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Physical Laws for Mechanobiology

Higher-level physical laws applicable to biological tissues are presented that will
permit the modeling of metabolic activity at the cellular level, including varia-
tions in the mass of a tissue. Here the tissue is represented as a �uid/solid mixture,
wherein molecular solutes transport within the �uid, and cells can migrate through-
out the porous solid. Variations in mass can arise via exchanges in mass between the
constituent phases within a control volume such that mass is conserved in the tis-
sue overall. The governing balance laws for mass, momentum, energy, and entropy
are a special case of those describing a chemically reacting mixture with di�usion.
Thermodynamic constraints on the constitutive structure are addressed.

1. Introduction

In the absence of gravity, or in reduced gravity environments like on the surfaces
of the Moon or Mars, astronauts' bodies will undergo physical changes brought
about by these varied states of gravity (Buckey 2006). The forces carried by their
musculoskeletal frames will be altered, because their weights will be reduced. Many
vital tissues will resorb and remodel due of these changes in gravity, altering their
masses, densities, and architectures. This will bring about changes in the physi-
cal capabilities of these astronauts, with the potential of placing their health at
increased risk (compared to their health risk here on Earth). If an injury were to
occur, it could increase the health risk of the remaining crew, and even impact
the ability of the crew to achieve its mission objectives. Higher-level physical laws
pertinent to investigating such risk scenarios are presented in this paper.

To address many of the speci�c risk scenarios pertaining to astronaut health
during long-duration voyages deep into space will require numeric simulations, as
no data base from past experiences exists to draw inference from at this time. These
simulations will likely be based upon biochemical, biomechanical, and mechanobio-
logical models that span the length and physiologic scales of molecules, cells, tissues,
organs, and organisms. We are of the opinion that studies intended to bridge such
vast length and physiologic scales will require the cells, solute molecules, interstitial
�uid, and extra cellular matrix of living tissue to be addressed individually in an
unifying framework. The physical laws presented in this paper provide a theoretical
foundation for studies such as these to be done.

Relevant �elds of study include (G. A. Holzapfel 2006, personal communication):
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� Biophysics: The science of biology and medicine, as revealed through appli-
cations of physical laws and theories.

� Biomechanics: The study of living systems through developments, extensions,
and applications of mechanics targeting to better explain phenomena in biol-
ogy, medicine, and bioengineering. Biomechanics focuses on whether or how
function follows structure via physical laws.

� Mechanobiology: The study of biological reactions of cells in response to
changes in their mechanical environment, as in growth, remodeling, adapta-
tion, and repair. Mechanobiology focuses on whether or how structure follows
function via biological laws.

This is a biophysics paper whose future applications will reside primarily in the
discipline of mechanobiology and, to a lesser degree, in biomechanics.

In an assessment of the role of computational sciences in the development and
application of higher-level physical laws, like mixture theory, the Nobel Prize Lau-
reate for Physics in 1998, Robert Laughlin, recently stated the truism (Laughlin
2002): �It is not generally possible to start from the wrong equations and get the
right result.� Our intention is to pay particular attention in getting the physics
correct, within the con�nes of a prede�ned set of assumptions that pertain to bi-
ology, so that numeric computations conforming with these assumptions will have
the capability of making accurate predictions.

(a) Mixture Theories in Tissue Mechanics

Binary models of porous elastic solids (cells, collagen, elastin, bone, muscle,
etc.) saturated with inviscid �uids (water, saline, plasma, lymphatic �uids, etc.) go
by the names of `biphasic theory' in the soft-tissue mechanics literature (cf. Mow
et al. 1980) and `poroelasticity' in the hard-tissue mechanics literature (cf. Cowin
2001). Both are mixture theories that can trace their origins back to Biot's (1941)
original theory for soil consolidation, to which Truesdell (1957) gave rigor. They are
equivalent theories under certain conditions, most notably, under an assumption of
intrinsic incompressibility (Kenyon 1978).

A `triphasic theory' was developed latter on to improve upon the predictions
of biphasic theory in the osmotic swelling of cartilage. This was achieved through
the actions of charged anions and cations introduced as solute phases into their
mixture formulation (Lai et al. 1991). `Bicomponent theory' is a simpler alternative
to multi �uidic-phase theories in that it has treated �ltration, osmotic swelling,
and buoyancy e�ects as separate local forces of interaction between the liquid and
solid components, without the need to introduce additional �uidic phases (Lanir
1987). A recent comparison between the triphasic and bicomponent theories has
demonstrated that they possess like capabilities (Wilson et al. 2005).

Another modi�cation to mixture theory was introduced by Mak (1986), who
replaced the elastic matrix of biphasic theory with a viscoelastic matrix in order to
account for the viscoelastic attributes of the intrinsic gels (proteoglycans, hyaluronic
acids, etc.) and matrix constituents (collagen, muscle, etc.) that convect with the
porous solid in an assumed a�ne manner.
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(b) Growth Theories in Tissue Mechanics

Cells will change the mass, architecture, and/or volume of both themselves
and their surrounding tissue, the extra cellular matrix, in their e�ort to maintain
homeostasis (Wang & Thampatty 2006). Growth, in a general usage of the word,
is said to occur whenever the volume fraction of the porous solid increases at the
expense of the volume fraction of the interstitial �uid due to cell activity.

There has been a recent �urry of papers addressing the physical laws of mass,
motion, and thermodynamics pertaining to open-system continua where mass is
being created locally (e.g., Epstein & Maugin 2000; Klisch & Lotz 2000; Humphrey
& Rajagopal 2002; Lubarda & Hoger 2002; Klisch & Hoger 2003; Kuhl & Steinmann
2003; Garikipati et al. 2004; Menzel 2005; and Guillou & Ogden 2006). These studies
extend the earlier works of Hsu (1968), Cowin & Hegedus (1976), and Skalak et al.
(1982). A common class of problems mentioned in all of these papers is tissue
growth.

Cowin & Hegedus (1976) derived balance laws for a porous single-phase contin-
uum. Klisch & Lotz (2000) applied balance laws for a �uid/solid mixture. Humphrey
& Rajagopal (2002) applied balance laws for a �uid/multiple-solid mixture, where
they constrained all solid constituents to deform with the same a�ne motion, and
then applied the rule-of-mixtures from homogenization theory to quantify stress in
the solid. Klisch & Hoger (2003) provide balance laws for tissues derived from many
mixture scenarios. Garikipati et al. (2004) derived balance laws for a multiple-�uid/
solid mixture. And the others applied balance laws that pertain to a dense single-
phase continuum. Our approach is to consider a four-phase mixture that we show to
be a special case of Truesdell's (1957) theory for chemically reacting mixtures with
di�usion. Here, the �uid transports a population of solutes needed for metabolism,
and the solid hosts a population of cells that utilize these metabolites.

All of the above mentioned tissue theories allow for volumetric growth, while the
theories of Epstein & Maugin (2000), Kuhl & Steinmann (2003), Garikipati et al.
(2004), and Guillou & Ogden (2006) allow for an additional growth through a �ux
of mass. In contrast, our theory introduces growth and other biological activities
through various mass exchanges between the constituents present within a mass
element.

Most of these theories introduce a multiplicative decomposition of the deforma-
tion gradient, e.g., F D FeFg (cf. Taber 1995), wherein the elastic Fe and growth
Fg tensors are often interpreted with slight variations betwixt them, which usually
include some form of further multiplicative re�nement. In such theories, growth
is a tensor �eld, viz. Fg, whose evolution must be speci�ed by some constitutive
law. Such a decomposition of the deformation gradient is always permissible in
single-phase continua. We do not introduce a multiplicative decomposition of the
deformation gradient; we cannot, because F is not de�ned in our theory. However,
one could de�ne such a decomposition for the extra cellular matrix in our mixture
theory, viz., Fm D Fm

e Fm
g , if one so desired.

An alternative approach to the notion of a growth tensor is found in Humphrey
& Rajagopal (2002), where they introduced the idea of a survival function as a
means for assigning natural con�gurations to constituents belonging to mass points
at the time of their creation. This function accounts for the rate of production and
the life span of each solid constituent. It enters into the theory as a kernel function
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in a Volterra integral equation of the second kind, like those used in the literature of
viscoelastic liquids. Of such con�gurations, they state: �It is di�erences in natural
con�gurations, not incompatible strains, that likely leave a tissue stressed in the
absence of applied tractions.� We �nd this to be a more appealing approach than
that of decomposing the deformation gradient, as it better re�ects the interface
between physics and biology.

(c) Approach Taken

A volume element of tissue is considered to be comprised of four types of con-
stituents: an interstitial miscible liquid (iml) suspending a population of solutes
(pos), and an extra cellular matrix (ecm) hosting a population of cells (poc). Each
constituent may itself be an assembly of many other sub-constituents, but that level
of sophistication is not required at this time in order for us to be able to derive a set
of higher-level physical laws that govern tissue and permit the modeling of biolog-
ical activity. However, such distinctions will become necessary when constructing
mechanobiologic constitutive models for speci�c tissues, which lies beyond the scope
of the present paper.

The various documents mentioned above, where physical laws have been de-
rived for tissue growth, are applicable to open-system continua; that is, mass can
be created and/or destroyed within a material element in these theories. The the-
ory presented here describes a closed-system continuum where mass is conserved
within a material element. It is a �uid/solid mixture theory, where the �uid is com-
prised of an iml suspending a pos, while the solid is comprised of an ecm hosting
a poc. Cells manage themselves and their surrounding environment by, in essence,
converting mass from one form into another in order to suit some function, be it
biological, chemical, or physical (Wang & Thampatty 2006). As an analog, cells are
factories that, in a physical sense, regulate exchanges in mass between the various
constituents of tissue. The nutrients that these cellular factories run on arrive as
molecules suspended by the liquid that surrounds them; furthermore, their wastes
depart as suspended particles in this same bathing liquid. So, in our approach to
mechanobiology, mass is neither created nor destroyed at a continuum point, but
rather, it is moved from one phase to another through biological processes.

Adopting the premise of Lai et al. (1991), the �uid phase of tissue is considered to
be comprised of a miscible liquid (the solvent or iml) that suspends soluble molecules
(the solutes or pos). In like manner, adopting the simplifying premise of Humphrey
& Rajagopal (2002), the solid phase (the porous lattice or ecm) is considered to be
comprised of various constituents that experience the same a�ne deformation, each
with their own natural con�guration. Managing this structure is the responsibility
of a poc. If the stresses carried by the various solid constituents are assumed to
sum according to the rule-of-mixtures, as dictated by homogenization theory, then
tractions can be assigned at the boundaries in a straightforward manner. These
assumptions are idealizations, and exceptions can be put forward for each of them.
Nevertheless, many important problems can be solved where these assumptions
hold, and it is the physical laws that govern this class of problems that we choose
to address.

The scope of our theory is quite broad in that it will allow for the modeling of
cellular activity (e.g., cell birth, death, metabolism, and migration), tissue behavior



(e.g., growth, swelling, remodeling, healing, and nutrient/waste transport), and
mechanical response (e.g., stress, strain, and energy), all within the same framework.
Applications of our theory to speci�c tissues undergoing speci�ed biological and/or
physical processes are left to future papers.

Supposition 1. Biological tissues are porous materials saturated with miscible �uids
that suspend solute molecules. The solid material is comprised of an assembly of
constituents that experience the same a�ne deformation, but that possess di�erent
natural con�gurations. This porous solid contains a distribution of cells that attach
to the matrix and are capable of locomotion by migrating through its cavities. Cells
are the caretakers of tissue, and in the execution of their various duties, they con-
vert mass from one form belonging to some constituent into another form possibly
belonging to a di�erent constituent in a manner that conserves mass overall.

2. Terminology

(a) Acronyms

ecm extra cellular matrix . . . . . . ˛ D m

iml interstitial miscible liquid . . ˛ D `

poc population of cells . . . . . . . . . ˛ D c

pos population of solutes . . . . . . . ˛ D s

(b) Nomenclature

a˛ free-energy supplies, ˛ 2

fc; `;m; sg

B volume in 3-space
c˛ density of mass supplies
dt , d˛

t material derivatives
da di�erential element of area
dm, dm˛ di�erential elements of mass
dv, dv˛ di�erential elements of volume
Dc di�usion coe�cient of a cell type
Dcs solute driven cell di�usion coe�-

cient
Ds di�usion coe�cient of a solute

type
D, D˛ strain-rate tensors
e˛ density of internal-energy supplies
ei basis vector, i D 1; 2; 3
F˛ deformation gradient tensors
g gravity vector
h time-step size
I identity tensor
J m Jacobian of the ecm deformation
k Boltzmann's constant
L, L̨ velocity gradient tensors
Mj molecular weight of solute j
nj molar concentration of solute j
n outward unit normal vector
Nc number of cell species
Ns number of solute species
p˛ momentum supplies
q, q˛ heat �ux vectors

r radius
r , r˛ heat productions
s˛ density of entropy supplies
t time
t, t˛ traction vectors
T Cauchy stress tensor
T˛ partial stress tensors
u˛ di�usion velocity vectors
v˛ velocity vectors
W , W ˛ vorticity tensors
x current position vector
Px velocity vector
Rx acceleration vector
Xm reference vector for the ecm
ˇ, ˇ˛ arbitrary mass-averaged �elds
 , ˛ density of entropy productions
ıB surface in 3-space
�, �˛ internal energies
� viscosity
�, �˛ entropies
� absolute temperature
�˛ mass fractions
�, �˛ partial mass densities
P�˛
ˇ

mass transfer rate from ˇ to ˛

%˛ actual mass densities
�˛ volume fractions
' motion map for the ecm
 ,  ˛ Helmholtz free energies
 motion map for the iml
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3. Mixtures

We adopt the approach of mixture theory (Truesdell 1957) to implement our sup-
position, and to establish the physical laws that govern it. The reader is referred
to the review article by Bowen (1976), the text by Rajagopal & Tao (1995), and
the references cited therein for more thorough treatments on mixture theory. The
former gives an excellent presentation of the classical theory for mixtures, while the
latter presents a nice collection of solved boundary-value problems.

The derivation of constitutive equations for speci�c tissue types, and the con-
struction of variational principles required to solve boundary value problems that
pertain to these constitutive formulæ are the topics of future research endeavors,
and their publications.

(a) Masses and Volumes

At any given instant in time, let a di�erential element of volume be comprised
of four distinct sub-volumes

dv D

X
dv˛

D dvc
C dv`

C dvm
C dvs; ˛ 2 fc; `;m; sg; (3.1)

where properties with an index of ` or s designate an a�liation with the iml
or pos phases of the �uid, and properties with an index of m or c designate an
a�liation with the ecm or poc phases of the solid, respectively, while an index of ˛

can represent any one of these four constituents, and a summand without limits is
considered to sum ˛ over all four of its phases. Volume fractions are then de�ned
as

�˛
D dv˛=dv with 0 < �˛ < 1 )

X
�˛

D 1; (3.2)

which sum to 1 because tissues are considered to be simply connected. The volume
fraction of each constituent will vary between tissue type. In the literature, the
volume fraction of �uid, which in our theory is quanti�ed by �` C �s, is called the
porosity.

The total mass dm of a volume element dv is the sum of its constituent masses
in that

dm D

X
dm˛: (3.3)

The density of this mass element is

� D dm=dv; (3.4)

which has partial mass densities �˛ that satisfy

� D

X
�˛ wherein �˛

D dm˛=dv; (3.5)

and actual mass densities %˛ that are given by

%˛
D dm˛=dv˛ with �˛

D �˛%˛ ) � D

X
�˛%˛: (3.6)

It is also useful to de�ne mass fractions (or concentrations) as

�˛
D dm˛=dm D �˛=� )

X
�˛

D 1; (3.7)

which sum to 1 because tissues are saturated mixtures.
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(b) Kinematics

We select a Cartesian coordinate system .1; 2; 3/ described by a set of orthonor-
mal base vectors fe1; e2; e3g, where ei � ej D ıij and ei � ej D �ijk ek , with the
repeated index k being summed from 1 to 3 in the usual manner. Here � and �

denote the inner and cross products, respectively, while ıij signi�es the Kroneker
delta, and �ijk is the permutation symbol.

At current time t , let all four constituent mass points dm˛ co-habitate with one
another at some volume element dv resulting in a mass element dm located by the
coordinates fx1; x2; x3g, or equivalently, by the position vector x D xi ei .

(i) Primitive Variables

The velocity vector is typically selected as the primitive kinematic variable in
�uid mechanics; whereas, in mixture theory, position vectors belonging to the vari-
ous phases are usually assigned as its primitives. Here we break with this tradition
and select velocity vectors as the primitive kinematic variables for the iml, poc &
pos, and we employ a position vector as the primitive kinematic variable for the
ecm. This mitigates the need to establish reference con�gurations for all constituents
except for the ecm.

In accordance with supposition 1, we assign a set of coordinates fXm
1
;Xm

2
;Xm

3
g to

a mass point dmm of an ecm to establish its reference location Xm D Xm
i ei at some

initial time t0. Let the motion of this mass point through space be described by

Xm
D '�1.x; t/ and x D '.Xm; t/; (3.8)

where the vector mapping function ' D 'i ei is considered to be continuous, su�-
ciently di�erentiable, and invertible; hence, '�1 exists. The velocity of an ecm mass
point is therefore given by

vm.x; t/ D @t'i ei ; (3.9)

wherein @t .�/ D @.�/=@t is the partial derivative taken with respect to time t , with
� denoting an arbitrary �eld.

Also in accordance with supposition 1, let the motion of mass point dm` for the
iml be described by

v`
D  .x; t/; (3.10)

where the vector mapping function  D  iei quanti�es the velocity of the miscible
liquid, and is considered to be continuous and su�ciently di�erentiable, but unlike
',  need not be invertible.

Collectively, the iml & ecm constitute a classic �uid/solid mixture to which we
now add the attributes needed to incorporate biology.

In accordance with supposition 1, let the motion of mass point dms for the pos
be described by the vector mapping

vs
D  .x; t/ �

NsX
iD1

Ds
i grad ln �s

i with �s
D

NsX
iD1

�s
i ; (3.11)

where Ds
i is the solute di�usion coe�cient, and �s

i is the mass density, both be-
longing to species i in some pos that contains Ns species. The gradient operator



grad.�/ D @.�/=@xi ei denotes a partial derivative taken with respect to the current
position x. The �rst term on the right-hand side of equation (3.11) describes the
�uid velocity of the liquid that suspends these particles as it �ows through the
tissue; it is the velocity map of the iml given in equation (3.10). The second term
accounts for a perturbation to this mean velocity �eld caused by Brownian mo-
tion of the solute particles, as described by Fick's �rst law for random di�usion.
The minus sign ensures that solutes migrate from regions of high concentration (or
density) to regions of low concentration.

Einstein's theory for Brownian motion, the topic of his 1905 Ph.D. thesis, pro-
vides a formula for quantifying the di�usion coe�cient of a spherical body with
radius r suspended in a �uid of viscosity � that is subject to the random bombard-
ment of atoms from within the �uid; it being,

D D k�=6��r; (3.12)

where k is Boltzmann's constant, and � is the absolute temperature (i.e., � > 0).
This formula can be applied to quantify, for example, the di�usion coe�cients of
globular proteins, to which the Ds

i refer. However, this formula must not be used
for purposes of quantifying the di�usion coe�cients associated with cell migration
presented below. These coe�cients need to be experimentally determined. The pos
di�use according to Einstein's physics for Brownian motion; whereas, the poc di�use
under their own locomotive processes. The di�usion coe�cient Ds will diminish
whenever the solute size approaches the pore size of the matrix material, which
varies with tissue type, and will become zero whenever the solute size exceeds the
pore size, with the tissue now acting as a �lter.

Finally, in accordance with supposition 1, let the motion of mass point dmc for
the poc be described by the vector mapping

vc
D @t' �

NcX
iD1

Dc
i grad ln �c

i C

NcX
iD1

NsX
jD1

Dcs
ij grad ln �s

j with �c
D

NcX
iD1

�c
i ; (3.13)

where Dc
i is the cell di�usion coe�cient associated with random cell locomotion,

and �c
i is the mass density, both of species i belonging to some poc that contains Nc

species, while Dcs
ij is the cell di�usion coe�cient of cell species i whose locomotion

occurs as a response to the presence of solute species j . The �rst term on the right-
hand side of equation (3.13) is a passive contribution that describes the velocity of
the deforming matrix to which the cells adhere; it is the time derivative of the ecm
motion map given in equation (3.8). The second term is an active contribution that
accounts for the haptotaxis migration of cells along a cell concentration gradient,
which is described by Fick's �rst law for random di�usion in accordance with, e.g.,
Nobel's (1987) experimental observation that cell locomotion is Markovian. The
third term is another type of active contribution to cell di�usion. This term accounts
for the chemotaxis migration of cells along a chemical concentration gradient. The
positive sign a�liated with this term implies that the di�usion coe�cient will be
positive whenever cells are attracted to a chemical stimulus, and negative whenever
they repel from it. Not all cell species are capable of locomotion, so some of the Dc

i

will be zero valued, and as such, their Dcs
ij will be zero valued, too. Furthermore,

most solute species j in a pos do not serve as an attraction potential for cells of
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species i that are capable of locomotion and which belong to some poc; hence, most
of the coe�cients Dcs

ij will be zero valued for cell species i where Dc
i is non-zero.

The physical laws derived herein, as they apply to the pos and poc, pertain to
their collective populations, not to the individual species of which they are com-
prised. Equations (3.11 & 3.13) quantify averaging schemes used to establish these
kinematic responses.

(ii) Kinematic Variables

Mixture theory averages the velocities of its constituent phases, which we sup-
pose obey equations (3.9�3.11 & 3.13), in order to obtain a representative velocity
�eld for the mixture which, in our case, we conjecture to be descriptive of tissue.
In particular, the mean (or barycentric) velocity is de�ned as

Px D

X
�˛v˛ or equivalently � Px D

X
�˛v˛; (3.14)

which is a mass-weighted average of the local velocity �elds (Truesdell 1957). The
di�usion velocity

u˛
D v˛

� Px )
X

�˛u˛
D 0; (3.15)

proves to be a useful measure describing the velocities of the constituents relative
to the overall velocity of the mixture.

By de�ning material derivatives for the phase constituents as

d˛
t .�/ D @t .�/C grad .�/ � v˛; (3.16)

where d˛
t .�/ denotes the total derivative taken with respect to time t of a �eld

belonging to the ˛th phase, one obtains a material derivative for the barycentric
frame that is given by

dt .�/ D @t .�/C grad .�/ � Px ) � dt .�/ D

X
�˛d˛

t .�/; (3.17)

where dt .�/ denotes the total derivative taken with respect to time t of a �eld
belonging to the continuum mixture, such that

d˛
t .�/ D dt .�/C grad .�/ � u˛; (3.18)

which is another identity of value. It is vital to distinguish between the material
derivatives of the phases d˛

t from the material derivative of the mixture dt during
the construction of a mixture theory, and in its applications.

The ecm has a deformation gradient tensor associated with it that is de�ned by

Fm
D GRAD' D

@'i

@Xm
j

ei ˝ ej ;

.Fm/�1
D grad'�1

D
@'�1

i

@xj

ei ˝ ej ;

(3.19)

so that Fm.Fm/�1 D .Fm/�1Fm D I, wherein I D ıij ei ˝ ej is the identity tensor,
with operator ˝ denoting the dyadic product, which satis�es .ei˝ ej / � D .� � ej / ei
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for all vectors �. Because of the invertibility of mapping ', it follows that the
Jacobian of this deformation is non-zero, viz.,

J m
D det Fm

¤ 0; (3.20)

where det designates a matrix determinant, in this case, of components Fm
ij D

@'i=@Xm
j where Fm D Fm

ij ei ˝ ej . Because velocity is the primitive variable in
the other three phases, these phases do not associate with a reference con�guration
a priori, and as such, they do not possess deformation gradient tensors that can be
constructed in said manner. We will return to this point later.

Velocity gradient tensors for the four separate phases are de�ned by

L˛
D grad v˛

D
@v˛

i

@xj

ei ˝ ej ; (3.21)

whose associated velocity vectors are given in equations (3.9�3.11 & 3.13), and
whose components are L˛

ij D @v˛
i =@xj . The mean velocity gradient is similarly de-

�ned by

L D grad Px D
@Pxi

@xj

ei ˝ ej ; (3.22)

which, incidently, relates to the velocity gradients of the constituents through the
formula

�L D

X
˛

�
�˛L˛

C u˛
˝ grad �˛

�
: (3.23)

Hence, equations (3.14 & 3.23) establish maps between kinematic �elds of the sub-
continua (i.e., the phases) and the continuum (i.e., the mixture).

The symmetric parts of the constituent and mean velocity gradients,

D˛
D

1
2

�
L˛

C .L˛/T
�

and D D
1
2

�
L C LT�

; (3.24)

de�ne their strain rates, while their associated skew-symmetric parts,

W ˛
D

1
2

�
L˛

� .L˛/T
�

and W D
1
2

�
L � LT�

; (3.25)

quantify their vorticities, and as such

L˛
D D˛

C W ˛ and L D D C W ; (3.26)

wherein T designates the transpose, e.g., given L D Lij ei˝ej then LT D Lji ei˝ej .

(iii) Deformation Gradients from Velocity Gradients

The local kinematic �elds relate to the global kinematic �elds through the veloc-
ities (equation 3.14) and velocity gradients (equation 3.23). In stark contrast, local/
global mappings do not exist for either an initial position vector X or a deformation
gradient tensor F , regardless of whether one chooses velocities or displacements as
the kinematic primitives (cf. Bowen 1976).

Simple �uids with memory (Coleman & Noll 1964), for example, require a knowl-
edge of the deformation history of the �uid; in particular, of the relative deformation
gradient Ft .�/ D @xi.t/=@xj .�/ ei ˝ ej de�ned for any reference time � , � � t . In
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tissue mechanics, relative deformation gradients of a solid phase have been used by
Humphrey & Rajagopal (2002) to handle the birth and death events of the con-
stituents therein. To obtain such measures of deformation for the poc, iml & pos
phases in our formulation, where the velocity vectors vc , v` & vs are the primitives,
not the position vectors xc , x` & xs, will require an integration of their gradients.

One can begin by discretizing the interval of integration Œ0; t � into N sub-intervals
such that 0 D t0 < t1 < � � � < tN �1 < tN D t . Provided that the velocity gradient
L˛ is known, and its associated deformation gradient F˛ is being sought, as in a
�nite element implementation of our theory, one can start by assigning an initial
condition of

F˛
tk
.tk/ D I; (3.27)

so that F˛
tn
.tk/ can be approximated for any n > k, given that k D 0; 1; 2; : : : ; n � 1

and n D 1; 2; : : : ;N , by employing, e.g., a mid-point predictor

yF˛
tn
.tk/ D F˛

tn�2
.tk/C 2h L˛.tn�1/F˛

tn�1
.tk/; n � k C 2; (3.28)

that can be started at n D k C 1 with the forward-Euler predictor

yF˛
tkC1

.tk/ D I C h L˛.tk/; (3.29)

which are then corrected with the trapezoidal rule

F˛
tn
.tk/ D F˛

tn�1
.tk/C

1
2
h
�
L˛.tn�1/F˛

tn�1
.tk/C L˛.tn/ yF˛

tn
.tk/

�
; (3.30)

when advancing the solution over an uniform time step of h D tn � tn�1 8 n. Here
we are solving the governing di�erential equation PF˛ D L˛F˛ using a predictor/
corrector with accuracy O

�
h3«F˛

�
. Other integrators could be used, too.

4. Mass Balance in Tissues

Any good textbook in continuum mechanics can be consulted to acquire detailed
derivations of the conservation laws that govern continua (e.g., Holzapfel 2000).
Here we use axioms for stating the physical laws that govern continua, and pos-
tulates for stating extensions to these axioms that are assumed to apply to the
sub-continua, viz., the phases of a mixture.

Consider a connected and bounded region B �xed in 3-space in an Eulerian
frame at current time t that is enclosed by a surface ıB. Such a region establishes
a control volume through which a physical law can be transcribed from axiom into
formula.

(a) Balance of Mass

Axiom 1. The rate at which mass increases inside of B equals the �ux of mass
entering across ıB.

Axiom 1 is a statement for mass conservation in a continuum, which assumes
the form of an integral equation; in particular,

@t

Z
B

� dv D �

Z
ıB

� Px � n da; (4.1)

NASA/TM—2007-214827 11



NASA/TM—2007-214827 12

where dv is an element of volume, da is an element of surface area, and n is its
unit normal. The surface integral is negated due to the convention that n points
outward. Provided that the integrands are continuous and su�ciently di�erentiable,
then an application of the divergence theorem to the surface integral in equation
(4.1) allows the resulting integral equation to be recast as the �eld equation

dt�C � div Px D 0; (4.2)

with div v D @vi=@xi signifying the divergence operator, and where use has been
made of the identity

div.�v/ D grad.�/ � v C � div v: (4.3)

Our theory di�ers from the existing theories for tissue growth discussed in the
Introduction of this paper in that here mass is conserved. Our theory describes
a closed-system continuum; whereas, prior growth theories describe open-system
continua, viz., their counterparts to our equation (4.2) have values other than zero
on their right-hand sides.

Postulate 1. For a phase in a mixture, the rate at which mass increases inside
of B equals the �ux of mass entering across ıB, plus any masses that are being
exchanged between it and the other phases within B.

As a matter of notation, let P�destination
source

represent the rate at which mass is being
moved from a `source' phase to a `destination' phase within a control volume. With
there being four separate phases, there exist twelve possible exchange rates. Only
a few are expected to be active for any given tissue type; nevertheless, all twelve
cases are considered in the construction of our general theory. What functional
forms these terms may take on is tissue dependent. This is a constitutive modeling
issue, and as such, is not addressed herein. It is through these functions, in part,
that biological laws and physical laws can interact.

The mass balance governing the ecm within a tissue, as described in supposi-
tion 1 and constrained by postulate 1, obeys the integral equation

@t

Z
B

�m dv D �

Z
ıB

�mvm
� n da C

Z
B

�
P�m

c � P� c
m C P�m

` � P� `
m C P�m

s � P� s
m

�
dv; (4.4)

whose local form is the �eld equation

dm
t �

m
C �mdiv vm

D cm with cm
D P�m

c � P� c
m C P�m

` � P� `
m C P�m

s � P� s
m; (4.5)

where cm is the density of mass supply to the extra cellular matrix, i.e., the rate
per unit volume at which mass is being moved from the three other phases into the
ecm, minus the rate at which it is being removed from the ecm and placed into the
other three phases. This formula can be rewritten as

dm
t

�
�m det Fm

�
D cm det Fm; (4.6)

because of the identity dm
t det Fm D det Fm div vm (cf. equation 1.2.12 in Bowen

1976), from which it immediately follows that

det Fm
D 1; (4.7)



whenever the matrix phase is incompressible, which is a good assumption for soft
tissues, but not for hard tissues.

The mass balance governing the poc within a tissue, as described in supposition 1
and constrained by postulate 1, obeys the integral equation

@t

Z
B

�c dv D �

Z
ıB

�cvc
� n da C

Z
B

�
P�c
` � P�`

c C P� c
m � P�m

c C P�c
s � P�s

c

�
dv; (4.8)

whose local form is

dc
t�

c
C �cdiv vc

D cc with cc
D P�c

` � P�`
c C P� c

m � P�m
c C P�c

s � P�s
c ; (4.9)

where cc is the density of mass supply to the population of cells, i.e., the rate per
unit volume at which mass is being moved from the three other phases into the
poc, minus the rate at which it is being removed from the poc and placed into the
other three phases. From this equation, it immediately follows that

tr Lc
D div vc

D 0; (4.10)

whenever the cells are incompressible, which is a good assumption, with tr L D Lii

signifying the trace operator.
The mass balance governing the iml within a tissue, as described in supposition 1

and constrained by postulate 1, obeys the integral equation

@t

Z
B

�` dv D �

Z
ıB

�`v`
� n da C

Z
B

�
P�`
c � P�c

` C P� `
m � P�m

` C P�`
s � P�s

`

�
dv; (4.11)

whose local form is the �eld equation

d`
t�

`
C �`div v`

D c` with c`
D P�`

c � P�c
` C P� `

m � P�m
` C P�`

s � P�s
`; (4.12)

where c` is the density of mass supply to the interstitial miscible liquid, i.e., the
rate per unit volume at which mass is being moved from the three other phases
into the iml, minus the rate at which it is being removed from the iml and placed
into the other three phases. From this equation, it immediately follows that

tr L`
D 0 (4.13)

whenever the liquid phase is incompressible, which is a good assumption.
Finally, the mass balance governing the pos within a tissue, as described in

supposition 1 and constrained by postulate 1, obeys the integral equation

@t

Z
B

�s dv D �

Z
ıB

�svs
� n da C

Z
B

�
P�s
c � P�c

s C P�s
` � P�`

s C P� s
m � P�m

s

�
dv; (4.14)

whose local form is the �eld equation

ds
t�

s
C �sdiv vs

D cs with cs
D P�s

c � P�c
s C P�s

` � P�`
s C P� s

m � P�m
s ; (4.15)

where cs is the density of mass supply to the population of solutes, i.e., the rate
per unit volume at which mass is being moved from the three other phases into the
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pos, minus the rate at which it is being removed from the pos and placed into the
other three phases. From this equation, it immediately follows that

tr Ls
D 0 (4.16)

whenever the solutes are incompressible, which is probably a reasonable assumption.
A means by which the mass density for a pos can be quanti�ed is via

�s
D

NsX
jD1

�s
j D

NsX
jD1

nj Mj ; (4.17)

where nj is the molar concentration (number of moles per cubic centimeter) and
Mj is the molecular weight (grams per mole) of solute molecule j .

The four mass supplies, which are mass rates per unit volume, satisfy the identityX
c˛

D 0; (4.18)

in accordance with their de�nitions given in equations (4.5, 4.9, 4.12 & 4.15). Hence,
our physical laws for tissue are a special case of Truesdell's (1957) physical laws for
chemically reacting mixtures with di�usion.

From the identity in equation (4.3), along with equations (3.5, 3.7 & 3.14),
the sum of the constituent mass-balance laws listed in equations (4.5, 4.9, 4.12
& 4.15) equates with the conservation of mass stated in equation (4.2). In this
regard, our theory di�ers from the existing theories for tissue growth discussed
in the Introduction. Our theory, like Truesdell's (1957) and Bowen's (1969, 1976)
theories, describes a closed-system continuum wherein mass is conserved both at a
mass point and throughout the body. Prior tissue growth theories describe open-
system continua wherein mass can be either created or destroyed at a mass point,
with a tacit implication that mass is somehow being conserved at some higher level
of organization such as the organism.

It is convenient to express the balance equation that governs mass in each of
the constituent phases as a single integral equation

@t

Z
B

�˛ dv D �

Z
ıB

�˛v˛
� n da C

Z
B

c˛ dv; (4.19)

whose local form is
d˛

t �
˛

C �˛div v˛
D c˛; (4.20)

wherein ˛ 2 fc; `;m; sg. In a general sense, the density of mass supply c˛ represents
a sum of rates at which masses are leaving the three other phases to be absorbed
by the ˛th phase, minus a sum of rates at which masses are departing from the ˛th

phase to be absorbed by the other three phases.
The equation for mass balance in the ˛th constituent, equation (4.20), and the

associated formula governing mass balance in the overall mixture, equation (4.18),
comprise what is theorem 1 in Truesdell's (1957) monumental paper.

A balance formula of the form

dm
t �

c
C �cdiv vm

D div
�
D grad �c

�
C cc ; (4.21)



has been used by Tranquillo & Murray (1993) in their modeling of wound closure,
and by Gómez-Benito et al. (2006) in their modeling of bone healing, with the
mass supply cc introducing terms akin to those of the logistics equation in order to
model cell mitosis (birth) and apoptosis (death). Equation (4.21) is an alternative
way to write equation (4.9) for mass balance in the poc, given the de�nition for vc

provided in equation (3.13).

(i) Rates for Mass-Averaged Fields

Consider an arbitrary �eld ˇ de�ned as the mass-weighted average of its con-
stituents

ˇ D

X
�˛ˇ˛ or equivalently �ˇ D

X
�˛ˇ˛: (4.22)

From equation (3.18), it follows that

dtˇ
˛

D d˛
t ˇ

˛
� gradˇ˛

� u˛; (4.23)

whilst from equations (3.15, 3.18 & 4.3), and an application of the chain rule to
equation (3.7), viz., � dt�

˛ D dt�
˛ ��˛dt�, which is further simpli�ed via equation

(4.2) for mass conservation, it follows that the balance law governing mass in each
constituent phase, equation (4.20), can be recast as

� dt�
˛

D �div
�
�˛u˛

�
C c˛; (4.24)

such that equations (4.22�4.24), in the company of equation (4.3), collectively yield
(cf. equation 1.2.17 in Bowen 1976)

� dt

�
�˛ˇ˛

�
D �˛ dtˇ

˛
C ˇ˛ � dt�

˛

D �˛ d˛
t ˇ

˛
� div

�
�˛ˇ˛u˛

�
C c˛ˇ˛;

(4.25)

and therefore
� dtˇ D

X�
�˛d˛

t ˇ
˛

� div
�
�˛ˇ˛u˛

�
C c˛ˇ˛

�
; (4.26)

which is a formula of extreme importance in mixture theory. This formula estab-
lishes how local �elds map into their associated global �elds. It is the predominant
averaging formula of mixture theory.

As a matter of illustration,

� Rx D

X�
�˛d˛

t v
˛

� div
�
�˛v˛

˝ uf
�

C c˛v˛
�

(4.27)

quanti�es the barycentric acceleration of a mixture.

5. Balance Laws for Tissues

In the prior section, we have shown that tissues can be treated as a special case
of chemically reacting mixtures with di�usible constituents. Consequently, one can
immediately write down the physical laws that govern them. The balance laws for
mass, momentum, and energy are from theorems 1�3 of Truesdell (1957). The �eld
equations governing entropy are derived in the appendix.

Tissues do not require the full generality of the theory for chemically react-
ing mixtures with di�usion. Certain simplifying assumptions can be imposed; in
particular:
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Assumption 1. The temperatures of the separate phases are equal.

Assumption 2. Second- and higher-order terms in di�usion velocity can be ne-
glected.

Assumption 3. All moments of momenta can be neglected.

In accordance with these assumptions, the physical laws that govern the mass,
momentum, energy, and entropy of each constituent in such a mixture are respec-
tively

d˛
t �

˛
D ��˛div v˛

C c˛;

�˛d˛
t v

˛
D div T ˛

C �˛g C p˛; T ˛
D .T ˛/T;

�˛ d˛
t �

˛
D tr

�
T ˛D˛

�
� div q˛

C �˛r˛
C e˛;

�˛ d˛
t �

˛
D �div

�
q˛=�

�
C �˛r˛=� C s˛

C  ˛;

(5.1)

where ˛ 2 fc; `;m; sg in our case. The laws that govern momentum and entropy
utilized assumptions 1 & 3 in their derivations. Here �˛, �˛, r˛, and �˛ are the mass,
internal energy, heat production, and entropy densities of the ˛th constituent, while
 ˛ is its entropy production, � is temperature, g is the gravity vector (the sole body
force considered here), v˛ and q˛ is the velocity and heat �ux vectors of the ˛th

constituent, and T ˛ is its partial stress. Quantities p˛, e˛, and s˛ are the rates
at which momentum, internal energy, and entropy are being supplied to the ˛th

phase from the other three phases through processes linked to some mass supply
c˛ and/or some di�usion velocity u˛.

Their counterparts, the physical laws that govern the overall mixture, are sat-
is�ed implicitly by the following set of constraint equationsX

c˛
D 0;X�

p˛
C c˛u˛

�
D 0;X�

e˛
C tr

�
T ˛grad u˛

�
C c˛�˛

�
D 0;X�

s˛
C div

�
�˛ ˛u˛=�

�
C c˛�˛

�
D 0;X

 ˛
� 0;

(5.2)

where assumptions 1 & 2 have been imposed, and where  ˛ D �˛ � �˛� denotes
the Helmholtz free energy of the ˛th phase. The �rst formula in equation (5.2) is
just equation (4.18). The second formula, like the �rst, is as it appears in Truesdell
(1957). However, the third formula is di�erent, because of how work is considered
to map (see equation 5.5). In our formulation, the additional work lost or gained
through di�usion tr

�
T˛grad u˛

�
is accounted for. In Truesdell's (1957) and Bowen's

(1976) formulation, this e�ect is quanti�ed by p˛ � u˛, which is associated with a
di�erent heat �ux map than is given in equation (5.5). The remaining two formulæ
in equation (5.2) are new to the best of my knowledge, and are derived in the
appendix.
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The formulæ in equation (5.2) are equivalent to the well-known �eld equations

dt� D �� div Px;

� dt Px D div T C �g; T D T T;

� dt� D tr .TD/ � div q C �r;

� dt� D �div.q=�/C �r=� C ;  � 0;

(5.3)

which are classic in their construction. In accordance with assumption 2, as it
pertains to the internal energy, the mappings

� D

X
�˛; Px D

X
�˛v˛; � D

X
�˛�˛; � D

X
�˛�˛; (5.4)

establish how the various local �elds that reside on the left-hand sides of the for-
mulæ in equation (5.1), as arguments of their material derivatives, relate to their
continuum counterparts in the formulæ of equation (5.3). Also in accordance with
assumption 2, which has been imposed on all of the formulæ to follow except for
that of the heat production, one obtains the mappings

T D

X
T˛;

tr .TD/ D

X�
tr

�
T ˛D˛

�
� tr

�
T ˛grad u˛

��
;

q D

X�
q˛

C �˛�˛u˛
�
;

r D

X
�˛r˛;

(5.5)

which establish how the various local �elds relate to their global counterparts that
reside on the right-hand sides of these formulæ.

See, for example, Bowen (1976) for the derivations and representations that hold
whenever asumptions 1�3 do not apply. We point out that Bowen (1976) further
decomposes tr

�
T ˛grad u˛

�
into div

�
T ˛u˛

�
� u˛ � div T ˛, which is mathematically

correct, and in doing so he is lead to di�erent mapping formulæ for q and e˛

than those that are given in equations (5.2 & 5.5). Both of our formulations are
mathematically correct. We �nd our formulation to be more intuitive. Bowen (1976)
refers to our q as k.

6. Constitutive Structure

The customary means by which constitutive equations are derived is to introduce
a Lagendre transformation that swaps entropy for temperature as an independent
thermodynamic variable, with temperature having the advantage of being capable
of measurement. This particular transformation exchanges the internal energy with
the Helmholtz free energy as the thermodynamic state function, which arose nat-
urally in our derivation of entropy production, equation (A.8), and allows one to
combine the formulæ for the �rst- and second-laws of thermodynamics into a single
formula, with the outcome being a Gibbs-like equation.



Let the velocity �elds for the four constituents of tissue be described by

v`
D  .x; t/;

vm
D @t'.X

m; t/;

vs
D v`

�

NsX
iD1

Ds
i grad ln �s

i ;

vc
D vm

�

NcX
iD1

�
Dc

i grad ln �c
i �

NsX
jD1

Dcs
ij grad ln �s

j

�
;

(6.1)

in accordance with supposition 1.
A common form adopted for the constitutive structure of momentum supply is

(cf. equation 2.1.12 in Bowen 1976)

p˛
D �

X
ˇ

�˛ˇgrad �ˇ
�

X
ˇ

�˛ˇvˇ
� �˛grad T; (6.2)

where the �rst term on the right-hand side introduces a buoyancy e�ect, the second
term introduces a Stokes drag e�ect, and the last term introduces a Soret thermal-
di�usion e�ect, with �˛ˇ, �˛ˇ, and �˛ denoting material constants. For example, the
biphasic theory of Klisch & Lotz (2000) utilizes Stokean drag as their constitutive
equation for momentum supply in their modeling of the annulus �brosus.

Appendix. Balance of Entropy With Its Production

Unlike axiom 1, which is a law of conservation (i.e., an equality), the second law
of thermodynamics in its classic presentation establishes an inequality. Following
the approach promulgated by Truesdell & Noll (1965, pg. 295), one can postulate
the existence of an entropy production term that `balances' this classic entropy
inequality, thereby putting the axiom for the second law into a format that can be
readily applied down to the level of the sub-continua of a mixture.

Axiom 2. The rate at which entropy increases inside of B equals the �ux of entropy
entering across ıB, plus the entropy expended by the heat �uxing across its surface
ıB and by the heat generating within its volume B, plus a non-negative rate of
entropy generation created internally by other irreversible processes.

Axiom 2 is a statement of the second law of rational thermodynamics, whose
mathematical interpretation is

@t

Z
B

�� dv D �

Z
ıB

�� Px � n da �

Z
ıB

.q=�/ � n da C

Z
B

�
�r=� C 

�
dv; (A.1)
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which satis�es a Clausius-Duhem constraint via the integral inequalityZ
B

 dv � 0; (A.2)

wherein � and r are the entropy and rate of heat production per unit mass, � is the
absolute temperature, q is the heat �ux, and  is the rate of entropy production per
unit volume brought about by internal irreversible processes. Following conventional
arguments, and simplifying with equation (4.2) for mass conservation, these integral
equations are equivalent to the �eld equations

� dt� D �div.q=�/C �r=� C ; (A.3)

and
 � 0; (A.4)

where the latter formula handles the inequality from the second law of thermody-
namics, as it applies to a continuum. These results are well known.

Postulate 2. For a phase in a mixture, the rate at which entropy increases inside
of B equals the �ux of entropy entering across ıB, plus the entropy expended
by the heat �uxing across its surface ıB and by the heat generating within its
volume B, plus a non-negative rate of entropy generation created internally by
other irreversible processes, plus any entropies that are being exchanged between
it and the other phases within B.

Given that equation (4.20) establishes the law governing mass balance within
the phases of a mixture then, in accordance with postulate 2 and assumption 1, a
balance of the entropy with its production in the ˛th constituent requires that

@t

Z
B

�˛�˛ dv D �

Z
ıB

�˛�˛ v˛
� n da �

Z
ıB

�
q˛=�

�
� n da

C

Z
B

�
�˛r˛=� C  ˛

C s˛
C c˛�˛

�
dv; (A.5)

where �˛ is the entropy per unit mass and  ˛ is the rate of entropy production per
unit volume, both within the ˛th phase, while s˛ is the density of entropy supply
originating from an exchange of entropies between it and the other constituent
phases. When written as a �eld equation, simplifying with equation (4.20) for mass
balance, one gets

�˛ d˛
t �

˛
D �div

�
q˛=�

�
C �˛r˛=� C  ˛

C s˛; (A.6)

which is a balance law that governs entropy and its production at the constituent
level. By introducing the notions of entropy production and entropy supply, we are
able to construct an entropy law for the individual phases of a mixture in a manner
that is consistent with the construction of their mass, momentum, and energy laws.
In this regard, our approach di�ers from the classic approach outlined in Bowen
(1976) wherein  ,  ˛, and s˛ have not been introduced.

It is important to point out that postulate 2 does not carry over a `non-negative'
constraint on  ˛ that is otherwise imposed on  in axiom 2; in other words, it is
admissible for a  ˛ to be negative as-long-as  is always non-negative.
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By assigning the mappings

 D

X
 ˛ and �� D

X
�˛�˛; (A.7)

one is able to express � dt� in terms of local �elds via equation (4.26) leading toX�
s˛

C div
�
�˛ ˛u˛=�

�
C c˛�˛

�
D 0; (A.8)

where the mappings for heat �ux q and heat production r obtained from the en-
ergy balance formulæ have been applied, as listed in equation (5.5) wherein the
expression for q requires an application of assumption 2. Here  ˛ D �˛ � �˛� de-
�nes the Helmholtz free energy for the ˛th constituent. Equation (A.8) forces the
entropy supply to be in balance with the entropy lost or gained through di�usion
and through mass supply.

(a) Helmholtz Free Energy Formulation

The conservation of energy listed in equation (5.3) and the balance of entropy
with its production derived in equation (A.3) combine to produce

� dt D ��� dt� C tr .TD/ � q � grad .ln �/ � �; (A.9)

where  D � � �� is the Helmholtz free energy function.
Likewise, the balance law for energy listed in equation (5.1) and the formula

balancing entropy with its production derived in equation (A.6), both of which
pertain to the constituents of a mixture, and combine to produce

�˛ d˛
t  

˛
D ��˛�˛ d˛

t � C tr
�
T ˛D˛

�
� q˛

� grad .ln �/ �  ˛� C a˛; (A.10)

where a˛ D e˛ � s˛� is the density of free-energy supply associated with the ˛th

phase. Its constraint equation is obtained by multiplying temperature with the
fourth formula in equation (5.2) and subtracting that from the third formula in
equation (5.2).
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