Autonomous Soaring

Background

- Many UAVs have similar mission constraints to birds and sailplanes.
 - Surveillance
 - Point to point flight with minimal energy
 - Increased ground speed
- Birds use atmospheric energy to hunt, forage, and migrate thousands of miles.
- Manned sailplanes rely solely on atmospheric energy
 - 2,000km (1,200mi) maximum distance.
 - Cross-country speeds in excess of 160kph (100mph)

Background: Energy Sources for Unmanned Vehicles

Fossil fuel

- Advantages: cheap, high specific power, COTS engines
- Disadvantages: pollution, noise, must re-fuel, cannot start & stop easily

Solar Electric

- Advantages: Quiet, renewable, easy to start & stop, no pollution.
- Disadvantages: Lower specific power, more expensive, climate and weather dependant

Atmospheric Energy

- Advantages: Free, strong, quiet, does not require special hardware (although advanced algorithms may require faster processor)
- Disadvantages: Climate and weather dependant, usually limited to lower altitudes (h<10Kft), requires maneuvering which may upset sensor measurements
- Best use of atmospheric energy is to augment other sources of energy.

Background: Alan Cocconi

- Alan Cocconi flew the Solong UAV for 48hr using solar energy on June 1-3, 2005
 - Span = 15.6ft
 - Weight = 28.2lb
 - "The energy budget requires riding thermals."¹
 - Cocconi also stated that the pilots/UAV operators were exhausted after 48hr of flying.
 - Moving map display with aircraft path was used by the pilots to soar in thermals.

¹ Cocconi, Alan, "AC Propulsion's Solar Electric Powered SoLong UAV," June 5, 2005,

URL: http://www.acpropulsion.com/ACP_SoLong_Solar_UAV_2005-06-05.pdfSoLong Solar-Electric UAV 48-hour Flight

Background: John Wharington

- John Wharington first proposed autonomous soaring for UAVs in 1998.
 - Recursive learning was used to center updrafts. Neural networks were used to identify updraft positions.
 - Algorithms were too computational intensive for real-time use.
 - Framework for updraft modeling, simulation, and autonomous soaring was provided.

Test Hardware

Cloud Swift Aircraft

- Span: 4.26m (14ft)
- Weight: 6.58kg (14.5lb)
- Stall speed: 18kt
- Mission speed: 25kt
- Independent Flight Termination System

Piccolo Plus Autopilot

- Weight: 212g (7.5 oz)
- Sensors:
 - Rate gyros
 - Accelerations
 - Static & total pressure
 - GPS position & velocity
- Custom software developed for this project

Guidance and Control for Thermal Soaring

Flight Test Plan

- Soaring research flights
 - 4,000ft AGL altitude restriction
 - Conducted on the edge of Rogers Dry Lakebed
 - August October, 2005

- 23 thermals were autonomously detected and used
- Average height gain was 172m (567ft)

 <u>Play</u> <u>cloudSwift_flt08_pr.mp2v</u>

Thermal State Estimation

Thermal Drift Estimation

- Drift velocity was estimated from previous values of energy rate.
- Drift was used to define a new reference frame that is moving with the thermal.

Thermal Radius Estimation

 Thermal radius was estimated by iteratively fitting an assumed thermal velocity distribution to the energy rate measurements.

Thermal Position Estimation

- Position was estimated by finding the position centroid of the measured energy rate.
- Advantages: Low computational cost, no tuning required, robust to variations in thermal size.
- Disadvantages: Bias toward the center of the measurement set.

- Soaring flight in light lift shown.
- Two small thermals encountered.
- Thermal centering performance could ' be improved.
 - Energy rate estimation delay.
 - Slow down when soaring.
- Altitude gain = 300ft

Mode Logic

- Simple mode logic was able to determine when to soar and when to search.
 - Input:
 - Total energy rate
 - Total energy acceleration
 - Output:
 - Soaring on/off
- Possible improvements:
 - Quicker estimate of aircraft energy
 - Additional mode that would allow the UAV to "Investigate" the thermal before moving on.

- Highest climb in a single thermal shown.
- 844m (2770ft) altitude gain.

 Play: cloudSwift_flt12_up2_m 2.avi

September 9, 2005

(m/s)

- Multiple thermals were used to soar autonomously for over an hour.
- Flight was limited only by actuator battery capacity.
- Altitude timehistory is similar to that of migrating birds.

Concluding Remarks

- A guidance and control method was developed to detect and exploit thermals for energy gain.
- Performance would likely be improved with reduced latency in energy rate estimation
- The concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology.

