angular velocity vector
(0,9,0).1 at the new time from the accelerometers 204 and
gyroscopes 208 to calculate the updated four-dimensional
quaternion kinematics equations. This loop continues as
illustrated in FIG. 5 by the arrows.

If instead the updated quaternions are requested by the
reverse transformation logic 312, the quaternion update

(26a)
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module 516 sends the requested information. The updated
quaternions are used by the reverse transformation logic 312
as described below. The integration loop continues as illus-
trated in FIG. 5.

It should be noted that the operations of the integration
loop logic modules do not necessarily need to take place in
the order shown in FIG. 5 and described above.

i. Proof that the State Transition Matrix is Norm Preserv-
ing

The transition matrix @, , r of equation 26 preserves the
norm of the quaternion vector. This can be shown by taking:

A At = AT O, 1 P41 2N
w,
7 cos” k+1,k”1+
2
@ _ r )
_ Akin” kﬂ'k”ﬂkﬂ,k] [co I k+1,k”1+
1@k 1l 2 2
2 o, _
_ Sin” kﬂ'k”ﬂkﬂ,k}h
1@k 1l 2
w,
= AZ[COSMI+
2 @il Nl r —
— sin —co — (D1 + Qi | A +
1@k 1l 2 2 [P, 4]
2 Y =
AZ[([,—Sln”Mﬂ,k—D Qe Qg [ A
1@k 1l 2
and since Q is anti-symmetric:
@il (28)

~T — o
Qg+ Qg =0,and Qg Qi g =

Substituting equation 28 into equation 27 and collecting
terms:

12
Mot =/\[[cosz —” kel + 29

2 %) 2 || 2
[ _ sin” k+1,k”D 1@k 1l }1/\/(
1@k 1l 2 4

N@eerall 1@kl
Rl +sm2;1/\k

=AT [co

= AIZ-Ak

Thus, regardless of the noise on the angular rates, the
quaternion norm is preserved between integration time
steps! Only the numerical errors involved in evaluating the
sin and cos terms will cause the quaternions to be
de-normalized. Therefore, the quaternions may need to be
normalized after a substantial number of time steps in order
to avoid roundoff error accumulation.

c. Reverse Transformation Logic

FIG. 6 is a detailed block diagram of the reverse trans-
formation logic of the kinematics equations integrator of the
present invention. The updated quaternion is received from
the integration loop logic 308. This updated quaternion is
then used by the reverse quaternion transform module 606 to
transform the 4-D quaternion into attitude information in
3-D in the form of the Euler angles ( This reverse transfor-
mation is given by equation 6:
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sinf = —m3 = 2(bd — ac) (6)
mip 2(ab + cd)
tanp = — = ————
my 2@ +dr)-1
mas 2(bc + ad)
tang = — =

my 22 +d2)—1

The updated Euler angles are then sent to the navigational
processor 216 for use in determining whether the vehicle
200 is at the desired location or at the preferred attitude. The
navigational processor then instructs the control system 220
to make any needed corrections in the attitude of the vehicle
200 via the actuators 224 and control surfaces 228.
Meanwhile, reverse transformation logic 312 returns to the
integration loop logic 308 to continue the integration loop at
a new time step.

The updated Euler angles also may be sent to the reini-
tialization module 604 for determination of whether the
integration loop logic 308 needs to be reinitialized. The
criteria for determining whether reinitialization is required is
discussed above in the initial computation logic section. If
reinitialization is required the updated Euler angles are sent
to the initial computation logic. If reinitialization is not
required then the reverse transformation logic 312 returns to
the integration loop logic 308 to continue the integration
loop at a new time step.

Functional Overview

The kinematics equations integrator method of the present
invention is implemented in the integrator device 212 pref-
erably as a dedicated logic circuit or a field programmable
gate array (FPGA). Alternatively, as shown in FIG. 2, the
integrator device 212 may contain a microprocessor 232 and
memory 236 for storing software coded with the integrator
method. The memory 236 may be a hard drive, CD-ROM,
random access memory (RAM) or any other computer
memory device capable of storing the software. This
memory 236 stores data received from the INS, intermediate
results, and the functions, steps and instructions of the
software containing the integration method and the micro-
processor 232 executes the program.

The integration method is capable interacting with the
INS as part of the kinematics equations integrator device by
receiving information from and supplying information to the
INS. The INS then uses this information supplied by the
kinematics equations integrator device and method to deter-
mine whether the vehicle is on course and to effect needed
changes.

Similar to the integrator device described above, the
kinematics equations integrator method of the present inven-
tion is divided into an initial computation function, an
integration loop function and a reverse logic function.

1. Initial Computation Function

FIG. 7 is a detailed flow diagram of the operation of the
initial computation function of the kinematics equations
integrator of the present invention. The function starts by
determining (block 705) whether the Euler angles are
required from the Euler angle processor 210 (block 710) or
the reverse transformation function (block 715). The criteria
for which source to obtain the Euler angles is discussed
above in connection with the initial computation logic.

Irrespective of where the Euler angles (8, @, ) are
obtained, the next step of the initial computation function is
to obtain the angular velocity vector (p,q,r) from the accel-
erometers 204 and gyroscopes 208 (block 720). The 3-D
Euler angle kinematics equations are then computed (block
725) using equation 3:
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Next, the Euler angles (6,,)) are transformed (block
730) into a quaternion vector (a,b,c,d) as given by equation

M3 — m3)
4d
M3 — H3
da
miz — i1
4d

1
=V 1 +my +mpp +mss

2

®

T 2

The initial computation function then sends the computed
quaternion vector (a,b,c,d) and the angular velocity vector
(p,g,t) to the integration loop function (block 735).

2. Integration Loop Function

FIG. 8 is a detailed flow diagram of the operation of the
integration loop function of the kinematics equations inte-
grator of the present invention. The function begins by
determining whether initialization is required (block 805).
The criteria for how to answer this question is discussed
above in the description of the initial computation logic.

If initialization is required, the integration loop function
receives the quaternion vector (a,b,c,d) and the angular
velocity vector (p,q,r) from the initial computation function
(block 810). On the other hand, if initialization is not
required, the integration loop function receives only the
angular velocity vector (p,g,r) from the accelerometers 204
and gyroscopes 208 (block 815). Also, the quaternion vector
(a,b,c,d) is the updated quaternion vector calculated during
the previous time step and obtained from the integration
loop function.

The next step of the integration loop function is to
calculate (block 820) the 4-D quaternion kinematics
equations, given by equation 8:

@ 0 r —-g plle ®
b 1|-r 0 p ql|lb

¢ B 2 g -p 0 rilc =

g -p —g —-r 0]ld

Next, the angular velocity vector (p,q,r) is averaged
(block 825) over the time step At to obtain the average
angular velocity vector (P,Q,R), as defined by equation 14:

R_ t r(Dd 1 Q_ g()dt P_ pdt
5=f,0 2 ’3=j,; 2 ’5=j,: 2

This step is optional, and the remainder of the operations of
the integration loop function could proceed using the angu-
lar velocity vector (p,q,r) instead of the average angular
velocity vector (P,Q,R).

The Q2 matrix is then computed (block 830) using one of
the angular velocity vectors. The €2 matrix is given by the
integrand of equation 15:

14
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2 2 2
R P
2 % 3 %
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ol = -= 0 =
2 2 2
P
Pe B
2 2 2

= exp[Q(p, g, M]A)

The integration loop function then computes ||w|, defined
as the total integrated angular rate magnitude (TTARM)
(block 835). The TIARM is calculated from equation 18:

18

Both the results from the calculations of the €2 matrix and
the TIARM are used in the next step of computing the state
transition matrix @, , , over a time step At (block 840). The
computation of the state transition matrix @, , is given by
equation 26:

|w|P=P*+Q*+R?

1@+ 1,4l 2 @l
Qprrp

(26)
+ s11:
2 @411l 2

@ﬂ,k = cos

This recursive solution over At produces a solution to the
kinematics equations that preserves the norm of the quater-
nion. The proof the state transition matrix is norm-
preserving is detailed above.

After the state transition matrix has been computed, the
updated quaternions are calculated (block 845) using equa-
tion 26a:

[a,b,c,d]k+1=<I>K+LK[a,b,c,d]k (262)

The integration loop function then determines where to
send the updated quaternion. If requested by the reverse
transformation function the updated quaternion is sent there
(block 835). Otherwise, the updated quaternion is sent back
to start (block 800) to begin a new time step of the
integration loop function, and the steps are repeated.

It should be noted that the operations of the integration
loop function do not necessarily need to take place in the
order shown in FIG. 8 and described above.

3. Reverse Transformation Function

FIG. 9 is a detailed flow diagram of the operation of the
reverse transformation function of the kinematics equations
integrator of the present invention. The function receives
(block 905) the updated quaternion from the integration loop
function and then transforms (block 910) the quaternion
(a,b,c,d) into updated Euler angles (8,P,1)), using equation
6:

sinf = —m3 = 2(bd — ac) 6)

mip 2(ab + cd)
tamf = — = —— "~
T S a1
mas 2(bc + ad)
tang = — =

my 22 +d?)-1

The reverse transformation function then determines
(block 915) whether the integration loop function require
reinitialization, as discussed in the initial computation logic
section. If reinitialization is required, the reverse transfor-
mation function sends the updated Euler angles to the initial
computation function (block 920). If reinitialization is not
required, the reverse transformation function returns to the
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integration loop function for another integration loop at a
new time step (block 925).

Meanwhile, the reverse transformation function deter-
mine (block 930) whether the navigational processor 216
requires updating. If updating is required, the reverse trans-
formation function sends the updated Euler angles to the
navigational processor 216 (block 930). Otherwise, the
reverse transformation function returns to the integration
loop function (block 940).

The kinematics equations integrator device and method of
the present invention computes a closed-form solution to the
kinematics equations to obtain the attitude of the vehicle,
and does so with increased speed, increased accuracy and
less cost than prior art integration methods. Moreover, the
norm of the quaternion is preserved, alleviating the need to
renormalize the quaternion after each time step and the need
for correction terms. Consequently, the computational sys-
tem needed for the present invention is usually less than that
needed for prior art integration methods. Moreover, the
source code needed to implement the method of the present
invention can be less complex and shorter than those needed
for prior art methods.

The foregoing description of the preferred embodiment of
the present invention has been presented for the purposes of
illustration and description. It is not intended to be exhaus-
tive or to limit the present invention to the precise form
disclosed. Many modifications and variations are possible in
light of the above teaching. It is intended that the scope of
the present invention be limited not by this detailed
description, but rather by the claims appended hereto.

What is claimed is:

1. In a vehicle such as a flight vehicle, a control system
comprising:

acceleration sensors with a angular velocity processor for
providing 3-D angular velocities;

a navigation computer for computing trajectory correc-
tions from attitude angles of said vehicle;

a kinematics equations integrator for updating a set of
vehicle attitude angles of a vehicle using said
3-dimensional angular velocities of said vehicle, said
integrator being connected to said navigation computer
and to said angular velocity processor and comprising:
an integrating factor module which computes an inte-

grating factor matrix from quantities corresponding
to said 3-dimensional angular velocities;

a total integrated angular rate module which computes
a total integrated angular rate from said quantities
corresponding to 3-dimensional angular velocities;

a state transition matrix module, connected to said
integrating factor module and said total integrated
angular rate module, which computes a state transi-
tion matrix as a sum of (a) a first complementary
function of said total integrated angular rate and (b)
said integrating factor matrix multiplied by a second
complementary function of said total integrated
angular rate; and

an updating module which updates said set of vehicle
attitude angles using said state transition matrix for
output to said navigation computer.

2. The apparatus of claim 1 wherein said integrator further
comprises:

a quaternion module which computes a quaternion vector
from said quantities corresponding to said
3-dimensional angular velocities; and

wherein said updating module comprises:

(2) a matrix multiplier which updates said quaternion
vector by multiplying said quaternion vector by said
state transition matrix to produce an updated quater-
nion vector;
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(b) areverse transformation module which computes an
updated set of vehicle attitude angles from said
updated quaternion vector.

3. A method of integrating kinematics equations for
updating a set of vehicle attitude angles of a vehicle using
3-dimensional angular velocities of said vehicle, compris-
ing:

computing an integrating factor matrix from quantities

corresponding to said 3-dimensional angular velocities;

computing a total integrated angular rate from said quan-
tities corresponding to 3-dimensional angular veloci-
ties;

computing a state transition matrix as a sum of (a) a first

complementary function of said total integrated angular

rate and (b) said integrating factor matrix multiplied by

a second complementary function of said total inte-

grated angular rate; and

updating said set of vehicle attitude angles using said state

transition matrix.

4. A computer-readable medium storing computer execut-
able instructions for performing the steps recited in claim 1.

5. The method of claim 1 wherein said quantities corre-
sponding to said 3-dimensional angular velocities comprise
respective averages of said 3-dimensional angular velocities
over plural time frames.

6. The method of claim 1 further comprising:

computing a quaternion vector from said quantities cor-

responding to said 3-dimensional angular velocities;
and

wherein the updating of said set of vehicle attitude angles

using said state transition matrix comprises:

(2) updating said quaternion vector by multiplying said
quaternion vector by said state transition matrix to
produce an updated quaternion vector;

(b) computing an updated set of vehicle attitude angles
from said updated quaternion vector.

7. The method of claim 6 wherein the updating of said
quaternion vector preserves the norm of said vector,
whereby said updated set of vehicle attitude angles are
virtually error-free.

8. The method of claim 1 wherein said first and second
trigonometric functions are complementary.

9. The method of claim 8 wherein said first and second
trigonometric functions comprise a sine and a cosine,
respectively.

10. Apparatus for use in integrating kinematics equations
for updating a set of vehicle attitude angles of a vehicle
using 3-dimensional angular velocities of said vehicle, said
apparatus comprising:

a Processor;

a memory having executable instructions stored therein;

and

wherein said processor, in response to said instructions

stored in said memory:

computes an integrating factor matrix from quantities
corresponding to said 3-dimensional angular veloci-
ties;

computes a total integrated angular rate from said
quantities corresponding to 3-dimensional angular
velocities;

computes a state transition matrix as a sum of (a) a first
trigonometric function of said total integrated angu-
lar rate and (b) said integrating factor matrix multi-
plied by a second trigonometric function of said total
integrated angular rate; and

updates said set of vehicle attitude angles using said
state transition matrix.

11. The apparatus of claim 10 wherein said quantities
corresponding to said 3-dimensional angular velocities com-
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prise respective averages of said 3-dimensional angular
velocities over plural time frames.
12. The apparatus of claim 10 wherein said processor
further:
computes a quaternion vector from said quantities corre-
sponding to said 3-dimensional angular velocities; and

w

wherein the updating of said set of vehicle attitude angles
using said state transition matrix comprises:

(2) updating said quaternion vector by multiplying said
quaternion vector by said state transition matrix to
produce an updated quaternion vector;

(b) computing an updated set of vehicle attitude angles
from said updated quaternion vector.

13. The apparatus of claim 12 wherein said first and
second trigonometric functions are complementary.

14. The apparatus of claim 12 wherein said first and
second trigonometric functions comprise a sine and a cosine,
respectively.

15. The apparatus of claim 12 wherein the updating of
said quaternion vector preserves the norm of said vector,
whereby said updated set of vehicle attitude angles are
virtually error-free.

16. Akinematics equations integrator for updating a set of
vehicle attitude angles of a vehicle using 3-dimensional
angular velocities of said vehicle, comprising:

an integrating factor module which computes an integrat-
ing factor matrix from quantities corresponding to said
3-dimensional angular velocities;

a total integrated angular rate module which computes a
total integrated angular rate from said quantities cor-
responding to 3-dimensional angular velocities;

a state transition matrix module, connected to said inte-
grating factor module and said total integrated angular
rate module, which computes a state transition matrix
as a sum of (a) a first complementary function of said
total integrated angular rate and (b) said integrating
factor matrix multiplied by a second complementary
function of said total integrated angular rate; and

an updating module which updates said set of vehicle
attitude angles using said state transition matrix.

17. The apparatus of claim 16 wherein said quantities
corresponding to said 3-dimensional angular velocities com-
prise respective averages of said 3-dimensional angular
velocities over plural time frames.

18. The apparatus of claim 16 further comprising:

a quaternion module which computes a quaternion vector
from said quantities corresponding to said
3-dimensional angular velocities; and

wherein said updating module comprises:

(2) a matrix multiplier which updates said quaternion
vector by multiplying said quaternion vector by said
state transition matrix to produce an updated quater-
nion vector;

(b) areverse transformation module which computes an
updated set of vehicle attitude angles from said
updated quaternion vector.

19. The apparatus of claim 18 wherein said updating
module which updates said quaternion vector preserves the
norm of said vector, whereby said updated set of vehicle
attitude angles are virtually error-free.

20. The apparatus of claim 16 wherein said first and
second trigonometric functions are complementary.

21. The apparatus of claim 20 wherein said first and
second trigonometric functions comprise a sine and a cosine,
respectively.
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