NASA/TM-2007-215131

Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank

A.K. Majumdar Marshall Space Flight Center, Marshall Space Flight Center, Alabama

T.E. Steadman and J.L. Maroney Sverdrup Technology, Inc., Huntsville, Alabama

The NASA STI Program Office...in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results...even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at *http://www.sti.nasa.gov*
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076–1320 301–621–0390

NASA/TM-2007-215131

Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank

A.K. Majumdar Marshall Space Flight Center, Marshall Space Flight Center, Alabama

T.E. Steadman and J.L. Maroney Sverdrup Technology, Inc., Huntsville, Alabama

National Aeronautics and Space Administration

Marshall Space Flight Center • MSFC, Alabama 35812

November 2007

Acknowledgments

The authors would like to acknowledge James Fesmire, Jared Sass, Alexis Hongamen, Steve Sojourner, and Zoltan Nagy of the Cryogenic Test Laboratory, Kennedy Space Center, for their valuable contribution to this effort through many technical interchange meetings, transmission and discussions of test data, laboratory and facility visits, and several administrative processes during the entire period of investigation.

Available from:

NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076–1320 301–621–0390

This report is also available in electronic form at https://www2.sti.nasa.gov

TABLE OF CONTENTS

1.	INTRODUCTION	1
	1.1 Purpose and Objective	1
	1.2 Numerical Approach	3
	1.3 Outline of the Report	3
		5
2.	DESCRIPTION OF NUMERICAL MODELING TOOL (GFSSP)	4
	2.1 Network Definition	4
	2.2 Program Structure	5
	2.3 Mathematical Formulation and Solution Algorithm	5
	2.4 Property and Resistance Option	6
	2.5 Code Validation and Verification	7
		/
3.	DESCRIPTION OF CRYOGENIC PROPELLANT TANKS	8
	3.1 Demonstration Tanks	8
	3.2 Full-Scale Tanks	10
4.	NUMERICAL MODEL DEVELOPMENT	11
	4.1. Single Fluid Node Tenk Model	11
		11
	4.2 Ullage and Propellant Node Tank Model	12
	4.3 Stratified Ullage and Propellant Tank Model	14
5.	NUMERICAL MODEL RESULTS	18
	5.1 Radiation Gap Analysis Using Single Fluid Node Model	18
	5.2 Illiago and Propallant Node Tank Model Posulta	21
	5.2 Charles and Flopenant Route Tank Woder Results	21
	5.3 Stratified Ullage and Propellant Tank Model Results	27
6.	CONCLUSION	29
AP	PENDIX A—HEAT LEAK THROUGH SUPPORT STRUCTURE	30
	A.1 Conduction Calculation to Estimate Heat Leak	30

TABLE OF CONTENTS (Continued)

APPENDIX B—THERMAL PROPERTIES	32
B.1 Thermal Conductivity and Specific Heat	32
B.2 Heat Transfer Coefficient	32
B.3 Optical Properties	34
APPENDIX C—SPHERICAL TANK GEOMETRY	35
APPENDIX D—INPUT/OUTPUT DATA FOR DEMONSTRATION TANK MODEL	36
D.1 CESAT Liquid Nitrogen and Perlite Input Data File	36
D.2 CESAT Liquid Nitrogen and Perlite Sample Output Data File	38
D.3 CESAT Liquid Nitrogen and Glass Bubbles Input Data File	42
D.4 CESAT Liquid Nitrogen and Glass Bubbles Sample Output Data File	44
D.5 CESAT Liquid Hydrogen and Perlite Input Data File	48
D.6 CESAT Liquid Hydrogen and Perlite Sample Output Data File	50
D.7 CESAT Liquid Hydrogen and Glass Bubbles Input Data File	54
D.8 CESAT Liquid Hydrogen and Glass Bubbles Sample Output Data File	56
APPENDIX E—INPUT/OUTPUT DATA FOR FULL-SCALE TANK MODEL	60
E.1 LC-39 Perlite Input Data File	60
E.2 LC-39 Perlite Sample Output Data File	68
E.3 LC-39 Glass Bubbles Input Data File	75
E.4 LC-39 Glass Bubbles Sample Output Data File	83
REFERENCES	90

LIST OF FIGURES

1.	Liquid hydrogen tank in LC-39A at Kennedy Space Center	1
2.	Two 1,000-L demonstration tanks for measuring boiloff of liquid hydrogen and nitrogen using glass bubbles and perlite insulation	2
3.	GFSSP network of fluid and solid nodes for a counter flow heat exchanger	4
4.	GFSSP's program structure showing the interaction of three major modules	5
5.	CESAT demonstration tank schematic	8
6.	CESAT inner sphere skin temperature measurement locations	9
7.	Full-scale tank schematic	10
8.	Preliminary GFSSP model with single heat transfer path	11
9.	GFSSP single fluid node tank model	12
10.	Schematic illustrating boiloff fill level modeling technique	13
11.	GFSSP ullage and propellant node tank model	14
12.	Initial GFSSP stratified ullage and propellant tank model	15
13.	Final GFSSP stratified ullage and propellant tank model	16
14.	Radiation gap parametric cases	19
15.	Insulating material gas analysis—effects of varying the radiation gap	21
16.	GFSSP predicted CESAT boiloff versus tank height fill level	22
17.	Comparison of GFSSP prediction versus test instrumentation radial location	23
18.	Example of using total weight to identify a boiloff test	24
19.	Liquid nitrogen CESAT annular space temperature gradient comparison	25
20.	GFSSP stratified ullage temperature prediction for LC-39 with glass bubbles insulation	28

LIST OF FIGURES (Continued)

21.	Cable heat conduction circuit	30
22.	Radial support heat conduction circuit	31
23.	CESAT liquid nitrogen and perlite solid node temperature predictions	40
24.	CESAT liquid nitrogen and perlite ullage and propellant path heat transfer rates	41
25.	CESAT liquid nitrogen and perlite boiloff rates	41
26.	CESAT liquid nitrogen and glass bubbles solid node temperature predictions	46
27.	CESAT liquid nitrogen and glass bubbles ulllage and propellant path heat transfer rates	47
28.	CESAT liquid nitrogen and glass bubbles boiloff rates	47
29.	CESAT liquid hydrogen and perlite solid node temperature predictions	52
30.	CESAT liquid hydrogen and perlite ullage and propellant path heat transfer rates	53
31.	CESAT liquid hydrogen and perlite boiloff rates	53
32.	CESAT liquid hydrogen and glass bubbles solid node temperature predictions	58
33.	CESAT liquid hydrogen and glass bubbles ullage and propellant path heat transfer rates	59
34	CESAT liquid hydrogen and glass bubbles boiloff rates	59
35.	LC-39 perlite propellant path solid node temperature predictions	73
36.	LC-39 perlite ullage inner sphere solid node temperature predictions	73
37.	LC-39 perlite propellant path heat transfer rates	74
38.	LC-39 perlite boiloff rates	74
39.	LC-39 glass bubbles propellant path solid node temperature predictions	88
40.	LC-39 glass bubbles ullage inner sphere solid node temperature predictions	88
41.	LC-39 glass bubbles propellant path heat transfer rates	89
42.	LC-39 glass bubbles boiloff rates	89

LIST OF TABLES

1.	Mathematical closure	6
2.	Fluids and ideal gas available in GFSSP	6
3.	Parametric cases	18
4.	Model parametric study results	20
5.	Liquid nitrogen with perlite insulation preliminary GFSSP prediction comparison with test data, test tank 2	27
6.	Liquid nitrogen with glass bubbles insulation preliminary GFSSP prediction comparison with test data, test tank 2	27
7.	Liquid hydrogen with perlite insulation preliminary GFSSP prediction comparison with test data, test tank 1	27
8.	Liquid hydrogen with glass bubbles insulation preliminary GFSSP prediction comparison with test data, test tank 2	27
9.	Insulating material physical properties	32

LIST OF ACRONYMS AND SYMBOLS

CESAT	Cost-Efficient Storage And Transfer
GFSSP	Generalized Fluid System Simulation Program
ID	Inside Diameter
IRAD	Independent Research and Development
KSC	Kennedy Space Center
LC	Launch Complex
LH ₂	Liquid Hydrogen
MSFC	Marshall Space Flight Center
OD	Outside Diameter
SASS	Simultaneous Adjustment with Successive Substitution
TM	Technical Memorandum
VTASC	Visual Thermo-fluid Analyzer of Systems and Components

NOMENCLATURE

A	area (m ²)
A _{u-p}	ullage-propellant interface heat transfer area
A _{u-p,cond}	conduction area between the tank wall sections exposed to ullage and propellant
BR	boiloff rate (gallons/day)
CF	conversion factor (613 s-Btu-gal/day-J-ft ³)
D	diameter of inner wall (1.245 m); diameter of the outer tank wall (1.524 m)
D_t	diameter of spherical tank
g	acceleration of gravity (39.8067 m/s ²)
h	height of either propellant or ullage space
h_{fg}	enthalpy (BTU/lb)
h_i	heat transfer coefficient through inner wall (17.361 $W/(m^2-K)$)
h_o	heat transfer coefficient through outer wall (9.068 $W/(m^2-K)$)
h_x	height of either propellant or ullage space
Κ	thermal conductivity (Btu/s-ft-R)
k	thermal conductivity of fluid (0.1164 W/m-K)
k _p	thermal conductivity of insulation material (W/(m-K))
k _s	thermal conductivity of stainless steel (15.5636 W/(m-K))
L	length (ft)
Nu	Nusselt number
Ż	heat rate (W)
$\dot{\mathcal{Q}}_{a\text{-}p}$	ambient to propellent heat rate (W)
\dot{Q}_{a-u}	ambient to ullage heat rate (W)
$\dot{\mathcal{Q}}_{s-p}$	solid to propellent heat rate (W)
\dot{Q}_{u-p}	ullage to propellent heat rate (W)

NOMENCLATURE (Continued)

q	heat transfer rate (Btu/s)
Ra	Rayleigh Number (dimensionless)
Re	Reynolds number (dimensionless)
R _{u-p}	radius calculated using either the ullage or propellant height
Т	temperature
<i>t</i> _{wall}	wall thickness of the tank
U	overall heat transfer through the system (W/m^2-K)
V _t	volume of spherical tank
V_x	corresponding volume
V	velocity of air (assume 5 mph wind = 2.235 m/s); kinematic viscosity of fluid (1.96E-7 m ² /s)
W	wall
X	ullage or propellant
α	thermal diffusivity of fluid $(1.75\text{E-7 m}^2/\text{s})$.
β	thermal expansion coefficient (9.5E-6 m/m-K)
ΔT	temperature difference between liquid and wall (assume 0.55K)
δ_p	thickness of insulation material (0.12509 m)
δ_{si}	thickness of inner sphere wall (0.004755 m)
δ_{so}	thickness of outer sphere wall (0.004755 m)
μ	viscosity of air (1.86E-5 kg/m-s)
ρ	density (lb/ft ³); density of air (1.2 kg/m ³)

TECHNICAL MEMORANDUM

NUMERICAL MODELING OF PROPELLANT BOILOFF IN CRYOGENIC STORAGE TANK

1. INTRODUCTION

1.1 Purpose and Objective

The cost of boiloff of propellants in cryogenic storage tanks at launch complex 39 (LC-39) at Kennedy Space Center (KSC) is in the order of \$1M per year. The LC-39A and LC-39B storage tanks for liquid hydrogen (LH₂) are spherical (fig. 1). The vacuumed annulus space between the inner and outer spheres of each storage tank is filled with perlite insulation. Perlite is susceptible to compaction after repeated thermal cycles. It is widely believed that the compaction has led to decreased thermal performance.

Figure 1. Liquid hydrogen tank in LC-39A at Kennedy Space Center.

The Cryogenic Test Laboratory at KSC has undertaken a study of insulation materials for cryogenic tanks in order to reduce boiloff from liquid hydrogen and oxygen tanks. Fesmire and Augustynowicz¹ have measured apparent thermal conductivity of several bulk-fill insulation materials and have found that the thermal conductivity of glass bubbles is 67% less than perlite in vacuum. In another study, Fesmire et al.² studied the vibration and thermal cycling effects on several bulk-fill insulation materials and found that glass bubbles are not susceptible to compaction due to thermal cycling. As a part of the Independent Research and Development (IRAD) project entitled, "New Materials and Technology for Cost Efficient Storage and Transfer (CESAT)," KSC has built two 1,000-L demonstration tanks (fig. 2) and tested the performance of perlite and glass bubble insulation for liquid nitrogen and hydrogen.

Figure 2. Two 1,000-L demonstration tanks for measuring boiloff of liquid hydrogen and nitrogen using glass bubbles and perlite insulation.

Marshall Space Flight Center (MSFC) was responsible for developing numerical models to calculate boiloff for the demonstration and full-scale tanks. The main objective of the thermal modeling effort is to numerically predict the boiloff rate of stored propellants in a cryogenic tank with different insulation materials. The intent is to compare the boiloff rate when using two different insulation materials—glass bubbles and perlite. The scope of the thermal modeling effort includes (1) development, testing, and running models for the 1,000-L demonstration tanks with liquid nitrogen and hydrogen, (2) comparison of numerical predictions with test data, and (3) development, testing, and running models for the liquid hydrogen tanks of LC-39 at KSC.

1.2 Numerical Approach

Boiloff calculation requires the calculation of heat leak through metal walls and insulation. A simple one-dimensional calculation of heat conduction through a composite layer consisting of metal and insulation is not adequate for estimating the boiloff because the heat leak process is not entirely one dimensional. The tanks are partially filled with vapor at a temperature higher than the liquid propellant. This vapor space, called the ullage, is also stratified due to gravitational effects. In addition to heat conduction through metal and insulation, the thermodynamics and fluid mechanics of the propellant also play a role in determining boiloff rate. Therefore, it is essential to use a code that has the capability to model all of the processes that influence boiloff.

The Generalized Fluid System Simulation Program (GFSSP), developed at MSFC,^{3,4} has been used to develop the thermal models for estimating boiloff in the demonstration tanks and the liquid hydrogen storage tank at LC-39. GFSSP is a finite volume-based computer code for analyzing fluid flow in a complex flow circuit. The program is capable of modeling phase changes, compressibility, mixture thermodynamics, pumps, compressors, and external body forces such as gravity and centrifugal. Recently, the code has been upgraded to model conjugate heat transfer⁵ that allows simultaneous calculation of solid temperatures accounting for the heat transfer between solid and fluid.

The computational effort was first focused to develop a model for the demonstration tank in order to verify the numerical predictions by comparing with test data. During this effort, two models were developed. In the first model, the internal volume of the tank was modeled by a single node. This node was connected with multiple solid nodes. Each solid node in turn was connected with other solid nodes to model the heat leak path. The underlying assumption of this single fluid node tank model is that vapor and liquid have the same temperature. The second model of the demonstration tank uses two fluid nodes to represent ullage and liquid propellant volume. Both ullage and liquid propellant nodes are connected to solid nodes that have separate heat leak paths. This model allows calculation of ullage temperature different from propellant temperature and also calculates ullage to propellant heat transfer that contributes to boiloff of propellants. This model was verified by comparing with test data for liquid nitrogen and hydrogen. After the verification of the model, the second model was scaled up to represent the full-scale hydrogen tank of LC-39. In addition, the ullage space was further subdivided into eight control volumes to model stratification.

1.3 Outline of the Report

The remaining report consists of five additional sections. Section 2 provides a brief description of the numerical modeling tool, GFSSP, which includes network definition, program structure, mathematical formulation, solution scheme, thermodynamic property program, and fluid resistance options. The cryogenic propellant tanks modeled in this Technical Memorandum (TM) are described in section 3. The tank geometry and instrumentation for the demonstration tanks and the geometry of the full-scale tank has been described. The details of the three numerical models described in section 1.2 have been described in section 4. The results of all three numerical models are described in section 5. This section also describes the comparison of numerical predictions with test data. Section 6 describes the conclusions, which includes a summary of the present investigation and proposed future work.

2. DESCRIPTION OF NUMERICAL MODELING TOOL (GFSSP)

2.1 Network Definition

GFSSP is a general-purpose computer program for analyzing fluid flow and heat transfer in a complex network of fluid and solid systems. Figure 3 shows a network of fluid and solid nodes to model fluid flow and heat transfer in a counter flow heat exchanger. The nodes in the upper leg are representative of flow through the inner pipe and the lower leg represents flow through the annulus. The convective and conduction heat transfer between these streams occurs through solid-fluid and solid-solid conductors. In constructing the flow network, the program uses boundary and internal nodes connected by branches. At the boundary nodes, pressure, temperature, and concentrations are specified. At the internal nodes, all scalar properties such as pressure, temperature, density, compressibility factor, and viscosity are computed. Mass, energy, and species conservation equations are solved at the internal nodes in conjunction with the thermodynamic equation of state for a real fluid. Flow rates are computed at the branches by solving the momentum conservation equation. In constructing the network of solid nodes, the program uses solid nodes and ambient nodes (not shown in the figure). Solid nodes are connected with other solid nodes by solid-solid conductors and with fluid nodes by solid-fluid conductors. Temperatures of solid nodes are calculated by solving energy conservation in solid nodes.

Figure 3. GFSSP network of fluid and solid nodes for a counter flow heat exchanger.

2.2 Program Structure

GFSSP has three major parts (fig. 4). The first part is the graphical user interface, the visual thermo-fluid analyzer of systems and components (VTASC). VTASC allows users to create a flow circuit by a 'point and click' paradigm. It creates the GFSSP input file after the completion of the model building process. It can also create a customized GFSSP executable by compiling and linking user subroutines with the solver module of the code. The user can run GFSSP from VTASC and postprocess the results in the same environment. The second major part of the program is the solver and property module. This is the heart of the program that reads the input data file and generates the required conservation equations for fluid and solid nodes and branches with the help of thermodynamic property programs. It also interfaces with user subroutines to receive any specific inputs from users. Finally, it creates output files for VTASC to read and display results. The user subroutine is the third major part of the program. This consists of several blank subroutines that are called by the solver module. These subroutines allow the users to incorporate any new physical model, resistance option, fluid, etc. in the model.

Figure 4. GFSSP's program structure showing the interaction of three major modules.

2.3 Mathematical Formulation and Solution Algorithm

GFSSP solves for conservation equations in internal fluid nodes, branches, and solid nodes to calculate pressure, temperature, and concentrations in fluid nodes, flow rates in branches and temperatures in solid nodes. Table 1 shows the mathematical closure that describes the unknown variables and the available equations to solve the variables. The equations are coupled and nonlinear; therefore, they are solved by an iterative numerical scheme. GFSSP employs a unique numerical scheme known as SASS (simultaneous adjustment with successive substitution), which is a combination of the Newton-Raphson and Successive Substitution methods. The mass and momentum conservation equations and the equation of state are solved by the Newton-Raphson method while the conservation of energy and species are solved by the Successive Substitution method. The user has a choice to solve the energy conservation equation of a solid by either the Successive Substitution or Newton-Raphson method.

Unknown Variables	Equations to Solve		
Pressure	Mass conservation equation		
Flow rate	Momentum conservation equation		
Fluid temperature	Energy conservation equation of fluid		
Specie concentrations	Conservation equations for mass fraction of species		
Mass	Thermodynamic equation of state		
Solid temperature	Energy conservation equation of solid		

Table 1. Mathematical closure.

2.4 Property and Resistance Option

Three thermodynamic property programs (GASP,⁶ WASP,⁷and GASPAK⁸) are integrated with GFSSP to provide 'real fluid' thermodynamic and thermophysical properties for 35 fluids and ideal gas as shown in table 2. There is also a provision for adding additional fluids with the help of look-up tables.

Index	Fluid/Ideal Gas	Index	Fluid/Ideal Gas	
1	Helium	19	Krypton	
2	Methane	20	Propane	
3	Neon	21	Xenon	
4	Nitrogen	22	R-11	
5	Carbon monoxide	23	R-12	
6	Oxygen	24	R-22	
7	Argon	25	R-32	
8	Carbon dioxide	26	R-123	
9	Parahydrogen	27	R-124	
10	Hydrogen	28	R-125	
11	Water	29	R-134A	
12	RP-1	30	R-152A	
13	Isobutane	31	Nitrogen triflouride	
14	Butane	32	Ammonia	
15	Deuterium	33	Ideal gas	
16	Ethane	34	Hydrogen peroxide	
17	Ethylene	35	Universal property package	
18	Hydrogen sulfide	36	Air	

Table 2. Fluids and ideal gas available in GFSSP.

Twenty-one different resistance/source options are provided for modeling momentum sinks or sources in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square-edge reduction, square-edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and

valves, pump characteristics, pump power, valve with a given loss coefficient, Joule-Thompson device, control valve, compressible flow orifice, heat exchanger core, and parallel tubes. The program has the provision of including additional resistance options through user subroutines.

2.5 Code Validation and Verification

GFSSP has gone through extensive validation and verification since the first version was released in 1996. Three methods have been used for code validation: (1) Comparison with classical analytical and numerical solution, (2) comparison with other codes, and (3) comparison with test data. Detailed comparisons with test data and analytical solutions are described in references 3, 4, 9, and 10.

3. DESCRIPTION OF CRYOGENIC PROPELLANT TANKS

3.1 Demonstration Tanks

Two identical 1/15th scale demonstration test tanks were manufactured by PHPK, Inc. for the CESAT test program. Both tanks (fig. 2) were constructed with stainless steel inner and outer spheres. The annular space between the two spheres in each tank can be filled with an insulating material and the pressure can be reduced to vacuum conditions. Both tanks include fill/drain lines, vent lines, support structures, and antirotation systems that could contribute to heat leak. Finally, both tanks are heavily instrumented with identical measurements in identical locations. This section discusses the relevant geometric characteristics and instrumentation for both tanks.

3.1.1 Geometry

Figure 5 shows the dimensions of the two CESAT demonstration tanks. The inner diameter of the inner sphere is ≈ 1.245 m (≈ 49 in), which results in a total inner sphere volume of 1,000 L (35.31 ft³). The outer diameter of the outer sphere is 1.534 m (60.375 in). Both spheres have a wall thickness of 4.7625 mm (0.1875 in). The resulting annular space is 134.938 mm (5.3125 in) wide. A section of the vent line with a length of 1.245 m (49 in) and an inside diameter of 22.911 mm (0.902 in) was included in the CESAT boiloff models. The geometry of the support structures and antirotation system was considered in a separate analysis that is included in appendix A. No other geometries were considered in the CESAT boiloff models discussed here.

Figure 5. CESAT demonstration tank schematic.

3.1.2 Instrumentation

Both CESAT tanks are heavily instrumented, but not all measurements were used during the boiloff modeling efforts. The relevant instrumentation is discussed here. The primary method for measuring boiloff during CESAT testing was through two flow meters installed on the vent line of each tank (designated F1 and F2), where one flow meter was calibrated for low flow rates while the other was calibrated for high flow rates. Alternately, boiloff could be measured by evaluating the total change in weight of the tank during testing, which was measured by summing three load cells (designated L1 through L3). The other primary parameter of interest was temperature, which was measured at several locations throughout the test tank.

Figure 6 shows the locations of 12 silicone diode instruments that were used to measure the skin temperature of the inner sphere (designated S1A through S6B). Measurements S1A and S1B were useful for comparing ullage temperature predictions with measured data. The other 10 measurements were useful for evaluating liquid temperatures and giving a rough indication of liquid level. Twelve thermocouples were also installed on the outer sphere in corresponding locations radially outward from the inner sphere measurements shown in figure 6 (designated TC11 through TC22). These twelve outer sphere skin temperature measurements were useful for determining the ambient conditions during testing. Finally, two temperature rakes were installed at different locations in the annular space between the inner sphere and outer sphere, where each rake consists of five thermocouples placed at equal intervals throughout the annular space (designated TC1 through TC10). These measurements were useful in determining the temperature profile through the installed insulating material.

Figure 6. CESAT inner sphere skin temperature measurement locations.

3.2 Full-Scale Tanks

There are two full-scale liquid hydrogen tanks located at KSC LC-39. Both tanks were built in 1965 for the Apollo program and fabricated by Chicago Bridge and Iron, Salt Lake City, Utah. Both tanks (fig. 1) were constructed with austenitic stainless steel inner spheres and carbon steel outer spheres. The annular space between the two spheres in each tank can be filled with an insulating material and the pressure can be reduced to vacuum conditions. Both tanks include fill lines, vent lines, and support structures that could contribute to heat leak. This section discusses the relevant geometric characteristics and instrumentation for both tanks.

3.2.1 Geometry

Figure 7 shows the dimensions of the two full-scale tanks. The inner diameter of the inner sphere is \approx 18.715 m (\approx 61.4 ft), which results in a total inner sphere volume of 3,432,020 L (121,200 ft³). The outer diameter of the outer sphere is 21.336 m (70 ft). The outer sphere wall thickness is 17.462 mm (0.6875 in) and the inner sphere wall thickness is 15.875 mm (0.625 in). The resulting annular space is 1.277 m (4.19 ft) wide.

Figure 7. Full-scale tank schematic.

4. NUMERICAL MODEL DEVELOPMENT

4.1 Single Fluid Node Tank Model

Figure 8 shows the earliest GFSSP model that has a single propellant node and a single heat transfer path. Node 2 is a fluid node that represents the fluid volume of the inner sphere. Branch 24 represents the convection heat transfer from the cryogenic fluid to the inner wall of the inner sphere. Branch 45 represents conduction heat transfer through the inner spherical wall. Branches 59, 910, and 106 represent the conduction heat transfer through the insulating material. Branch 67 represents the conduction heat transfer through the insulating material. Branch 67 represents the conduction heat transfer through the outer spherical wall. Branch 78 represents the convection heat transfer from the outer spherical wall to the ambient surroundings.

Figure 8. Preliminary GFSSP model with single heat transfer path.

This model evolved into the single fluid node tank model (shown in fig. 9), which accounted for two-dimensional heat flow. Node 2 is a fluid node that represents the fluid volume of the inner sphere. Branches 110 through 117 represents the convection heat transfer from the cryogenic fluid to the inner wall of the inner sphere. Branches 130 through 137 represent conduction heat transfer through the inner spherical wall. Branches 150 through 157, 170 through 177, and 190 through 197 represent the conduction heat transfer through the insulating material. Branches 210 through 217 represent the conduction heat transfer through the outer spherical wall. Branches 230 through 237 represent the forced convection heat transfer from the outside surface of the outer spherical wall to the ambient surroundings. Appendix B discusses the thermal properties and equations that were used for both iterations of this model.

Figure 9. GFSSP single fluid node tank model.

4.2 Ullage and Propellant Node Tank Model

As the CESAT testing effort progressed, KSC expressed interest in modeling boiloff as a function of the tank fill level. Careful consideration and testing of the model discussed in section 4.1 showed that because of the underlying assumption that the ullage and propellant temperature were equal, the model could not consider the change in ullage temperature (and thus heat transfer between the ullage and propellant) that might occur at different fill levels. Therefore, a new model was needed that would allow the ullage temperature to be calculated separately. GFSSP already contains a pressurization option, which considers the interaction between the ullage and liquid in a propellant tank.⁴ This pressurization option was adapted to model the fluid portion of the boiloff model by including the capability to calculate spherical geometrical parameters such as volumes, heights, and surface areas. These spherical geometry calculations are discussed in appendix C. Because the pressurization option is a transient option, the model was run in a transient mode of operation, where time step represented an additional iterative step to achieve steady state convergence. The addition of the pressurization option also led to a necessary revision to the heat path modeling technique of the previous model.

Figure 10 shows a schematic that illustrates the technique that was developed for this model. The figure shows that instead of dividing the heat path into eight equal sectors, the heat path from ambient to propellant was broken into an ullage path and a propellant path. The heat transferred through the ullage path into the ullage space (\dot{Q}_{a-u}) is used to calculate the ullage temperature, which GFSSP's pressurization option uses to calculate the heat transfer between the ullage and propellant (\dot{Q}_{u-p}) . The heat transferred through the propellant path (\dot{Q}_{a-p}) is calculated independently. The heat transferred through the structure (\dot{Q}_{s-p}) is assumed as a constant value from a separate calculation. \dot{Q}_{u-p} , \dot{Q}_{a-u} , and \dot{Q}_{s-p} are summed to determine the total heat transferred to the propellant. The total heat transfer is then used to calculate the propellant boiloff rate. Appendix B discusses the thermal properties and equations that were used for this modeling technique.

Figure 10. Schematic illustrating boiloff fill level modeling technique.

Figure 11 shows the GFSSP model that was developed based on this modeling technique. The model consists of five fluid nodes connected by three fluid branches, as well as one ambient and twelve solid nodes joined to the fluid and each other by twenty conductors. Node 2 represents the ullage space while node 4 represents the propellant volume. Node 3 is a pseudo-boundary node that allows the ullage and the propellant to interact without mixing through branch 34, which represents the propellant surface. Branch 12 represents the tank vent line leading to the ambient, which is simulated by node 1. Branch 45 represents a fill/drain valve leading to node 5, which is currently simulating ambient conditions. Because no fill/drain operations were simulated, branch 45 was modeled as a closed valve. Conductors 102 and 144 represent the heat transfer between the inner sphere and the fluid. Solid nodes 9, 10, 13, and 14 represent the inner sphere wall. Conductors 910 and 1314 represent the heat transfer through the inner sphere. Conductors 169 and 1813 represent the heat transfer between the inner sphere and insulation. Solid nodes 15-18 represent the insulation material. Conductors 1516 and 1718 represent the heat transfer through the insulation material. Conductors 815 and 1217 represent the heat transfer between the insulation material and the outer sphere. Solid nodes 7, 8, 11, and 12 represent the outer sphere wall. Conductors 78 and 1112 represent the heat transfer through the outer sphere wall. Conductors 67 and 611 represent the heat transfer between the outer sphere wall and ambient conditions. Ambient node 6 represents ambient conditions. Conductors 1014, 913, 1618, 1517, 812, and 711 represent heat transfer between the ullage path and the propellant path.

Figure 11. GFSSP ullage and propellant node tank model.

4.3 Stratified Ullage and Propellant Tank Model

While the model discussed in section 4.2 was appropriate for modeling the CESAT demonstration tanks, it was found to be inadequate for modeling the LC-39 cryogenic storage tanks. Because of the difference in scale between the demonstration and full-scale tank ullage spaces, using a single node to represent the ullage space led to unrealistic ullage temperature predictions. Therefore, a decision was made to model the ullage space as several fluid nodes. This would allow GFSSP to more accurately simulate the stratified environment that exists in the ullage space of a cryogenic storage tank. It was necessary to activate GFSSP's gravity option to accurately calculate stratification effects in this model. Initially, the fluid model was modified without changing the heat transfer model. (See fig. 12.) Unfortunately, this configuration had difficulty converging because of the multiple solid to fluid conductors connected to node 10. Figure 13 shows the final stratified ullage and propellant tank model. The final model maintains the modeling technique shown in figure 10 with the thermal properties and equations discussed in appendix B.

Figure 12. Initial GFSSP stratified ullage and propellant tank model.

Figure 13. Final GFSSP stratified ullage and propellant tank model.

The fluid portion of the GFSSP model shown in figure 13 consists of 11 nodes connected by 9 branches. The ullage space is divided into nodes 19 through 25 and 2, which each represent one-eighth of the total ullage volume. The choice to use eight divisions to represent the ullage space was made based on balancing the need for more fidelity with the additional numerical complexity of using a larger number of model elements. Branches 1920, 2021, 2122, 2223, 2324, 2425, and 252 connect the eight ullage nodes together and allow ullage gas of different densities to flow from one node to another to model the stratified ullage. Physically, they represent the approximate height and diameter of each ullage volume section. Node 4 represents the propellant volume. Node 3 is a pseudo-boundary node that allows the ullage and the propellant to interact without mixing through branch 34, which represents the propellant surface. Branch 191 represents the tank vent line leading to the ambient, which is simulated by node 1.

Conductors 2619, 3220, 3821, 4422, 5023, 5624, 6225, and 102 represent the heat transfer between the inner sphere and the fluid for each ullage volume section. Conductor 144 represents the heat transfer between the inner sphere and the fluid for the propellant. Solid nodes 26, 27, 32, 33, 38, 39, 44, 45, 50, 51, 56, 57, 62, 63, 9, and 10 represent the inner sphere wall for each ullage volume section. Solid nodes 13 and 14 represent the inner sphere wall for the propellant. Conductors 2726, 3332, 3938, 4544, 5150, 5756, 6362, and 910 represent the heat transfer through the inner sphere for each ullage volume section. Conductor 1314 represents the heat transfer through the inner sphere for the propellant.

Conductors 2827, 3433, 4039, 4645, 5251, 5857, 6463, and 169 represent the heat transfer between the inner sphere and insulation for each ullage volume section. Conductor 1813 represents the heat transfer between the inner sphere and insulation for the propellant. Solid nodes 28, 29, 34, 35, 40, 41, 46, 47, 52, 53, 58, 59, 64, 65, 15, and 16 represent the insulation material for each ullage volume section. Solid nodes 17 and 18 represent the insulation material for the propellant. Conductors 2928, 3534, 4140, 4746, 5352, 5958, 6564, and 1516 represent the heat transfer through the insulation material for each ullage volume section. Conductor 1718 represents the heat transfer through the insulation material for the propellant.

Conductors 3029, 3635, 4241, 4847, 5453, 6059, 6665, and 815 represent the heat transfer between the insulation material and the outer sphere for each ullage volume section. Conductor 1217 represents the heat transfer between the insulation material and the outer sphere for the propellant. Solid nodes 30, 31, 36, 37, 42, 43, 48, 49, 54, 55, 60, 61, 66, 67, 7, and 8 represent the outer sphere wall for each ullage volume section. Solid nodes 11 and 12 represent the outer sphere wall for the propellant. Conductors 3130, 3736, 4342, 4948, 5554, 6160, 6766, and 78 represent the heat transfer through the outer sphere wall for each ullage volume section. Conductors 631, 637, 643, 649, 655, 661, 667, and 67 represent the heat transfer through the outer sphere wall for the propellant. Conductors 631, 637, 643, 649, 655, 661, 667, and 67 represent the heat transfer between the outer sphere wall and ambient conditions for each ullage volume section. Conductor 611 represents the heat transfer between the outer sphere wall and ambient conditions for the propellant. Ambient node 6 represents ambient conditions.

Conductors 2632, 2733, 2834, 2935, 3036, and 3137 represent the heat transfer between the first and second ullage volume sections. Conductors 3238, 3339, 3440, 3541, 3642, and 3743 represent the heat transfer between the second and third ullage volume sections. Conductors 3844, 3945, 4046, 4147, 4248, and 4349 represent the heat transfer between the third and fourth ullage volume sections. Conductors 4450, 4551, 4652, 4753, 4854, and 4955 represent the heat transfer between the fourth and fifth ullage volume sections. Conductors 5056, 5157, 5258, 5359, 5460, and 5561 represent the heat transfer between the fifth and sixth ullage volume sections. Conductors 5662, 5763, 5864, 5965, 6066, and 6167 represent the heat transfer between the sixth and seventh ullage volume sections. Conductors 6210, 639, 6416, 6515, 668, and 667 represent the heat transfer between the seventh and eighth ullage volume sections. Finally, conductors 1014, 913, 1618, 1517, 812, and 711 represent heat transfer between the ullage path and the propellant path.

5. NUMERICAL MODEL RESULTS

5.1 Radiation Gap Analysis Using Single Fluid Node Model

All 28 cases assumed a liquid hydrogen temperature of 20.37 K. A baseline case (case 52) was run whereby the following were used: thermal conductivity of perlite, the calculated value of h_i , the ambient temperature of 302.6 K, and the calculated value of h_o assuming an 8.05 km/hr (5 mph) wind. Subsequent cases varied the radiation gap through the insulating material. The 28 cases are presented in table 3 and further illustrated in figure 14.

				Outer Sphere
Case			Surface Area for	Surface Area Exposed
Number	Insulating Material	Radiation Gap (deg)	Radiation Gap (%)	to Radiation (in ²)
1	Perlite	0	0	0
2	Perlite	0.25	0.07	7.76
3	Perlite	0.5	0.14	15.52
4	Perlite	1	0.28	31.02
5	Perlite	5	1.39	155.12
6	Perlite	15	4.17	465.36
7	Perlite	89	24.72	2761.18
8	Glass microspheres	0	0	0
9	Glass microspheres	0.25	0.07	7.76
10	Glass microspheres	0.5	0.14	15.52
11	Glass microspheres	1	0.28	31.02
12	Glass microspheres	5	1.39	155.12
13	Glass microspheres	15	4.17	465.36
14	Glass microspheres	89	24.72	2761.18
15	Passive aerogel beads	0	0	0
16	Passive aerogel beads	0.25	0.07	7.76
17	Passive aerogel beads	0.5	0.14	15.52
18	Passive aerogel beads	1	0.28	31.02
19	Passive aerogel beads	5	1.39	155.12
20	Passive aerogel beads	15	4.17	465.36
21	Passive aerogel beads	89	24.72	2761.18
22	Translucent white aerogel beads	0	0	0
23	Translucent white aerogel beads	0.25	0.07	7.76
24	Translucent white aerogel beads	0.5	0.14	15.52
25	Translucent white aerogel beads	1	0.28	31.02
26	Translucent white aerogel beads	5	1.39	155.12
27	Translucent white aerogel beads	15	4.17	465.36
28	Translucent white aerogel beads	89	24.72	2761.18

Table 3. Parametric cases.

Figure 14. Radiation gap parametric cases.

As the radiation gap grew larger, the mass of insulating material displaced was distributed evenly among the remaining nodes. The results of varying the radiation gap are shown in table 4. Figure 15 shows the effects of varying the radiation gap.

Casa			Surface Area for	Outer Sphere	Boiloff Pata
Number	Insulating Material	Radiation Gap (deg)	Radiation Gap (%)	to Radiation (in ²)	(gal/day)
1	Perlite	0	0	0	16.42
2	Perlite	0.25	0.07	7.76	16.42
3	Perlite	0.5	0.14	15.52	16.42
4	Perlite	1	0.28	31.02	16.42
5	Perlite	5	1.39	155.12	20.72
6	Perlite	15	4.17	465.36	32.83
7	Perlite	89	24.72	2761.18	116.44
8	Glass microspheres	0	0	0	9.5
9	Glass microspheres	0.25	0.07	7.76	9.5
10	Glass microspheres	0.5	0.14	15.52	9.5
11	Glass microspheres	1	0.28	31.02	9.5
12	Glass microspheres	5	1.39	155.12	9.5
13	Glass microspheres	15	4.17	465.36	19.08
14	Glass microspheres	89	24.72	2761.18	102.23
15	Passive aerogel beads	0	0	0	14.14
16	Passive aerogel beads	0.25	0.07	7.76	14.14
17	Passive aerogel beads	0.5	0.14	15.52	14.14
18	Passive aerogel beads	1	0.28	31.02	14.14
19	Passive aerogel beads	5	1.39	155.12	18.31
20	Passive aerogel beads	15	4.17	465.36	30.45
21	Passive aerogel beads	89	24.72	2761.18	111.56
22	Translucent white aerogel beads	0	0	0	21.06
23	Translucent white aerogel beads	0.25	0.07	7.76	21.06
24	Translucent white aerogel beads	0.5	0.14	15.52	21.06
25	Translucent white aerogel beads	1	0.28	31.02	21.06
26	Translucent white aerogel beads	5	1.39	155.12	25.41
27	Translucent white aerogel beads	15	4.17	465.36	37.67
28	Translucent white aerogel beads	89	24.72	2761.18	120.25

Table 4. Model parametric study results.

Figure 15. Insulating material gas analysis-effects of varying the radiation gap.

5.2 Ullage and Propellant Node Tank Model Results

The ullage and propellant node tank model was used for two types of predictions. First, the model was used to perform a parametric study of boiloff as a function of height. These predictions were performed before the model had been anchored to CESAT test data, and so they do not include some of the modifications that were made during the test data validation portion of model development. The results are included and discussed here mainly to provide historical insight into the model's development and usage. Second, the model was used to provide predictions for CESAT tests involving liquid nitrogen or liquid hydrogen with either perlite or glass bubbles insulating material. These predictions were compared to CESAT test data as it became available and discrepancies were investigated to improve the model's predictive accuracy.

5.2.1 Fill Level Boiloff Predictions

Three different fill level prediction cases were run using the GFSSP fill level model. Predictions were made at fill levels of 25%, 75%, and 85% of the total height of the tank (corresponding to 15.6%, 84.38%, and 93.92% of the total volume of the tank). All three cases use the following boundary conditions:

- The fluid is nitrogen at 1 atm and 76 K.
- Ambient conditions are 1 atm and 302.6 K.
- The structural heat leak is 1.302333 W as calculated by PHPK¹².
- The insulation material is perlite with a thermal conductivity of 1 mW/m–K. There are no gaps in the insulation.

Figure 16 shows the GFSSP model's predictions for the three fill level cases. GFSSP's predictions show that the total boiloff rate does show some effect due to fill level, but the changes are not large. At the higher fill levels, the ullage has a small effect on the overall heat transfer, which is dominated by the heat transfer between the propellant and the tank wall. As the fill level decreases, the ullagepropellant heat transfer begins to become more significant with very little change in the wall-propellant heat transfer, which leads to a boiloff peak at the 75% prediction. As the fill level further decreases, wallpropellant heat transfer begins to decrease while ullage-propellant heat transfer exerts more influence on the overall heat transfer. The total heat transfer rate (the sum of ullage-propellant, wall-propellant, and structural heat transfer), however, changes very little (<1 W) for all three predictions, resulting in small changes in boiloff rate (<200 sccm).

Figure 16. GFSSP predicted CESAT boiloff versus tank height fill level.

5.2.2 CESAT Test Data Comparisons

When discussing test data comparison, it should be noted that the GFSSP model node locations (see sec. 4.2) are not designed to match the instrumentation locations exactly. Figure 17 shows the differences in the radial direction between GFSSP's predictions and the relevant CESAT instrumentation. These differences are not considered significant for the comparisons discussed in this TM.

Figure 17. Comparison of GFSSP prediction versus test instrumentation radial location.

A moment should also be taken to discuss exactly how the test data comparison was performed. Due to the time constraints involved in building models to simulate different fill levels, all GFSSP predictions were performed at a fill level of 85% of the tank height (roughly 94% of the total tank volume). Based on discussions with KSC personnel concerning tanking practices, this was a reasonable assumption for a 'full' storage tank. All predictions were first made as pretest predictions. When testing was complete for a particular test series, KSC personnel would process the data and provide it for comparisons. Each test data set received from KSC consisted of multiple boiloff tests, so each boiloff test in a data set was examined to determine which boiloff test had initial conditions (ambient conditions and fill level) closest to the GFSSP predictions. The outer sphere skin temperature measurements (TC1 through TC10) were examined first. In some cases, predictions were updated to more closely match the average measured ambient temperature. Next, the total weight for each boiloff test in a data set was examined. Using the tank dry weights and fluid densities, the initial fill level for each test could be calculated, and the test with the fill level closest to the 85% GFSSP predicted fill level was chosen for comparison. Figure 18 shows how the time interval for a boiloff test was determined using the total weight.

Figure 18. Example of using total weight to identify a boiloff test.

Once a particular boiloff test was identified, the parameters of interest (boiloff rate, liquid temperature, and ullage temperature) were extracted from the test data set. Because the GFSSP predictions using this model are steady state predictions, steady state approximations were made for boiloff and ullage temperature. The average mass flow rates indicated by F1 and/or F2 over the desired time interval were taken as one indicator of boiloff rate. Boiloff rate was also evaluated by calculating the change in total weight over the desired time interval. (See fig. 18.) The measured liquid temperature was determined by calculating the average value of inner sphere skin temperature measurement S4A over the desired time interval. The measured ullage temperature was determined by calculating the average value of inner sphere skin temperature interval. If measurement S1B was unavailable, the average value of measurement S1A over the desired time interval was used.

Some modifications were made to the GFSSP model used in section 5.2.1 based on initial comparisons with CESAT test data and other analyses. First, an independent structural heat leak calculation produced a lower heat leak value of 1.010586 W. This heat leak consists of PHPK's heat leak values of 0.229564 W (piping and tube heat leak) and 0.002222 W (gas conduction pipe heat leak)¹² summed with the structural support cables heat leak of 0.7788 W calculated in appendix A. Second, initial test data comparisons revealed a discrepancy in the predicted propellant exposed tank wall temperature and the actual skin temperature measurements. This discrepancy was due to the assumptions made in calculating the heat transfer coefficient for the wall-propellant heat transfer. (See appendix B.) Since the interaction
between the propellant and the wall is a static environment, the model was modified to use an infinite heat transfer coefficient for the wall-propellant heat transfer calculations. Also, some changes were made to GFSSP's conjugate heat transfer numerical scheme. Appendix D contains input files, sample output files, and sample output plots for each case that was considered.

Figure 19 compares GFSSP's predicted temperature gradient through the insulated annular space with measured data from the CESAT temperature rakes (TC1 through TC10). The measured test data^{13,14} shows that the majority of the temperature gradient is confined to the inch of insulation closest to the inner sphere. Due to the model's coarse insulation grid, GFSSP's prediction is not equipped to capture this behavior. A finer grid in the insulation space would be more suitable for modeling the temperature gradient, but would also impact the numerical complexity of the model. Since the focus of this work was on predicting tank boiloff rates, the grid was not modified for the work discussed here.

Figure 19. Liquid nitrogen CESAT annular space temperature gradient comparison.

Table 5 shows the comparison between the GFSSP prediction and average test data values for two CESAT tests using liquid nitrogen with perlite insulation.^{13,15,16} Table 6 shows the comparison between the GFSSP prediction and average test data values for a CESAT test using liquid nitrogen with glass bubbles insulation.¹⁴ Table 7 shows the comparison between the GFSSP prediction and average test data values for a CESAT test using liquid hydrogen with perlite insulation.¹⁷ Table 8 shows the comparison between the GFSSP prediction and average test data values for a CESAT test using liquid hydrogen with perlite insulation.¹⁷ Table 8 shows the comparison between the GFSSP prediction and average test data values for a CESAT test using liquid hydrogen with glass bubbles insulation.¹⁸ The first column in each table compares GFSSP's predicted inner tank wall temperature of the ullage space (nodes 9 and 10) with an average value of skin temperature exposed to propellant (nodes 13 and 14) with an average value taken from skin temperature S4A. The third column in each table compares GFSSP's predicted boiloff rate with the test boiloff rates as calculated from both the change in load cell readings (L1–L3) and flow meter data (F1 and F2).

GFSSP predicts a lower ullage space skin temperature than the S1B measurement for all four cases. Due to the fact that S1B is a point temperature measurement, while GFSSP is calculating the average skin temperature for the entire ullage-exposed inner sphere, the differences are believed to be due to the fidelity of the model. For the two liquid nitrogen comparisons, note that GFSSP's liquid skin temperature is 1 K colder than test data. The reason for this difference is that it was necessary to subcool the liquid nitrogen at node 4 (see fig. 11) in the GFSSP model by 1 K to avoid artificially evaporating the liquid. This was not necessary with the liquid hydrogen comparisons.

The predicted boiloff rates for the two liquid nitrogen comparisons are consistently lower than the measured test data. One factor in these discrepancies was uncertainty in the ullage-wall and ullage-propellant heat transfer coefficients, which were not adjusted at all. Another possible factor is that KSC personnel suspect that the antirotation devices for both test tanks may have been in contact during liquid nitrogen testing. Appendix A discusses a calculation that was formed evaluating heat leak due to antirotation contact in the demonstration tanks. The predicted boiloff rates for the two liquid hydrogen comparisons match very well with measured test data. Initially, the liquid hydrogen comparisons were predicting much higher boiloff rates than those seen in testing. It was found that the ullage-propellant heat transfer was disproportionately high for these GFSSP predictions. Because temperature stratification in the ullage of a liquid hydrogen tank is more pronounced than that of a liquid nitrogen tank, the effect of natural convection is negligible in a liquid hydrogen predictions. The ratio of heat transfer coefficient between pure conduction and natural convection in ullage was found to be equal to 0.00265. This ratio was applied as an adjustment factor to GFSSP's liquid hydrogen boiloff predictions for both the perlite and glass bubbles insulation, resulting in the predictions shown in tables 7 and 8.

	T _{skin} , Exposed to Ullage (K)	T _{skin} , Exposed to Liquid (K)	Boiloff Rate (sccm)
Test 1	92	77	Flow meter = 3,860 Load cells = 4,018
Test 2	89	77	Flow meter = 3,938 Load cells = 4,206
GFSSP	81	76	3,468

Table 5. Liquid nitrogen with perlite insulation preliminary GFSSP predictioncomparison with test data, test tank 2.

Table 6. Liquid nitrogen with glass bubbles insulation preliminary GFSSPprediction comparison with test data, test tank 2.

	7 _{skin} , Exposed to Ullage (K)	T _{skin} , Exposed to Liquid (K)	Boiloff Rate (sccm)
Test	92	77	Flow meter = 3,230 Load cells = 3,260
GFSSP	80	76	2,493

Table 7. Liquid hydrogen with perlite insulation preliminary GFSSP predictioncomparison with test data, test tank 1.

	7 _{skin} , Exposed to Ullage (K)	7 _{skin} , Exposed to Liquid (K)	Boiloff Rate (sccm)
Test	34	20	Flow meter = 20,414 Load cells = 19,182
GFSSP	21	20	20,980

Table 8. Liquid hydrogen with glass bubbles insulation preliminary GFSSPprediction comparison with test data, test tank 2.

	7 _{skin} , Exposed to Ullage (K)	7 _{skin} , Exposed to Liquid (K)	Boiloff Rate (sccm)
Test	31	20	Flow meter = 13,396 Load cells = 13,242
GFSSP	21	20	12,920

5.3 Stratified Ullage and Propellant Tank Model Results

The comparisons between GFSSP predictions and CESAT test measurements discussed in section 5.2 helped to refine and instill confidence in GFSSP's cryogenic storage modeling capability. Based on the results of the CESAT work, a GFSSP model was developed for the LC-39 complex liquid hydrogen storage tanks. As discussed in section 4.3, early modeling attempts made it clear that a single node was not adequate to model the full-scale tanks' ullage space. Therefore, the stratified ullage model in figure 13 was developed. This model was used to provide a baseline boiloff prediction using perlite insulating material to further validate the model. Finally, this model was used to provide a boiloff prediction using glass bubbles insulating material.

The GFSSP model was anchored where possible to the assumptions and practices of the single ullage and propellant node model validated using CESAT test data. The fluid was liquid hydrogen. The tank was assumed to be filled to 85% of the tank height (roughly 94% of the tank volume). The CESAT ullage to propellant heat transfer coefficient adjustment factor of 0.00265 was used in this model. A constant structural heat leak value of 52.308 W (0.04962 Btu/s) was taken from KSC analyses.¹⁹ Appendix E contains input files, sample output files, and sample output plots for the two GFSSP predictions. The full-scale perlite GFSSP model predicts a boiloff of 258 gal/day. This compares to the LC-39A measurement of \approx 300 gal/day.¹⁹ The main reason for the discrepancy is uncertainty in the ullage to propellant heat transfer coefficient adjustment factor due to the size differences between CESAT and the full-scale storage tanks. Using this model, GFSSP predicts that a full-scale liquid hydrogen storage tank with glass bubbles insulation would have a boiloff rate of 182 gal/day. Figure 20 shows GFSSP's stratified ullage temperature prediction for the full-scale glass bubbles model. Heights from the propellant surface to the 'top' of each node location are noted in figure 20. GFSSP predicts a 90 K differential between the ullage temperature at the propellant surface and the ullage temperature at the propellant surface and the ullage temperature at the propellant surface and the ullage temperature at the top of the tank.

Figure 20. GFSSP stratified ullage temperature prediction for LC-39 with glass bubbles insulation.

6. CONCLUSION

A novel numerical modeling technique has been developed using GFSSP to predict boiloff rate from a spherical cryogenic storage tank. The model recognizes the separation of liquid and the vapor space and appropriately solves for mass, momentum, and energy conservation equations of liquid and vapor volume in the tank in conjunction with heat conduction equations through metallic walls and insulation material. A numerical model has been built for the demonstration tanks developed at KSC. The numerical predictions have compared favorably with test data for liquid nitrogen and liquid hydrogen with perlite and glass bubbles insulation. With the experience gained from the demonstration tank models, a separate numerical model was developed for the liquid hydrogen storage tank at LC-39 at KSC. This model has used multiple nodes in the ullage space to account for the effect of stratification. The numerical model of the full-scale tank was then run using perlite and glass bubbles insulation. The boiloff rate using perlite insulation is in agreement with field data. When using glass bubbles instead of perlite as insulation, the numerical model predicts (1) a 28% reduction in boiloff rate in the liquid nitrogen demonstration tank, (2) a 38% reduction in boiloff rate in liquid hydrogen demonstration tank, and (3) a 30% reduction in boiloff of liquid hydrogen storage tank in LC-39 at KSC.

The numerical model has potential for several extensions and improvements. They are as follows:

- Modeling insulation settling in ullage and propellant node tank model and stratified ullage and propellant tank model.
- Perform modeling at different fill levels to investigate wall temperatures for thermal cycle analysis.
- Modeling boiloff in a cylindrical tank and correlation with test data.
- Improvement of numerical performance of the solver to enhance the computational speed.

APPENDIX A-HEAT LEAK THROUGH SUPPORT STRUCTURE

During CESAT liquid nitrogen testing, it was observed that one of the demonstration tanks consistently predicted higher boiloff rates than the other tank. For an identical design, such a discrepancy may happen due to a difference in heat leak between the two tanks. KSC personnel determined such a possibility may exist if certain portions of G-10 insulating material have physical contact with stainless steel in one of the radial standoffs. In the original design, the radial standoffs are supposed to have an air gap. Conduction analysis was performed to estimate the heat leak caused by radial standoff contact between G-10 and stainless steel.

A.1 Conduction Calculation to Estimate Heat Leak

This section presents a heat transfer calculation in a composite layer to estimate heat leak through cables and a radial support. The objective of this calculation is to (1) compare the calculation results with the PHPK spreadsheet calculation,¹¹ and (2) analyze the effect of physical contact between G-10 and stainless steel to understand the discrepancy observed in boiloff rates between two tanks.

A.1.1 Cable

Heat leak through the cable was estimated from the heat conduction equation:

$$q = \frac{T_{\text{hot}} - T_{\text{cold}}}{\frac{L_1}{K_1 A_1} + \frac{L_2}{K_2 A_2} + \frac{L_3}{K_3 A_3}} = 0.00123 \text{ Btu/s} = 0.1298 \text{ W}.$$
 (1)

Total heat leak through six cables = 0.7788 W. It may be noted that the calculated value is significantly less than the PHPK spreadsheet calculation (1.0705 W).

The heat conduction circuit is shown in figure 21.

Figure 21. Cable heat conduction circuit.

A.1.2 Radial Support

Heat leak through the radial support was estimated from the heat conduction equation:

$$q = \frac{T_{\text{hot}} - T_{\text{cold}}}{\frac{L_1}{K_1 A_1} + \frac{L_2}{K_2 A_2} + \frac{L_3}{K_3 A_3}} = 0.00573 \text{ Btu/s} = 6.045 \text{ W}.$$
 (2)

This calculation assumes one face of G-10 insulation has 100% contact with the stainless steel plate.

The above sets of calculation show heat leak through the radial support could be significantly higher than that of the cable if there is a contact and can explain the discrepancy observed in boiloff rate between the two tanks.

The heat conduction circuit is shown in figure 22.

Figure 22. Radial support heat conduction circuit.

APPENDIX B-THERMAL PROPERTIES

B.1 Thermal Conductivity and Specific Heat

Table 9 shows the baseline insulating material physical properties used for the analyses discussed in this TM. One exception to this was that the KSC Cryogenics Test Laboratory recommended a thermal conductivity of 0.6 mW/mK (96×10^{-9} Btu/s-ft-F) be used for glass microspheres at liquid hydrogen temperatures.

Table 9. Insulating material physical properties.

	Perlite	Glass Microspheres	Passive Aerogel Beads	Translucent White Aerogel Beads
Thermal conductivity (Btu/s-ft-F)	1.61 × 10 ⁻⁷	1.12 × 10 ⁻⁷	1.93 × 10 ⁻⁷	3.21 × 10 ^{−7}
Specific heat (Btu/lb-F)	0.2	0.19	0.25	0.25
Density (lbm/in ³)	0.00361	0.0045	0.0043	0.0043

B.2 Heat Transfer Coefficient

Manual calculations were performed both to obtain inputs into the GFSSP model and to validate the results from cases run using the GFSSP model. Equation (3) was used to determine the boiloff rate in gallons/day:

$$BR = (\dot{Q}/(h_{fg}*\rho)) * CF$$
, (3)

where

BR = boiloff rate (gal/day) $\dot{Q} = \text{heat rate (W)}$ $h_{fg} = \text{enthalpy (Btu/lb)}$ $\rho = \text{density (lb/ft^3)}$ $CF = \text{conversion factor (613 s-Btu-gal/day-J-ft^3)}.$

Equation (4) was used to find \dot{Q} (W):

$$\dot{Q} = U^* A^* \left(T_{\text{ambient}} - T_{\text{cryogenic liquid}} \right)$$
, (4)

where

U = overall heat transfer through the system (W/m²-K) A = area (m²).

Equation (5) was used to calculate the overall heat transfer through the system:

$$U = \frac{1}{\frac{1}{h_i} + \frac{\delta_{si}}{k_s} + \frac{\delta_p}{k_p} + \frac{\delta_{so}}{k_s} + \frac{1}{h_o}},$$
(5)

where

$$\begin{split} &\delta_{si} = \text{thickness of inner sphere wall } (0.004755 \text{ m}) \\ &\delta_{so} = \text{thickness of outer sphere wall } (0.004755 \text{ m}) \\ &\delta_p = \text{thickness of insulation material } (0.12509 \text{ m}) \\ &k_s = \text{thermal conductivity of stainless steel } (15.5636 \text{ W/(m-K)}) \\ &k_p = \text{thermal conductivity of insulation material } (W/(m-K)) \\ &h_i = \text{heat transfer coefficient through inner wall } (17.361 \text{ W/(m^2-K)}) \\ &h_o = \text{heat transfer coefficient through outer wall } (9.068 \text{ W/(m^2-K)}). \end{split}$$

The convection heat transfer coefficient (h_i) was derived using equation (6) (Rayleigh number) and equation (7) (Nusselt number):

$$Ra = \frac{g^* \beta^* \Delta T^* D^3}{v^* \alpha} , \qquad (6)$$

where

Ra = Rayleigh number (dimensionless)

 $g = \text{acceleration of gravity (39.8067 m/s^2)}$

 β = thermal expansion coefficient (9.5 × 10⁻⁶ m/m-K)

 ΔT = temperature difference between liquid and wall (assume 0.55K)

D = diameter of inner wall (1.245 m)

v =kinematic viscosity of fluid (1.96×10⁻⁷ m²/s)

 α = thermal diffusivity of fluid (1.75 × 10⁻⁷ m²/s).

$$Nu = \frac{h_i * D}{k} = 0.13(Ra)^{1/3} , \qquad (7)$$

where

k=thermal conductivity of fluid (0.1164 W/m-K).

The heat transfer coefficient from the outside surface of the outer sphere to ambient conditions (h_o) , was derived using equations (8) (Reynolds number) and (9) (Nusselt number):

$$Re = \frac{\rho^* v^* D}{\mu}, \qquad (8)$$

where

 $\rho = \text{density of air (1.2 kg/m^3)}$ v = velocity of air (assume 5 mph wind = 2.235 m/s) D = diameter of the outer tank wall (1.524 m) $\mu = \text{viscosity of air (1.86 \times 10^{-5} kg/m-s)}$ Re = Reynolds number (dimensionless),

and

$$Nu = \frac{h_o * D}{k} = 0.33 (Re)^{0.6} , \qquad (9)$$

where

k = thermal conductivity of air (26,154 W/m-K).

B.3 Optical Properties

For the gap radiation cases, all surface emmisivities were 0.4.

APPENDIX C-SPHERICAL TANK GEOMETRY

When the first phases of model development began, GFSSP did not have the built-in capability to model a spherical tank. Therefore, a new algorithm was developed to perform the necessary geometrical calculations using spherical tank geometry. This included the ability to calculate the tank diameter, the heights and volumes of the ullage space or propellant, the ullage-propellant interface surface area, the tank surface areas exposed to ullage or propellant, and the conductive surface area between the tank wall sections exposed to ullage and propellant. The algorithm was based on general spherical and circular geometrical equations available in the literature.

Later on, these same equations were adapted and applied to geometrical calculations extending through the annular space, the outer sphere, and even divisions within the ullage space. The equation for the volume of a sphere (eq. (10)) was used to calculate the tank diameter, where V_t is the volume of a spherical tank and D_t is the diameter of a spherical tank. The height (h_x) of either the propellant or ullage space was calculated by iteratively solving equation (11), where x is either the ullage or propellant, and V_x is the corresponding volume. The ullage-propellant interface heat transfer area (A_{u-p}) is calculated from equation (12) (the area of a circle), where the radius (R_{u-p}) is calculated from equation (13) using either the ullage or propellant height. The tank surface areas exposed to ullage or propellant were calculated using equation (14). The conduction area between the tank wall sections exposed to ullage and propellant $(A_{u-p,cond})$ was calculated using equation (15), which is derived from subtracting A_{u-p} from a circular area with a radius of $R=R_{u-p}+t_{wall}$, where t_{wall} is the wall thickness of the tank:

$$V_t = \frac{4}{3}\pi \left(\frac{D_t}{2}\right)^3 \tag{10}$$

$$V_x = \frac{\pi}{3} h_x^2 \left(\frac{3}{2} D_t - h_x\right)$$
(11)

$$A_{u-p} = \pi R_{u-p}^2 \tag{12}$$

$$R_{u-p} = \sqrt{h_x \left(D_t - h_x \right)} \tag{13}$$

$$A_{x-w} = \pi D_t h_x \tag{14}$$

$$A_{u-p,cond} = \pi \left(2R_{u-p}t_{\text{wall}} + t_{\text{wall}}^2 \right).$$
⁽¹⁵⁾

35

APPENDIX D-INPUT/OUTPUT FOR DEMONSTRATION TANK MODEL

D.1 CESAT Liquid Nitrogen and Perlite Input Data File

GFSSP VERSION 500 ANALYST Todd Steadman INPUT DATA FILE NAME D:\GFSSP\KSC LH2 Tank\New Press Mods\Cesat_LN2.dat OUTPUT FILE NAME Cesat LN2.out TITLE KSC Liquid Nitrogen Test Tank - 85% Full by Height **USETUP** F DENCON GRAVITY ENERGY MIXTURE THRUST **STEADY** TRANSV SAVER F F Т F F F Т F HEX HCOEF REACTING **INERTIA** CONDX ADDPROP PRINTI ROTATION F F F F F F F F BUOYANCY HRATE INVAL MSORCE MOVBND TPA VARGEO TVM F Т F F F F F F WINPLOT SHEAR PRNTIN PRNTADD **OPVALVE** TRANSQ CONJUG RADIAT F F F F F Т Т Т PRESS INSUC VARROT CYCLIC CHKVALS Т F F F Т SECONDL NRSOLVT NORMAL SIMUL F Т F Т NNODES NINT NBR NF 5 2 3 1 CC RELAXK RELAXD RELAXH NITER 500 0.5 0.01 1e-06 1 DTAU TIMEF TIMEL NPSTEP 0 36000 500 1 NFLUID(I), I = 1, NF4 NODE INDEX DESCRIPTION 2 "Vent Exit (Ambient)" 1 2 1 "LN2 Ullage Space" 3 2 "LN2 Tank Pseudo Node" "LN2 Propellant Volume" 4 1 5 2 "Transfer Line Exit (Ambient)" NODE PRES (PSI) TEMP(DEGF) MASS SOURC HEAT SOURC **THRSTAREA** NODE-VOLUME 2 14.7 -316 0 0 0 3710.4 4 15.91 -322 0 0 0 57313 ln2prsh1.dat

ln2prsh3.	dat										
lc39bhs1.	.dat										
INODE		NUMBR		NAMEBR							
2		1		12							
4		2		34	45						
BRANCH	Н	UPNODE	Ξ	DNNODE	OPT	ION	DESCRIPT	ION			
12		1		2	1		«Vent Line»	>			
34		3		4	2		«Propellant	Surface (Pse	udo Branch)»	
45		4		5	2		«Transfer L	ine»		, ,	
BRANCH	H	OPTION	-1	LENGTH		DIA	EPSD	A	NGLE	AREA	
12				49		0.902	0.00088	3692 0		0.639	
BRANCH	Ŧ	OPTION	_2	FLOW COEI	FF	AREA				01007	
34		01 11010	2			956.12)				
BRANCE	I	OPTION	2	U FLOW COFI	FE		-				
15	1		-2		.1						
	EI O			U.U							
INITIAL	FLU	WKAIES	IN BI	KANCHES F	OK UN	SIEA	DY FLOW				
12	0.00	01									
34	0.00	01									
45	0.00	01									
NUMBE	R OF	PRESSU	RIZA	FION PROPE	ELLAN	T TAN	KS IN CIRCU	TIT			
1											
TNKTYF	ΡE	NODUL	Ν	ODULB	NODE	PRP	IBRPRP	TNKAR	TNKTH	TNKRHO	TNKCP
0		2	3		4		34	1124.9	0.1875	467	0.07
TNKCON	V	ARHC	F	CTHC	TNKT	M					
0.0017		956.12	1		-322						
NSOLID		NAMB	Ν	SSC	NSFC		NSAC	NSSR			
12		1	16	5	2		2	0			
NODESL	. MA	TRL SMA	SS	TS	NUM	SS NU	MSF NUMSA	A NUMSSR	DESCRIP	TION	
7	29	62.28	8500	85.00000	2	0	1	0	«Outer Half	of Ullage Outer Tanl	c Wall»
NAMESS	5										
78	711										
NAMESA	4										
67											
8	29	62.28	8500	85.00000	3	0	0	0	«Inner Half	of Ullage Outer Tank	Wall»
NAMESS	3	02.2.		00100000	5	0	Ū	0		or charge o and rain	, , , cur ,
78	812	815									
0	20	28.07	7500	31/ 00000	3	0	0	0	"Outor U	If of Hilloga Tapk	Walls
NAMESS	29	20.9	1500	-314.00000	5	0	0	0	«Outer ma	in of Offage Talik	vvall//
INAMES:	012	160									
910	915	109	7500	214 00000	2	1	0	0	т. тт.	16 CI III	XX 7.11
10	29	28.9	/500	-314.00000	2	1	0	0	«Inner Ha	If of Ullage Tank	Wall»
NAMESS	5										
910	1014	4									
NAMESE	7										
102											
11	29	226.0)5500	85.00000	2	0	1	0	«Outer Hal	f of Propellant Outer	r Tank Wall»
NAMESS	5										
1112	711										
NAMESA	4										
611											
12	29	226.0	05500	85.00000	3	0	0	0	«Inner Halt	f of Propellant Oute	r TankWall»
NAMESS	5					-				1 0 000	
1112	812	1217									
13	29	164 0	21000	-322.00000	3	0	0	0	«Outer Hal	f of Propellant Tank	Wall»
					-	-	~	-			

NAMESS	5							
1314	913	1813						
14	29	164.21000	-322.00000	2	1	0	0	«Inner Half of Propellant Tank Wall»
NAMESS	5							
1314	1014							
NAMESE	7							
144								
15	42	17.20500	37.00000	3	0	0	0	«Outer Half of Ullage Insulation»
NAMESS	5							C
815	1516	1517						
16	42	17.20500	-217.00000	3	0	0	0	«Inner Half of Ullage Insulation»
NAMESS	5							C
1516	169	1618						
17	42	74.28000	26.00000	3	0	0	0	«Outer Half of Propellant Insulation»
NAMESS	5							· · · · · · · · · · · · · · · · · · ·
1217	1718	1517						
18	42	74.28000	-241.00000	3	0	0	0	«Inner Half of Propellant Insulation»
NAMESS				e	Ū	Ū	0	
1718	1813	1618						
NODEAN		MB DI	ESCRIPTION	J				
6	85 ()0000 "A	mbient Cond	, litio	n"			
ICONSS	ICNS	SI ICNSI	ARCSII		DISTSU	DES	CRIPTION	·
78	7	8	2458 3400	0	0.09000	«UIII	age Surface	Area at Midpoint of Outer Tank Wall»
910	9	10	1143 6700	ñ	0.09000	«UII	age Surface	Area at Midpoint of Tank Wall»
1112	11	12	8922 1900	0	0.09000	«On	nellant Sur	face Area at Midpoint of Outer Tank Wall»
1314	13	12	6410 8400	0	0.09000	«Pro	pellant Sur	face Area at Midpoint of Tank Wall»
1014	10	14	14 41000	0	76 88000	«Inc	er Half Inn	Provide and the point of Tank Wall/
013	0	13	14.47000		70.00000	«IIII «Ou	ter Half Inn	er Sphere IIII Prp Cond»
812	8	12	17 69000		94 40000	«Ou «Inn	er Half Out	er Sphere IIII Prp Cond»
711	7	12	17.09000		94.40000	«IIII «Ou	ter Half Ou	ter Sphere IIII Prn Cond»
×11 815	8	11	2/33 0100	0	1 30000	«Ou "Ull	aga Outar S	phare Insulation Interface Areas
1516	0 15	15	2433.0100	0	2 70000	«UII "UIII	age Outer S	Area at Midnaint of Insulation
1510	15	10	1162 5400	0	2.70000	«UII L111	age Sullace	a Area at Wildpoint of Insulation»
109	10	9	2076 7200	0	1.39000	«UII "Dao	age filler S	ar Sphare Insulation Interface Areas
1217	12	17	00/0./200 7619 5000	0	2 70000	«PIC		er Sphere-Insulation Interface Area»
1/10	1/	18	/018.3000	0	2.70000	«Pro	penant Sur	S L L L L L L L L L L L
1813	18	13	6449.8600	0	1.39000	«Pro	pellant Inno	er Sphere-Insulation Interface Area»
1517	15	17	485.02000		90.02000	«Ou	ter Half Ins	ulation Ull-Prp Cond»
1618	16	18	439.59000		81.56000	«Inn	er Half Insi	ilation Ull-Prp Cond»
ICONGE			DOF				EMO	
ICONSF	ICS ICH	MODEL A	ARSF	HC	SF 1	EMSFS	EMS	FF DESCRIPTION
102	10 2	0 1	.12491e+03	0.0	0000e+00 (0.00000e-	HOU 0.000	00e+00 «Ullage-Tank Wall Surface Area»
144	14 4	0 6	0.3/194e+03	0.0	0000e+00 (0.00000e-	100 0.000	00e+00 «Propellant-Tank Wall Surface Area»
	10010		a	~~		a . a	-	
ICONSA	ICSAS	ICSAA AR	SA H	CSA	A = EM	SAS	EMSAA	DESCRIPTION
67	1	6 2.4	8330e+03 4.	440	00e-04 7.00	0000e-01	7.00000e-0	I «Ullage Space Outer Surface of Outer Tank»
611	11	6 8.9	5825e+03 4.	440	00e-04 7.00	0000e-01	7.00000e-0	1 «Propellant Space Outer Surface of Outer Tank»

D.2 CESAT Liquid Nitrogen and Perlite Sample Output Data File

ISTEP =* BOUND	**** TAU = ARY NODES	0.36000E+05			
NODE	P (PSI)	TF (F)	Z (COMP)	RHO	QUALITY
1	0.1470E+02	0.8500E+02	0.0000E+00	(LBM/F1^3) 0.7047E-01	0.1000E+01

3 5	0.1591E+02 0.1470E+02	-0.3220 0.8500E	E+03 E+02	0.000)0E+00)0E+00	0 0.5044E+02 0 0.7047E-01		0.0000E+ 0.1000E+		
SOLUTI	ON									
INTERN	ALNODES									
NODE	P (PSI)	TF(F)		Z (CC)MP)	RH	10	EM (LBM)	OUALITY	
NODL	1 (101)	11 (1)		2(00	, , , , , , , , , , , , , , , , , , ,		RM/FT^3)		QUILLIII	
2	0 1470E+02	-0 3160F	+03	0.958	7E+00	0.2	787E+00	0.6035E+00	0 1000E+01	
4	0.1591E+02	-0 3220E	+03	0.598	6E-02	0.2	044E+02	0.1673E+04	0.0000E+00	
•	0.12712102	0.022012	105	0.570	01 01	0.5		0.10752101	0.00001100	
BRANCI	HES									
BRANCI	H KFACTOR	DELP	FLOW	RATE	VELOCI	ТΥ	REYN, NO	. MACH NC	. ENTROPY GEN.	LOST WORK
	(LBF-S^2/	(PSI)	(LBM/S	SEC)	(FT/SEC)			BTU/(R-SEC)	LBF-FT/SEC
	(LBM-FT)^	2)		- /	X	/			- (/	
12	0.260E+10	0.000E+00	0.107E-	07	0.343E-0	4	0.149E-01	0.295E-07	0.108E-18	0.456E-13
34	0.000E+00	0.000E+00	-0.306E	-04	-0.915E-	07	0.118E+00	0.135E-09	0.000E+00	0.000E+00
45	0.177E+10	0.121E+01	0.588E-	05	0.168E+0	00	0.702E+02	0.248E-03	0.668E-13	0.715E-08
SOLID N	NODES									
NODESI	L CPSLD	TS								
	BTU/LB	F F								
7	0.109E+	00 0.8	48E+02							
8	0.109E+	00 0.8	48E+02							
9	0.693E-0	-0.3	314E+03							
10	0.693E-0	-0.3	314E+03							
11	0.109E+	00 0.8	48E+02							
12	0.109E+	00 0.8	48E+02							
13	0.690E-0	-0.3	322E+03							
14	0.690E-0	-0.3	322E+03							
15	0.200E+	00 0.3	70E+02							
16	0.200E+	-0.2	217E+03							
17	0.200E+	00 0.2	60E+02							
18	0.200E+	-0.2	241E+03							
~ ~ ~ ~ ~										
SOLID T	O SOLID CO	NDUCTOR	0.000							
ICONSS	CONDK	LIJ QD	OTSS							
-	BTU/S H	FTF BT	U/S							
78	0.262E-0	0.2 0.2	18E-02							
910	0.16/E-0	0.1°	99E-02							
1112	0.262E-0	0.9	24E-02							
1314	0.167E-0	0.1	03E-01							
1014	0.167E-0	0.2 0.2	05E-03							
915	0.10/E-0	0.2 0.2	00E-05							
012 711	0.202E-0	0.1	71E-05							
/11 815	0.202E-0	0.1 0.1	71E-03 25E 02							
01J 1516	0.322E-0 0.161E ()6 0.2	25E-02 21E-02							
160	0.101E-0)6 0.2	21E-02 18E-02							
1217	0.322E-0	0.2	01E-02							
1718	0.161F-0	0.1	01E-01							
1813	0 322F-0)6 0.1	01E-01							
1517	0.161E-0	06 0.7	95E-06							

1618

0.175E-05

SOLID TO) FLUID CO	NDUCTOR								
ICONSF	QDOTSI	F HC	CSF	HCSFR						
	BTU/S	BT	U/S FT**2 F	BTU/S I	BTU/S FT**2 F					
102	-0.180E	-02 0.1	25E-03	0.000E+	-00					
144	-0.135E-	01 0.1	00E+02	0.000E+	-00					
SOLID TO AMBIENT CONDUCTOR										
ICONSA	QDOTS.	A HC	CSA	HCSAR	HCSAR					
	BTU/S	BT	U/SFT**2 F	BTU/S	FT**2 F					
67	0.185E-0	0.4	44E-03	0.166E-	03					
611	0.825E-0	0.4	44E-03	0.166E-	03					
NUMBER	OF PRESSU	JRIZATION	SYSTEMS =	1						
NODUL	NODPRP	QULPRP	QULWAL	QCOND	TNKTM	VOLPROP	VOLULG			
2	4	0.0025	0.0000	0.0000	137.6000	33.1672	2.1653			

D.2.1 CESAT Liquid Nitrogen and Perlite Sample Output Plots

CESAT liquid nitrogen and perlite solid node temperature predictions, ulllage and propellant path heat transfer rates, and boiloff rate output plots are shown in figures 23–25, respectively.

Figure 23. CESAT liquid nitrogen and perlite solid node temperature predictions.

Figure 24. CESAT liquid nitrogen and perlite ullage and propellant path heat transfer rates.

Figure 25. CESAT liquid nitrogen and perlite boiloff rates.

D.3 CESAT Liquid Nitrogen and Glass Bubbles Input Data File

GFSSP VERSION 500 GFSSP INSTALLATION PATH ANALYST Todd Steadman INPUT DATA FILE NAME D:\GFSSP\KSC LH2 Tank\New Press Mods\Cesat_LN2_glas07.dat **OUTPUT FILE NAME** Cesat_LN2_glas07.out TITLE KSC Liquid Nitrogen Test Tank - 85% Full by Height, Glass Bubbles k=0.7 mW/m-K **USETUP** F DENCON GRAVITY ENERGY MIXTURE THRUST STEADY TRANSV SAVER F F Т F F F Т F HEX HCOEF REACTING **INERTIA** CONDX ADDPROP PRINTI ROTATION F F F F F F F F BUOYANCY HRATE **MSORCE MOVBND** TPA VARGEO TVM **INVAL** Т F F F F F F F SHEAR PRNTIN OPVALVE TRANSQ CONJUG WINPLOT PRNTADD RADIAT F F F F F Т Т Т PRESS **INSUC** VARROT CYCLIC CHKVAL F F F Т Т NORMAL SIMUL SECONDL NRSOLV F Т F Т NNODES NINT NBR NF 5 2 3 1 CC NITER RELAXK RELAXD RELAXH 500 1 0.5 0.01 1e-06 DTAU TIMEF TIMEL NPSTEP 0 36000 500 1 NFLUID(I), I = 1, NF4 NODE INDEX DESCRIPTION 1 2 "Vent Exit (Ambient)" 2 1 "LN2 Ullage Space" 3 2 "LN2 Tank Pseudo Node" "LN2 Propellant Volume" 4 1 5 "Transfer Line Exit (Ambient)" 2 NODE PRES (PSI) TEMP (DEGF) MASS SOURC HEAT SOURC THRSTAREA NODE-VOLUME -317 0 3710.4 2 14.7 0 0 4 15.91 -322 0 0 0 57313 ln2ph1gb.dat ln2prsh3.dat ln2ph1gb.dat INODE NUMBR NAMEBR 2 1 12 4 2 34 45 UPNODE **DNNODE OPTION** DESCRIPTION BRANCH 12 1 2 1 «Vent Line»

34	3	4		2		«Propellant Surface (Pseudo Branch)»				
45	4	5		2		«Transfer I	Line»			
BRANCH	OPTI	ON -1 L	ENGTH	DIA		EPSD	ANG	LE	AREA	
12		49)	0.902		0.00088692	2 0		0.639	
BRANCH	OPTI	ON -2 F	LOW COEFI	F AREA	A					
34		0		956.1	2					
BRANCH	OPTI	ON -2 F	LOW COEF	F AREA	4					
45		0.	6	0.000	1					
INITIAL F	LOWRAT	TES IN BRA	NCHES FO	R UNSTE	- EADY FI	OW				
12	0.00	01		it of to fi						
34	0.00	01								
45	0.00	01								
NUMBER	OF PRES	SURIZATIO	ON PROPEI		NKS IN					
	OI I KLS	SURIZ/III	SIGINOILL		11115 111	CIRCOII				
I	NODL					TNIZAD	TNIZTU	TNIZDUC		TNKCON
					TKP .	1104.0	11NK1H	11NKKIU	0.07	0.0017
			4	54		1124.9	0.1875	407	0.07	0.0017
ARHC	FCIHC		M							
956.12	l	-322			110.05					
NSOLID	NAMB	NSSC	NSFC I	NSAC	NSSR					
12	1	16	2 2	2	0					
NODESL	MAIRL	SMASS	15	NUMSS	NUMS	SF NUMSA	A NUMSSR	D	ESCRIPTION	
7	29	62.28500	74.00000	2	0	1	0	"Outer H	alf of Ullage Ou	ter Tank Wall"
NAMESS										
78	711									
NAMESA										
67										
8	29	62.28500	74.00000	3	0	0	0	"Inner Ha	lf of Ullage Ou	ter Tank Wall"
NAMESS										
78	812	815								
9	29	28.97500	-316.00000	3	0	0	0	"Outer H	alf of Ullage T	ank Wall"
NAMESS									e	
910	913	169								
10	29	28.97500	-316.00000	2	1	0	0	"Inner ha	lf of Ullage Ta	nk Wall"
NAMESS									- 8	
910	1014									
NAMESE	1011									
102										
11	29	226.05500	74 00000	2	0	1	0	"Outer Ha	lf of Propellant O	uter Tank Wall"
NAMESS	27	220.05500	/ 1.00000	2	0	1	0	Outer Ha	n or r ropenan o	
1112 711	1									
NAMESA	L									
611										
12	20	226 05500	74 00000	2	0	0	0	"Innor Hol	f of Prop ollopt O	tor Tople Wall?
12 NAMES	29	220.05500	74.00000	3	0	0	0		1 of Flopenant Ot	
NAMES	010	1017								
1112	812	1217	222 00000	2	0	0	0	"O · II	16 6 0 11	
13	29	164.21000	-322.00000	3	0	0	0	"Outer H	alf of Propellar	it Tank Wall"
NAMESS	0.1.2	1012								
1314	913	1813								
14	29	164.21000	-322.00000	2	1	0	0	"Inner H	alf of Propellan	t Tank Wall"
NAMESS										
1314	1014									
NAMESF										
144										

15 NAMESS	43	11.01000	28.00000	3	0		0	0	"(Outer Half of Ullage Insulation"	
NAMESS	1516	1517									
16	1310	11 01000	219 00000	3	0		0	0	"1	nner Half of Illiage Insulation"	
NAMESS	43	11.01000	-219.00000	5	0		0	0	1	liner fram of Offage filsulation	
1516 1	59 1618										
17	43	47 53000	17 00000	3	0		0	0	"(Juter Half of Propellant Insulation"	
NAMESS	-Т.	+7.55000	17.00000	5	0		0	0	Ċ	Juter Hall of Propenant Insulation	
1217	1718	1517									
1217	43	47 53000	-242 00000	3	0		0	0	"T	nner Half of Propellant Insulation"	
NAMESS	75	+7.55000	2-12.00000	5	0		0	0	1	liner than of tropenant insulation	
1718	1813	1618									
1710	1015	1010									
NODEAN	1 TAM	B DE	SCRIPTION								
6	74.00	000 "Aı	nbient Conditi	on"							
ICONSS	ICNSI	ICNSJ	ARCSIJ		DISTSIJ	Γ	DESCRI	PTION			
78	7	8	2458.34000		0.09000	~	Ullage	Surface Ai	rea at	Midpoint of Outer Tank Wall»	
910	9	10	1143.67000		0.09000	~	Ullage	Surface Ai	rea at	Midpoint of Tank Wall»	
1112	11	12	8922.19000		0.09000	~	«Propellant Surface Area at Midpoint of outer Tai				
1314	13	14	6410.84000		0.09000	~	Propella	a at Midpoint of Tank Wall»			
1014	10	14	14.41000		76.88000	~	Inner H	e Ull-Prp Cond»			
913	9	13	14.47000		77.18000	~	Outer H	Ialf Inner S	Spher	e Ull-Prp Cond»	
812	8	12	17.69000		94.40000	~	Inner H	alf Outer	Spher	e Ull-Prp Cond»	
711	7	11	17.76000		94.70000	~	Outer H	Ialf Outer	Spher	re Ull-Prp Cond»	
815	8	15	2433.01000		1.39000	~	Ullage	Outer Sph	ere-Ir	sulation Interface Area»	
1516	15	16	1752.24000		2.70000	~	Ullage	Surface Ai	rea at	Midpoint of Insulation»	
169	16	9	1162.54000		1.39000	~	Ullage	Inner Sphe	ere-In	sulation Interface Area»	
1217	12	17	8876.72000		1.39000	~	Propella	ant Outer S	Spher	e-Insulation Interface Area»	
1718	17	18	7618.50000		2.70000	~	Propella	ant Surface	e Are	a at Midpoint of Insulation»	
1813	18	13	6449.86000		1.39000	~	Propella	ant Inner S	Sphere	e-Insulation Interface Area»	
1517	15	17	485.02000		90.02000	~	Outer H	Ialf Insula	tion U	Jll-Prp Cond»	
1618	16	18	439.59000		81.56000	~	Inner H	alf Insulat	ion U	Ill-Prp Cond»	
ICONGE		MODEL		110	or i		n an	EMOEE		DESCRIPTION	
ICONSF 102		MODEL	AKSF		3F 1		3	EMSFF	00	DESCRIPTION	
102	10 2	0	1.12491e+03		00000+00 (0.0000	100+00	0.00000	e+00	«Ullage-Tank Wall Surface Area»	
144	14 4	0	0.3/194e+03	0.00	0000e+00 ().0000	00e+00	0.00000	e+00	«Propellant-Tank Wall Surface Area»	
ICONSA	ICSAS	ICSAA AR	SA HC	SA	EMS	SAS	EMS	SAA	DES	CRIPTION	
67	7	6 2.4	8330e+03 4.4	400	0e-04 7.00	000e-(01 7.00	000e-01	«Ulla	age Space Outer Surface of Outer	
									,	Tank»	
611	11	6 8.9	6825e+03 4.4	400	0e-04 7.00	000e-	01 7.00	000e-01	«Proj	pellant Space Outer Surface of	

Outer Tank»

D.4 CESAT Liquid Nitrogen and Glass Bubbles Sample Output Data File

ISTEP =*	**** TAU =	0.36000E+05			
BOUNDA	ARY NODES				
NODE	P (PSI)	TF (F)	Z (COMP)	RHO	QUALITY
				(LBM/FT^3)	
1	0.1470E+02	0.7400E+02	0.0000E+00	0.7193E-01	0.1000E+01
3	0.1591E+02	-0.3220E+03	0.0000E+00	0.5044E+02	0.0000E+00
5	0.1470E+02	0.7400E+02	0.0000E+00	0.7193E-01	0.1000E+01

SOLUTION

002011	511							
INTERNA	AL NODES							
NODE	P (PSI)	TF (F)	Z (COM	P) RHO (LBN] [/FT^3)	EM (LBM)	QUALITY	
2	0.1470E+02	-0.3173E+0	3 0.9574E-	+00 0.281	6E+00 (0.6098E+00	0.1000E+01	
4	0.1591E+02	-0.3220E+0	3 0.5986E-	02 0.504	4E+02	0.1673E+04	0.0000E+00	
BRANCH	IES							
BRANCH	KFACTOR	DELP	FLOWRATE	VELOCITY	REYN.NO.	MACHNO.	ENTROPY GEN.	LOSTWORK
	(LBF-S^2/	(PSI)	(LBM/SEC)	(FT/SEC)			BTU/(R-SEC)	LBF-FT/SEC
	(LBM-FT)^2)							
12	0.747E+10	0.000E+00	0.361E-08	0.113E-04	0.511E-02	0.982E-08	0.118E-19	0.489E-14
34	0.000E+00	0.000E+00	0.146E-04	0.436E-07	0.564E-01	0.643E-10	0.000E+00	0.000E+00
45	0.177E+10	0.121E+01	0.588E-05	0.168E+00	0.702E+02	2 0.248E-03	0.667E-13	0.715E-08

SOLID NODES

NODESL	CPSLD	TS
	BTU/LB F	F
7	0.109E+00	0.739E+02
8	0.109E+00	0.739E+02
9	0.692E-01	-0.316E+03
10	0.692E-01	-0.316E+03
11	0.109E+00	0.739E+02
12	0.109E+00	0.739E+02
13	0.690E-01	-0.322E+03
14	0.690E-01	-0.322E+03
15	0.190E+00	0.280E+02
16	0.190E+00	-0.219E+03
17	0.190E+00	0.170E+02
18	0.190E+00	-0.242E+03

SOLID TO SOLID CONDUCTOR

ICONSS	CONDKIJ	QDOTSS
	BTU/S FT F	BTU/S
78	0.260E-02	0.145E-02
910	0.167E-02	0.135E-02
1112	0.260E-02	0.656E-02
1314	0.167E-02	0.710E-02
1014	0.167E-02	0.158E-03
913	0.167E-02	0.158E-03
812	0.260E-02	0.145E-05
711	0.260E-02	0.145E-05
815	0.224E-06	0.150E-02
1516	0.112E-06	0.150E-02
169	0.224E-06	0.151E-02
1217	0.224E-06	0.678E-02
1718	0.112E-06	0.683E-02
1813	0.224E-06	0.690E-02
1517	0.112E-06	0.553E-06
1618	0.112E-06	0.117E-05

SOLID TO	FLUID CONI	DUCTOR					
ICONSF	QDOTSF	HCSF		HCSFR			
	BTU/S	BTU/S	S FT**2 F	BTU/S FT**2 F	7		
102	-0.117E-02	0.1131	E-03	0.000E+00			
144	-0.675E-02	0.1001	E+02	0.000E+00			
	AMRIENT CO						
JCONS A				LICCAD			
ICONSA	QDUISA	HCSA	1	HCSAK			
	BTU/S	BTU/S	S FT**2 F	BTU/S FT**2 F	7		
67	0.111E-02	0.444]	E-03	0.156E-03			
611	0.533E-02	0.444]	E-03	0.156E-03			
NUMBER (OF PRESSUR	IZATION SYS	STEMS = 1				
NODLI	NODDDD			OCOND			
NODUL	NODPRP	QULPRP	QULWAL	QCOND	INKIM	VOLPROP	VOLULG
2	4	0.0019	0.0000	0.0000	137.6000	33.1672	2.1653

D.4.1 CESAT Liquid Nitrogen and Glass Bubbles Sample Output Plots

CESAT liquid nitrogen and glass bubbles solid node temperature predictions, ulllage and propellant path heat transfer rates, and boiloff rate output plots are shown in figures 26–28, respectively.

Figure 26. CESAT liquid nitrogen and glass bubbles solid node temperature predictions.

Figure 27. CESAT liquid nitrogen and glass bubbles ulllage and propellant path heat transfer rates.

Figure 28. CESAT liquid nitrogen and glass bubbles boiloff rates.

D.5 CESAT Liquid Hydrogen and Perlite Input Data File

GFSSP VERSION
500
GFSSP INSTALLATION PATH
C:\Program Files\GFSSP\
ANALYST
Todd Steadman
INPUT DATA FILE NAME
D:\KSC_Cryotank\CESAT_LH2Bubble\Cesat_LH2_perlk1.dat
OUTPUT FILE NAME
Cesat_LH2_perlk1.out
TITLE
KSC Liquid Hydrogen Test Tank - 85% Full by Height
USETUP
F

DENCO	N	GRA	VITY	ENER	GY	MIXT	TURE	THRU	ST	STEAD	Y	TRAN	SV	SAVER	
HEX		г НСО	FF	I REAC	TING	INER	τιδ		v		OP	I DRINT	т	ROTATION	J
F		F	LI	F	IIII	F	11/1	F	A	F	01	F	1	F	٦
BUOYA	NCY	HR A	TE	INVAI		MSO	RCE	MOVB	ND	ТРА		VARGI	EO	TVM	
F		Т	IL.	Т	_	F	KCL	F		F		F		F	
SHEAR		PRN	ΓIN	PRNT	ADD	OPV/	ALVE	TRAN	SO	CONIU	G	RADIA	T	WINPLOT	
F		F		F		F		F	×	Т	0	Т		Т	
PRESS		INSU	JC	VARR	OT	CYCI	LIC	CHKV	ALS						
Т		F		F		F		Т							
NORMA	AL.	SIMU	JL	SECO	NDL	NRSO	OLVT								
F		F		F		Т									
NNODE	S	NINT	[NBR		NF									
5		2		3		1									
RELAX	K	REL	AXD	RELA	XH	CC		NITER							
1		0.5		0.01		1e-06		500							
DTAU		TIM	EF	TIMEI	L	NPST	ΈP								
0.4		1500	0	30000		300									
NFLUID	D(I), I = 1	1, NF													
10															
NODE	INF)FX	DES	CRIPTI	ON										
1	2		"Ven	t Exit (A	Ambient)	,,									
2	1		«LH	2 Ullage	e Space»										
3	2		«LH	2 Tank H	Pseudo N	ode»									
4	1		«LH	2 Propel	llant Volu	me»									
5	2		«Tra	nsfer Li	ne Exit (A	Ambier	nt)»								
													-		
NODE	PRES (F	'SI)	TEMP (DE	EGF) I	MASS SOU	URC	HEATS	OURC	THRS	TAREA	NOD	E-VOLUI	ME		
2	14./		-421	()		0		0		5/10	.4			
4	14.81		-423.0	()		0		0		5/31	3			
In2prsn1	.dat														
la20bbc1	dat														
INODE	i.uai NII	IMPI		MERD											
2	1	OWIDI	12												
4	2		34		45										

BRANCH UPNODE DNNODE **OPTION** DESCRIPTION 12 1 2 1 «Vent Line» 34 3 2 4 «Propellant Surface (Pseudo Branch)» 45 4 5 2 «Transfer Line» EPSD ANGLE AREA BRANCH **OPTION -1** LENGTH DIA 0.902 0.00088692 12 49 0 0.639 BRANCH **OPTION -2** FLOW COEFF AREA 1e-05 34 0 BRANCH **OPTION -2** FLOW COEFF AREA 0.6 45 0.0001 INITIAL FLOWRATES IN BRANCHES FOR UNSTEADY FLOW 12 0.0001 34 0.0001 45 0.0001 NUMBER OF PRESSURIZATION PROPELLANT TANKS IN CIRCUIT = 1 **TNKTYPE** NODUL NODULB NODPRP IBRPRP **TNKAR** TNKTH **TNKRHO** TNKCP 34 1124.9 0.1875 0.07 0 2 3 4 467 **TNKCON** ARHC FCTHC **TNKTM** 0.0017 956.12 0.00265 -423.6 RESTART NODE INFORMATION FILE FNODE.DAT RESTART BRANCH INFORMATION FILE FBRANCH.DAT NSFC NSOLID NAMB NSSC NSAC NSSR 2 2 0 12 1 16 NODESL MATRL SMASS TS NUMSS NUMSF NUMSA NUMSSR DESCRIPTION 85.00000 29 62.28500 2 0 1 0 «Outer Half of Ullage Outer Tank Wall» 7 NAMESS 711 78 NAMESA 67 8 29 85.00000 3 0 0 0 62.28500 «Inner Half of Ullage Outer Tank Wall» NAMESS 78 812 815 9 29 28.97500 -420.00000 3 0 0 0 «Outer Half of Ullage Tank Wall» NAMESS 910 913 169 0 0 10 29 28.97500 -420.00000 2 1 «Inner Half of Ullage Tank Wall» NAMESS 910 1014 NAMESF 102 29 2 0 1 0 11 226.05500 85.00000 «Outer Half of Propellant Outer Tank Wall» NAMESS 711 1112 NAMESA 611 12 29 226.05500 85.00000 3 0 0 0 «Inner Half of Propellant Outer Tank Wall» NAMESS 1112 812 1217 13 29 164.21000 -423.60000 3 0 0 0 «Outer Half of Propellant Tank Wall» NAMESS 1314 913 1813 14 29 164.21000 -423.60000 2 1 0 0 «Inner Half of Propellant Tank Wall»

NAMESS	1014						
1314 NAMESE	1014						
1/1/1							
144	42	17 20500	32 00000	3 0	0	0	"Outer Half of Illage Insulation"
NAMESS	42	17.20500	52.00000	5 0	0	0	«Outer Hall of Ollage Insulation»
815	1516	1517					
16	42	17 20500	-280 00000	3 0	0	0	«Inner Half of Illage Insulation»
NAMESS	72	17.20500	200.00000	5 0	0	0	«Inner Han of Chage Insulation»
1516	169	1618					
17	42	74 28000	28 00000	3 0	0	0	«Outer Half of Propellant Insulation»
NAMESS	72	74.20000	20.00000	5 0	0	0	«Outer than of thepenant insulation»
1217	1718	1517					
1217	42	74 28000	-310 00000	3 0	0	0	«Inner Half of Propellant Insulation»
NAMESS	72	74.20000	510.00000	5 0	0	0	«Inner Han of Propenant Insulation»
1718	1813	1618					
NODFAM	там	B DE	SCRIPTION				
6	85.00	D DL	mbient Condi	tion"			
0	05.00	1000 11	molent condi	tion			
ICONSS	ICNSI	ICNSI	ARCSU	DISTSU	DESCRI	PTION	
78	7	8	2458.34000	0.09000	«Ullage	Surface Ar	ea at Midpoint of Outer Tank Wall»
910	9	10	1143.67000	0.09000	«Ullage	Surface Ar	ea at Midpoint of Tank Wall»
1112	11	12	8922.19000	0.09000	«Propell	ant Surface	Area at Midpoint of Outer Tank Wall»
1314	13	14	6410.84000	0.09000	«Propell	ant Surface	Area at Midpoint of Tank Wall»
1014	10	14	14.41000	76.88000	«Inner H	alf Inner S	phere Ull-Prp Cond»
913	9	13	14.47000	77.18000	«Outer F	Half Inner S	phere Ull-Prp Cond»
812	8	12	17.69000	94,40000	«Inner H	alf Outer S	phere Ull-Prp Cond»
711	7	11	17.76000	94,70000	«Outer H	Half Outer S	Sphere Ull-Prp Cond»
815	8	15	2433.01000	1.39000	«Ullage	Outer Sphe	re-Insulation Interface Area»
1516	15	16	1752.24000	2.70000	«Ullage	Surface Ar	ea at Midpoint of Insulation»
169	16	9	1162.54000	1.39000	«Ullage	Inner Sphe	re-Insulation Interface Area»
1217	12	17	8876.72000	1.39000	«Propell	ant Outer S	phere-Insulation Interface Area»
1718	17	18	7618.50000	2.70000	«Propella	ant Surface	Area at Midpoint of Insulation»
1813	18	13	6449.86000	1.39000	«Propell	ant Inner S	phere-Insulation Interface Area»
1517	15	17	485.02000	90.02000	«Outer H	Half Insulat	ion Ull-Prp Cond»
1618	16	18	439.59000	81.56000	«Inner H	lalf Insulati	on Ull-Prp Cond»
ICONSE				HCCE			
ICONSF	ICS ICH	MODEL	ARSF	HCSF	EMSFS	EMSE	F DESCRIPTION
102	10 2	0	1.12491e+03	0.00000e+00	0.00000e+0	0 0.00000	De+00 «Ullage-Tank Wall Surface Area»
144	14 4	0	6.37194e+03	0.00000e+00	0.00000e+0	0 0.0000	0e+00 «Propellant-Tank Wall Surface Area»
ICONSA	ICSAS I	CSAA ARS	A HC	SA EMS	SAS EMS	SAA Г	DESCRIPTION
67	7 6	2.48	330e+03 4.4	4000e-04 7.00	000e-01 7.00		Ullage Space Outer Surface of Outer Tank»
611	11 6	8.96	825e+03 4.4	4000e-04 7.00	000e-01 7.00	000e-01 «	Propellant Space Outer Surface of
							Outer Tank»

D.6 CESAT Liquid Hydrogen and Perlite Sample Output Data File

ISTEP =** BOUNDAI	** TAU = 0.3 RY NODES	0000E+05			
NODE	P (PSI)	TF (F)	Z (COMP)	RHO (LBM/FT^3)	QUALITY
1	0.1470E+02	0.8500E+02	0.0000E+00	0.5065E-02	0.1000E+01

3	0.1481E+02	-0.4236	6E+03	0.0000E+00	0.4437E+	-01 0.00	00E+00		
5	0.1470E+02	0.8500	E+02	0.0000E+00	0.5065E-0	02 0.10	00E+01		
SOLUTIO	N								
INTERNA	L NODES								
NODE	P (PSI)	TF (F)		Z (COMP)	RHO	EM	(LBM)	QUAI	LITY
					(LBM/FT	[^3]			
2	0.1470E+02	-0.423	1E+03	0.7275E+00	0.1040E+	-00 0.22	53E+00	0.7999	9E+00
4	0.1351E+02	-0.4230	6E+03	0.1590E-01	0.4437E+	-01 0.14	72E+03	0.000	0E+00
BRANCH	ES								
BRANCH	KFACTOR	DELP	FLOW R	ATE VELOCITY	REYN. NO.	MACH NO.	ENTROPY	GEN.	LOST WORK
	(LBF-S^2/	(PSI)	(LBM/SH	EC) (FT/SEC)			BTU/(R-S	EC)	LBF-FT/SEC
	(LBM-FT)^2)		•	· · · /					

		/					
12	0.209E+05	-0.694E-06 -0.691E-04	-0.150E+00	0.126E+04	0.347E-04	0.234E-11	0.663E-07
34	0.000E+00	0.129E+01 0.522E-07	0.169E+00	0.244E+02	0.138E-03	0.000E+00	0.000E+00
45	0.177E+14	-0.119E+01 -0.545E-08	-0.155E+01	0.124E+01	0.126E-02	0.133E-14	0.566E-09

SOLID NODES

NODESL	CPSLD	TS
	BTU/LB F	F
7	0.130E+00	0.848E+02
8	0.130E+00	0.848E+02
9	0.107E+00	-0.422E+03
10	0.107E+00	-0.422E+03
11	0.130E+00	0.847E+02
12	0.130E+00	0.847E+02
13	0.107E+00	-0.423E+03
14	0.107E+00	-0.423E+03
15	0.200E+00	0.302E+02
16	0.200E+00	-0.284E+03
17	0.200E+00	0.229E+02
18	0.200E+00	-0.312E+03

SOLID TO SOLID CONDUCTOR

ICONSS	CONDKIJ	QDOTSS
	BTU/S FT F	BTU/S
78	0.312E-02	0.256E-02
910	0.255E-02	0.305E-02
1112	0.312E-02	0.106E-01
1314	0.255E-02	0.139E-01
1014	0.255E-02	0.598E-04
913	0.255E-02	0.598E-04
812	0.312E-02	0.168E-05
711	0.312E-02	0.168E-05
815	0.322E-06	0.256E-02
1516	0.161E-06	0.273E-02
169	0.322E-06	0.311E-02
1217	0.322E-06	0.106E-01
1718	0.161E-06	0.127E-01
1813	0.322E-06	0.138E-01
1517	0.161E-06	0.534E-06
1618	0.161E-06	0.209E-05

SOLID TO F	FLUID CONDUC	TOR							
ICONSF	QDOTSF	HCSF		HCS	SFR				
	BTU/S	BTU/S FT	**2 F	BTU	J/S FT**2 F				
102	-0.300E-02	0.332E-03		0.00	0E+00				
144	-0.139E-01	0.192E-02		0.00	0E+00				
SOLID TO P	AMBIENT CONL	JUCIUK							
ICONSA	QDOTSA	HCSA	HCSA		AR				
	BTU/S	BTU/S FT	BTU/S FT**2 F		BTU/S FT**2 F				
67	0.256E-02	0.444E-03	444E-03 0.1		6E-03				
611	0.106E-01	0.444E-03		0.16	6E-03				
NUMPED C	E DDESSIIDIZA	TION SVSTI	EMS - 1						
NUMBER	IL LUCESSOURIZA	1101/01/01	EMO = 1						
NODUL	NODPRP (QULPRP	QULWA	L	QCOND	TNKTM	VOLPROP	VOLULG	
2	4 0	0.0000	0.0000		0.0000	36.0000	33.1673	2.1653	

D.6.1 CESAT Liquid Hydrogen and Perlite Sample Output Plots

CESAT liquid hydrogen and perlite solid node temperature predictions, ulllage and propellant path heat transfer rates, and boiloff rate output plots are shown in figures 29–31, respectively.

Figure 29. CESAT liquid hydrogen and perlite solid node temperature predictions.

Figure 30. CESAT liquid hydrogen and perlite ullage and propellant path heat transfer rates.

Figure 31. CESAT liquid hydrogen and perlite boiloff rates.

D.7 CESAT Liquid Hydrogen and Glass Bubbles Input Data File

GFSSP VERSION 500 GFSSP INSTALLATION PATH ANALYST Todd Steadman INPUT DATA FILE NAME D:\GFSSP\KSC LH2 Tank\New Press Mods\Cesat_LH2_glas07.dat OUTPUT FILE NAME Cesat_LH2_glas07.out TITLE

KSC Liquid Hydrogen Test Tank - 85% Full by Height

USETUP

F								
DENCO	N G	RAVITY	ENERGY	MIXTURE	THRUST	STEADY	TRANSV	SAVER
F	F		Т	F	F	F	Т	F
HEX	Н	COEF	REACTING	INERTIA	CONDX	ADDPRO	P PRINTI	ROTATION
F	F		F	F	F	F	F	F
BUOYA	NCY H	RATE	INVAL	MSORCE	MOVBND	TPA	VARGEO	TVM
F	Т		Т	F	F	F	F	F
SHEAR	Pl	RNTIN	PRNTADD	OPVALVE	TRANSQ	CONJUG	RADIAT	WINPLOT
F	F		F	F	F	Т	Т	Т
PRESS	IN	NSUC	VARROT	CYCLIC	CHKVALS			
Т	F		F	F	Т			
NORMA	AL SI	IMUL	SECONDL	NRSOLVT				
F	F C N		F	T				
NNODE	S N	INT	NBR	NF 1				
	2 Z				NUTED			
KELAAI	K K	ELAAD	KELAAH	12.06	NITEK 500			
	U. T	.) IMEE	U.UI TIMEI	IE-00 NDSTED	300			
1 DIAU	0	INIEF	36000	300				
NEL LID	(I) I = 1	NF	30000	500				
10	(1), 1 - 1, 1							
10								
NODE	INDF	EX I	DESCRIPTION					
1	2	~	Vent Exit (Am	bient)»				
2	1	~	LH2 Ullage S	pace»				
3	2	~	LH2 Tank Pse	udo Node»				
4	1	«	LH2 Propellan	t Volume»				
5	2	**	Transfer Line I	Exit (Ambient)»				
NODE	PRES (PS	SI) TEM	P(DEGF) N	MASS SOURC	HEAT SOU	JRC TH	IRST AREA	NODE-VOLUME
2	14.7	-421	0)	0	0		3710.4
4	14.81	-425.	1 0)	0	0		57313
ln2prsh1	.dat							
lh2prsh3	.dat							
lc39bhs1	.dat							
INODE	NUN	ЛBR	NAMEBR					
2	1		12	4.5				
4	2	ODE	34	45	DECONTRACT			
BRANC	H UPN	ODE	DNNODE	OPTION	DESCRIPTIO	JN		
12	1		2	1	«Vent Line»			

34 3 4 2 «Propellant Surface (Pseudo Branch)» 45 4 5 2 «Transfer Line» BRANCH **OPTION -1** LENGTH DIA ANGLE EPSD AREA 12 49 0.902 0.00088692 0 0.639 BRANCH **OPTION -2** FLOW COEFF AREA 956.12 34 0 BRANCH **OPTION -2** FLOW COEFF AREA 45 0.6 0.0001 INITIAL FLOWRATES IN BRANCHES FOR UNSTEADY FLOW 0.0001 12 0.0001 34 45 0.0001 NUMBER OF PRESSURIZATION PROPELLANT TANKS IN CIRCUIT 1 **TNKTYPE** NODUL NODULB NODPRP **IBRPRP TNKAR** TNKTH **TNKRHO** 2 3 34 1124.9 0.1875 467 0 4 TNKCP **TNKCON** ARHC FCTHC TNKTM 956.12 -425.1 0.07 0.0017 1 RESTART NODE INFORMATION FI FNDLH2GL.DAT **RESTART BRANCH INFORMATION FILE** FBRLH2GL.DAT NSOLID NAMB NSSC NSFC NSAC NSSR 2 2 12 1 16 0 NODESL MATRL SMASS TS NUMSS NUMSF NUMSA NUMSSR DESCRIPTION 7 29 62.28500 85.00000 2 0 1 0 «Outer Half of Ullage Outer Tank Wall» NAMESS 711 78 NAMESA 67 8 29 62.28500 85.00000 3 0 0 0 «Inner Half of Ullage Outer Tank Wall» NAMESS 78 812 815 0 0 9 29 28.97500 -420.00000 3 0 «Outer Half of Ullage Tank Wall» NAMESS 910 913 169 10 29 28.97500 -420.00000 2 1 0 0 «Inner Half of Ullage Tank Wall» NAMESS 910 1014 NAMESF 102 11 29 226.05500 85.00000 2 0 1 0 «Outer Half of Propellant Outer Tank Wall» NAMESS 1112 711 NAMESA 611 12 29 226.05500 85.00000 3 0 0 0 «Inner Half of Propellant Outer Tank Wall» NAMESS 1112 812 1217 164.21000 -425.10000 3 0 «Outer Half of Propellant Tank Wall» 13 29 0 0 NAMESS 1314 913 1813 14 «Inner Half of Propellant Tank Wall» 29 164.21000 -425.10000 2 1 0 0

NAMESS 1314 10 NAMESF 144	014						
15 NAMESS	43	11.01000	32.00000	3 0	0	0	«Outer Half of Ullage Insulation»
815	1516	1517					
16	43	11.01000	-280.00000	3 0	0	0	«Inner Half of Ullage Insulation»
NAMESS							- 8
1516	169	1618					
17	43	47.53000	28.00000	3 0	0	0	«Outer Half of Propellant Insulation»
NAMESS							1
1217	1718	1517					
18	43	47.53000	-310.00000	3 0	0	0	«Inner Half of Propellant Insulation»
NAMESS							1
1718	1813	1618					
NODEAM	и та	MB	DESCRIP	TION			
6	1 17	00000	"Ambient	Condition"			
0	0.5	.00000	7 molent	Condition			
ICONSS	ICNSI	ICNSJ	ARCSIJ	DISTSU	DESCRIP	TION	
78	7	8	2458.34000	0.09000	«Ullage Si	Inface Area	at Midpoint of Outer Tank Wall»
910	9	10	1143.67000	0.09000	«Ullage Si	Irface Area	at Midpoint of Tank Wall»
1112	11	12	8922.19000	0.09000	«Propellar	t Surface A	rea at Midpoint of Outer Tank Wall»
1314	13	14	6410.84000	0.09000	«Propellar	t Surface A	rea at Midpoint of Tank Wall»
1014	10	14	14.41000	76.88000	«Inner Ha	f Inner Sph	ere Ull-Prp Cond»
913	9	13	14.47000	77.18000	«Outer Ha	lf Inner Sph	ere Ull-Prp Cond»
812	8	12	17.69000	94.40000	«Inner Ha	lf Outer Spl	here Ull-Prp Cond»
711	7	11	17.76000	94.70000	«Outer Ha	lf Outer Spł	here Ull-Prp Cond»
815	8	15	2433.01000	1.39000	«Ullage O	uter Sphere-	Insulation Interface Area»
1516	15	16	1752.24000	2.70000	«Ullage Si	Inface Area	at Midpoint of Insulation»
169	16	9	1162.54000	1.39000	«Ullage In	ner Sphere-	Insulation Interface Area»
1217	12	17	8876.72000	2.70000	«Propellar	t Surface A	rea at Midpoint of Insulation»
1813	18	13	6449.86000	1.39000	«Propellar	t Inner Sphe	ere-Insulation Interface Area»
1517	15	17	485.02000	90.02000	«Outer Ha	lf Insulation	n Ull-Prp Cond»
1618	16	18	439.59000	81.56000	«Inner Hal	f Insulation	Ull-Prp Cond»
ICONSF	ICS	ICF MO	DDEL ARSF	HCSF	EM	SFS E	MSFF DESCRIPTION
102	10	2 0	1.12491	le+03 0.0000	0e+00 0.00	000e+00 0.	.00000e+00 «Ullage-Tank Wall Surface Area»
144	14	4 0	6.37194	4e+03 0.0000	0e+00 0.00	0000e+00 0.	.00000e+00 «Propellant-Tank Wall Surface Area»
ICONSA	ICSAS	ICSAA AR	RSA HC	SA EN	ISAS E	EMSAA	DESCRIPTION
67	7	6 2.4	8330e+03 4.4	4000e-04 7.0	0000e-01 7	.00000e-01	«Ullage Space Outer Surface of Outer
611	11	6 00	6975	4000-04 70	0000-01 7	00000-01	Iank»
011	11	0 8.9	00230+03 4.4	40006-04 /.0	0000e-01 /	.0000000-01	of Outer Tank»

D.8 CESAT Liquid Hydrogen and Glass Bubbles Sample Output Data File

ISTEP =	**** $TAU = 0$	J.56800E+05			
BOUND	ARY NODES				
NODE	P (PSI)	TF (F)	Z (COMP)	RHO	QUALITY
				(LBM/FT^3)	
1	0.1470E+02	0.8500E+02	0.0000E+00	0.5065E-02	0.1000E+01

3	0.1481E+02	-0.4236E+0	3 0.0000E	+00 0).4437E+01	0.0000)E+00	
5	0.1470E+02	0.8500E+02	2 0.0000E	+00 0	0.5065E-02	0.1000)E+01	
SOLUTI	ON							
INTEDN	IN NODES							
INTERN	AL NODES							
NODE	P (PSI)	TF (F)	Z (COMP)	RHO	EN	A (LBM)	QUALITY	
				(LBM/	FT^3)			
2	0.1470E+02	-0.4231E+03	0.9053E+00	0.8361	E-01 01	810E+00	0.1000E+01	
4	0.1350E+02	-0.4236E+03	0.1589E-01	0.4437	E+01 0.1	1472E+03	0.6021E-06	
DDANC								
BRANC	HES							
BRANCE	H KFACTOR	DELP	FLOW RATE V	VELOCITY	REYN. NO	MACH NO.	ENTROPY GEN.	LOSTWORK
	(LBF-S^2/	(PSI)	(LBM/SEC) (FT/SEC)			BTU/(R-SEC)	LBF-FT/SEC
	(LBM-FT)^2	2)						
12	0.344E+05	-0.432E-06	-0.427E-04 -	0.115E+00	0.953E+03	0.267E-04	0.113E-11	0.320E-07
34	0.000E+00	0.131E+01	0.124E-06 0).404E+00	0.581E+02	2 0.329E-03	0.000E+00	0.000E+00
45	0.177E+14	-0.120E+01	-0.130E-07 -	0.370E+01	0.297E+01	0.302E-02	0.182E-13	0.772E-08
	IODEC							
SOLID	NODES							

NODESL	CPSLD	TS
	BTU/LB F	F
7	0.130E+00	0.699E+02
8	0.130E+00	0.699E+02
9	0.107E+00	-0.422E+03
10	0.107E+00	-0.422E+03
11	0.130E+00	0.698E+02
12	0.130E+00	0.698E+02
13	0.107E+00	-0.424E+03
14	0.107E+00	-0.424E+03
15	0.190E+00	0.157E+02
16	0.190E+00	-0.296E+03
17	0.190E+00	0.264E+01
18	0.190E+00	-0.323E+03

SOLID TO SOLID CONDUCTOR

ICONSS	CONDKIJ	QDOTSS
	BTU/S FT F	BTU/S
78	0.310E-02	0.152E-02
910	0.255E-02	0.163E-02
1112	0.310E-02	0.686E-02
1314	0.255E-02	0.753E-02
1014	0.255E-02	0.589E-04
913	0.255E-02	0.590E-04
812	0.310E-02	0.179E-05
711	0.310E-02	0.178E-05
815	0.192E-06	0.152E-02
1516	0.960E-07	0.162E-02
169	0.192E-06	0.168E-02
1217	0.192E-06	0.686E-02
1718	0.960E-07	0.735E-02
1813	0.192E-06	0.747E-02
1517	0.960E-07	0.563E-06
1618	0.960E-07	0.114E-05

SOLID TO I	FLUID CON	DUCTOR						
ICONSF	QDOTSF HCSF			HCSFR				
	BTU/S	BTU/S	FT**2 F	BTU/S FT**	2 F			
102	-0.158E-02	0.189E	-03	0.000E+00				
144	-0.759E-02	0.166E	-02	0.000E+00				
SOLID TO A	SOLID TO AMBIENT CONDUCTOR							
ICONSA	A QDOTSA HCSA		HCSAR					
	BTU/S	BTU/S	FT**2 F	BTU/S FT**2 F				
67	0.152E-02	0.444E	-03	0.152E-03				
611	0.685E-02	0.444E	-03	0.152E-03				
NUMBER C	OF PRESSUE	RIZATION S	YSTEMS = 1					
NODUL	NODPRP	QULPRP	QULWAL	QCOND	TNKTM	VOLPROP	VOLULG	
2	4	0.0000	0.0000	0.0000	36.0000	33.1673	2.1652	

D.8.1 CESAT Liquid Hydrogen and Glass Bubbles Sample Output Plots

CESAT liquid hydrogen and glass bubbles solid node temperature predictions, ulllage and propellant path heat transfer rates, and boiloff rate output plots are shown in figures 32–34, respectively.

Figure 32. CESAT liquid hydrogen and glass bubbles solid node temperature predictions.

Figure 33. CESAT liquid hydrogen and glass bubbles ullage and propellant path heat transfer rates.

Figure 34 CESAT liquid hydrogen and glass bubbles boiloff rates.

APPENDIX E-INPUT/OUTPUT FOR FULL-SCALE TANK MODEL

E.1 LC-39 Perlite Input Data File

GFSSP VERSION 500 GFSSP INSTALLATION PATH ANALYST Todd Steadman INPUT DATA FILE NAME D:\GFSSP\KSC LH2 Tank\New Press Mods\LC39B_LH2_perlk1c.dat **OUTPUT FILE NAME** LC39B_LH2_perlk1c.out TITLE LC-39B Liquid Hydrogen Tank - 85% Full by Height **USETUP** F MIXTURE THRUST TRANSV DENCON GRAVITY ENERGY STEADY SAVER F Т F F F Т Т Т HEX HCOEF REACTING **INERTIA** CONDX ADDPROP PRINTI ROTATION F F F F F F F F BUOYANCY HRATE INVAL **MSORCE MOVBND** TPA VARGEO TVM Т Т Т F F F F F SHEAR PRNTIN PRNTADD **OPVALVE** TRANSQ CONJUG RADIAT WINPLOT Т Т F F Т F F Т PRESS **INSUC** VARROT CYCLIC CHKVALS Т Т F F F NORMAL SIMUL SECONDL NRSOLVT F F F Т NNODES NINT NBR NF 9 11 9 1 RELAXH CC NITER RELAXK RELAXD 1e-06 500 1 0.5 0.01 DTAU TIMEF TIMEL NPSTEP 10 0 36000 300 NFLUID(I), I = 1, NF10 NODE INDEX DESCRIPTION 1 2 "Vent Exit (Ambient)" 2 1 "Ullage Node 8" 2 "LH2 Tank Pseudo Node" 3 "LH2 Propellant Volume" 4 1 19 "Ullage Node 1" 1 "Ullage Node 2" 20 1 21 1 "Ullage Node 3" 22 "Ullage Node 4" 1 "Ullage Node 5" 23 1
24		1		"Ullage l	Node (5"					
25		1		«Ullage]	Node	7»					
REFERI	ENCE	NODE	FOR DI	ENSITY							
19								~ ~ ~ ~ ~			
NODE	PRES	S (PSI)	TEMP	(DEGF)	MAS	S SOURC	HEAT	SOURC	THRST ARE	A	NODE-VOLUME
2	14.7		-421		0		0		0		1.5982e+06
4	16.3		-423.6		0		0		0		1.9767e+08
19	14.7		-421		0		0		0		1.5982e+06
20	14.7		-421		0		0		0		1.5982e+06
21	14.7		-421		0		0		0		1.5982e+06
22	14.7		-421		0		0		0		1.5982e+06
23	14.7		-421		0		0		0		1.5982e+06
24	14.7		-421		0		0		0		1.5982e+06
25	14.7		-421		0		0		0		1.5982e+06
ln2prsh1	.dat										
lh2prsh3	3.dat										
NODE			п	NAMED	р						
INODE		NUMB	ĸ	NAMED	K						
2		1		252							
4		1		34		101					
19		2		1920		191					
20		2		2021		1920					
21		2		2122		2021					
22		2		2223		2122					
23		2		2324		2223					
24		2		2425		2324					
25		2		252		2425					
BRANC	Ή	UPNO	DDE	DNNOD	Е	OPTION	DE	SCRIPTIC	DN		
34		3		4		2	"Pr	opellant S	urface (Pseudo	o Bra	nch)"
252		25		2		1	"Pi	ne 252"	× ·		,
2425		24		25		1	"Pi	ne 2425"			
2324		23		24		1	"Pi	ne 2324"			
2223		22		23		1	"Pi	ne 2223"			
2122		21		23		1	"Pi	pe 2122			
2021		$\frac{21}{20}$		21		1	/Di	pe 2122			
1020		10		21		1	«I I "Di	pc 2021			
1920		19		20		1	«11»	pe 1920»			
191		19		1		1	« ve	int Line»			
BRANC	Ή	OPTI	ON -2	FLOW (COEFI	F ARE	А				
34				0		1e-0.	5				
BRANC	Ή	OPTI	ON -1	LENGTH	Η	DIA 511.82	EPS	SD	ANGLE	A	REA
	11	ODTI	ON 1	1.19 LENCTI	т	DIA		D.		۷.	DEA
BRAINC	П	OPTI	UN -I	LENGI	1	DIA 404 50	EP:	50	ANGLE	A	NEA
2425		ODTI	011	8.34 LENGTI		494.59	0			1.	.9212e+05
BRANC	H	OPTI	ON -1	LENGT	4	DIA	EPS	SD	ANGLE	A	REA
2324		-		9.07	_	474.71	0		0	1.	.7699e+05
BRANC	Ή	OPTI	ON -1	LENGTH	H	DIA	EPS	SD	ANGLE	А	REA
2223				10.07		451.17	0		0	1.	.5987e+05
BRANC	Ή	OPTI	ON -1	LENGTH	H	DIA	EPS	SD	ANGLE	А	REA
2122				11.57		422.14	0		0	1.	.3996e+05
BRANC	Ή	OPTI	ON -1	LENGTH	H	DIA	EPS	SD	ANGLE	Α	REA
2021				14.27		383.83	0		0	1.	.1571e+05
BRANC	Ή	OPTI	ON -1	LENGTH	Η	DIA	EPS	SD	ANGLE	А	REA

1920 BRANCH	O	PTION -1	45.81 LENGTH	325 H DIA	.3	0 EPSD	0 A	NGLE	8310 ARE)9 EA	
191			897	12.3	39	6.4568	8e-05 9	0	120.	57	
INITIAL I	FLOWR	ATES IN B	RANCHE	S FOR UN	ISTEAD	Y FLOV	N				
34 25	2 0	0001									
24	25 0										
23	24 0										
22	23 0										
21	22 0										
20	21 0										
19	20 0	0001									
19	1 0.0	0001									
NUMBER 1	OF PRE	ESSURIZA	TION PRO	PELLAN	T TANK	S IN CI	RCUIT				
TNKTYP	E NOI	DUL NC	DULB	NODPRI	P IBRI	PRP	TNKAR	TNK	TH	TNKRHO	TNKCP
0	2	3		4	34		2.5666e+	05 0.62	5	467	0.07
TNKCON	ARF	IC	FCTHC	TNK	ГМ						
0.0017	2.18	16e+05	0.00265	-423.6	5						
RESTART	NODE	INFORMA f	TION FIL	E							
RESTART	BRAN	TH INFOR	MATION	FILE							
FBRLC	39B.DA	Γ									
NSOLID	NAME	B NS	SSC	NSFC	NSA	AC	NSSR				
54	1	93		9	9		0				
NODESL	MATRI	L SMASS	TS	NU	MSS 1	NUMSF	F NUMS	A NUMSS	R DES	CRIPTION	
7	44	1933.7800	0 85.000	00	3 0)	1	0	«Sec	8 OS Outer»	
NAMESS											
78	711	677									
NAMESA											
67	4.4	1022 7000	00 05 000	00	4		0	0	C	7.00.1	
8 NAMESS	44	1933.7800	0 85.000	00	4 0)	0	0	«Sec	/ OS Inner»	
NAMESS 78	812	815	668								
9	29	1477 4200	008	0000	4 0)	0	0	«Sec	8 IS Outers	
NAMESS	27	1177.1200	50 117.00	0000		, ,	0	0		0100000	
910	913	169	639								
10	29	1477.4200	00 -418.00	0000	3 1		0	0	«Sec	8 IS Inner»	
NAMESS											
910	1014	6210									
NAMESF											
102									_		
11	44	173893.00	000 85	5.00000	2 ()	1	0	«Out	er Half of Pro	pellant
NAMESS									0	uter Tank Wal	1
1112	711										
NAMESA	/ 11										
611											
12	44	173893.	00000 85	5.00000	3	0	0	0	«Inn O	er Half of Pro uter Tank Wa	opellant ll»

NAMESS 1112 13	812 29	1217 122995.00000	-423.60000	3	0	0	0	«Outer Half of Propellant
NAMESS 1314 14	913 29	1813 122995.00000	-423.60000	2	1	0	0	TankWall» «Inner Half of Propellant
NAMESS 1314 NAMESF	1014							Tank Wall»
144 15 NAMESS	42	1677.20000	28.00000	4	0	0	0	«Sec 8 Ins Outer»
815 16	1516 42	1517 1677.20000	6515 -294.00000	4	0	0	0	«Sec 8 Ins Inner»
1516 17	169 42	1618 145333.00000	6416 14.00000	3	0	0	0	«Outer Half of Propellant Insulation»
NAMESS 1217 18	1718 42	1517 145333.00000	-324.00000	3	0	0	0	«Inner Half of Propellant Insulation»
NAMESS 1718 26 NAMESS	1813 29	1618 7195.20000	-408.00000	2	1	0	0	«Sec 1 IS Inner»
2726 NAMESF 2619	2632							
27 NAMESS	29	7195.20000	-408.00000	3	0	0	0	«Sec 1 IS Outer»
2726 28 NAMESS	42	2733 14186.60000	-294.00000	3	0	0	0	«Sec 1 Ins Inner»
2827 29	2928 42	2834 14186.60000	28.00000	3	0	0	0	«Sec 1 Ins Outer»
2928 30 NAMESS	3029 44	2935 22683.70000	85.00000	3	0	0	0	«Sec 1 OS Inner»
3029 31 NAMESS	3130 44	3036 22683.70000	85.00000	2	0	1	0	«Sec 1 OS Outer»
3130 NAMESA 631	3137							
32 NAMESS	29	3146.34000	-409.00000	3	1	0	0	«Sec 2 IS Inner»
3332 NAMESF 3220	2632	3238						
33	29	3146.34000	-409.00000	4	0	0	0	«Sec 2 IS Outer»

NAMESS								
3332	3433	2733	3339					
34	42	3571.61000	-294.00000	4	0	0	0	«Sec 2 Ins Inner»
NAMESS								
3433	3534	2834	3440					
35	42	3571.61000	28.00000	4	0	0	0	«Sec 2 Ins Outer»
NAMESS								
3534	3635	2935	3541					
36	44	4117.99000	85.00000	4	0	0	0	«Sec 2 OS Inner»
NAMESS		11111350000	02.00000	•	0	0	0	
3635	3736	3036	3642					
37	AA	4117 99000	85 00000	3	0	1	0	«Sec 2 OS Outer»
NAMESS		4117.55000	05.00000	5	0	1	0	«See 2 OS Outer»
3736	3137	37/3						
NAMESA	5157	5745						
627								
20	20	2448 22000	410 00000	2	1	0	0	See 2 IS Import
JO	29	2446.55000	-410.00000	5	1	0	0	«Sec 5 15 Inner»
NAME55	2220	2044						
3938	3238	3844						
NAMESF								
3821	20	2440 22000	410 00000	4	0	0	0	
39	29	2448.33000	-410.00000	4	0	0	0	«Sec 3 IS Outer»
NAMESS								
3938	4039	3339	3945					
40	42	2779.40000	-294.00000	4	0	0	0	«Sec 3 Ins Inner»
NAMESS								
4039	4140	3440	4046					
41	42	2779.40000	28.00000	4	0	0	0	«Sec 3 Ins Outer»
NAMESS								
4140	4241	3541	4147					
42	44	3204.60000	85.00000	4	0	0	0	«Sec 3 OS Inner»
NAMESS								
4241	4342	3642	4248					
43	44	3204.60000	85.00000	3	0	1	0	«Sec 3 OS Outer»
NAMESS								
4342	3743	4349						
NAMESA								
643								
44	29	2088.37000	-411.00000	3	1	0	0	«Sec 4 IS Inner»
NAMESS								
4544	3844	4450						
NAMESF								
4422								
45	29	2088 37000	-411 00000	4	0	0	0	«Sec 4 IS Outer»
4544	4645	3945	4551	•	0	0	0	
46	42	2370 63000	-294 00000	4	0	0	0	«Sec 4 Ins Inner»
NAMESS	72	2570.05000	274.00000	т	0	0	0	«Bee 4 Ins Inner»
4645	4746	4046	4652					
4045	4740	2370 63000	28 00000	1	0	0	0	"Sec 1 Ins Outers
T/ NAMESS	-r <i>L</i>	2370.03000	20.00000	7	0	0	v	where a ma Outer»
A7/6	4847	4147	4753					
4740	+0+/ 11	7733 20000	4/JJ 85 00000	1	0	0	0	Sec 1 OS Immor
40 MAMEGO	44	2133.29000	000000	4	0	U	U	«Jet 4 US IIIIel»
INAIVIESS	1019	1210	1051					
404/	4948	4240	4004					

77	44	2733.29000	85.00000	3	0	1	0	«Sec 4 OS Outer»
NAMESS								
4948	4349	4955						
NAMESA								
649								
50	29	1859.02000	-412.00000	3	1	0	0	«Sec 5 IS Inner»
NAMESS								
5150	4450	5056						
NAMESF								
5023								
51	29	1859.02000	-412.00000	4	0	0	0	«Sec 5 IS Outer»
NAMESS								
5150	5251	4551	5157					
52	42	2110.28000	-294.00000	4	0	0	0	«Sec 5 Ins Inner»
NAMESS								
5251	5352	4652	5258					
53	42	2110.28000	28.00000	4	0	0	0	«Sec 5 Ins Outer»
NAMESS								
5352	5453	4753	5359					
54	44	2433.11000	85.00000	4	0	0	0	«Sec 5 OS Inner»
NAMESS								
5453	5554	4854	5460					
55	44	2433.11000	85.00000	3	0	1	0	«Sec 5 OS Outer»
NAMESS								
5554	4955	5561						
NAMESA								
655								
56	29	1696.69000	-413.00000	3	1	0	0	«Sec 6 IS Inner»
NAMESS								
NAMESS 5756	5056	5662						
NAMESS 5756 NAMESF	5056	5662						
NAMESS 5756 NAMESF 5624	5056	5662						
NAMESS 5756 NAMESF 5624 57	5056 29	5662 1696.69000	-413.00000	4	0	0	0	«Sec 6 IS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS	5056 29	5662 1696.69000	-413.00000	4	0	0	0	«Sec 6 IS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756	5056 29 5857	5662 1696.69000 5157	-413.00000 5763	4	0	0	0	«Sec 6 IS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58	5056 29 5857 42	5662 1696.69000 5157 1926.00000	-413.00000 5763 -294.00000	4	0	0	0	«Sec 6 IS Outer» «Sec 6 Ins Inner»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS	5056 29 5857 42	5662 1696.69000 5157 1926.00000	-413.00000 5763 -294.00000	4	0	0 0	0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857	5056 29 5857 42 5958	5662 1696.69000 5157 1926.00000 5258	-413.00000 5763 -294.00000 5864	4	0 0	0 0	0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59	5056 29 5857 42 5958 42	5662 1696.69000 5157 1926.00000 5258 1926.00000	-413.00000 5763 -294.00000 5864 28.00000	4 4 4	0 0 0	0 0 0	0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS	5056 29 5857 42 5958 42	5662 1696.69000 5157 1926.00000 5258 1926.00000	-413.00000 5763 -294.00000 5864 28.00000	4 4	0 0 0	0 0 0	0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 5958	5056 29 5857 42 5958 42 6059	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359	-413.00000 5763 -294.00000 5864 28.00000 5965	4 4	0 0 0	0 0 0	0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 5958 60	5056 29 5857 42 5958 42 6059 44	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000	4 4 4	0 0 0 0	0 0 0 0	0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 5958 60 NAMESS	5056 29 5857 42 5958 42 6059 44	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000	4 4 4	0 0 0 0	0 0 0 0	0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 5958 60 NAMESS 6059	5056 29 5857 42 5958 42 6059 44 6160	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 5460	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066	4 4 4	0 0 0 0	0 0 0 0	0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 5958 60 NAMESS 6059 61	5056 29 5857 42 5958 42 6059 44 6160 44	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 5460 2220.64000	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066 85.00000	4 4 4 3	0 0 0 0 0	0 0 0 0 1	0 0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner» «Sec 6 OS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 60 NAMESS 6059 61 NAMESS	5056 29 5857 42 5958 42 6059 44 6160 44	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 5460 2220.64000	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066 85.00000	4 4 4 3	0 0 0 0	0 0 0 1	0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner» «Sec 6 OS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 6059 61 NAMESS 6160	5056 29 5857 42 5958 42 6059 44 6160 44 5561	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 5460 2220.64000 6167	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066 85.00000	4 4 4 3	0 0 0 0	0 0 0 1	0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner» «Sec 6 OS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 60 NAMESS 6059 61 NAMESS 6160 NAMESA	5056 29 5857 42 5958 42 6059 44 6160 44 5561	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 5460 2220.64000 6167	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066 85.00000	4 4 4 3	0 0 0 0	0 0 0 1	0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner» «Sec 6 OS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 60 NAMESS 6059 61 NAMESS 6160 NAMESA 661	5056 29 5857 42 5958 42 6059 44 6160 44 5561	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 5460 2220.64000 6167	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066 85.00000	4 4 4 3	0 0 0 0	0 0 0 1	0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner» «Sec 6 OS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 60 NAMESS 6059 61 NAMESS 6160 NAMESS 6160 NAMESA 661 62	5056 29 5857 42 5958 42 6059 44 6160 44 5561 29	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 5460 2220.64000 6167 1574.14000	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066 85.00000	4 4 4 3 3	0 0 0 0 0	0 0 0 1	0 0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner» «Sec 6 OS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 60 NAMESS 6059 61 NAMESS 6160 NAMESA 661 62 NAMESS	5056 29 5857 42 5958 42 6059 44 6160 44 5561 29	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 5460 2220.64000 6167 1574.14000	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066 85.00000	4 4 4 3 3	0 0 0 0 1	0 0 0 1	0 0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner» «Sec 6 OS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 6059 61 NAMESS 6160 NAMESS 6160 NAMESA 661 62 NAMESS 6362	5056 29 5857 42 5958 42 6059 44 6160 44 5561 29 5662	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 5460 2220.64000 6167 1574.14000 6210	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066 85.00000 -414.00000	4 4 4 3 3	0 0 0 0 1	0 0 0 1 0	0 0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner» «Sec 6 OS Outer»
NAMESS 5756 NAMESF 5624 57 NAMESS 5756 58 NAMESS 5857 59 NAMESS 6059 61 NAMESS 6160 NAMESS 6160 NAMESS 6160 NAMESS 6160 NAMESS 6362 NAMESS	 5056 29 5857 42 5958 42 6059 44 6160 44 5561 29 5662 	5662 1696.69000 5157 1926.00000 5258 1926.00000 5359 2220.64000 6167 1574.14000 6210	-413.00000 5763 -294.00000 5864 28.00000 5965 85.00000 6066 85.00000 -414.00000	4 4 4 3 3	0 0 0 0 1	0 0 0 1 0	0 0 0 0 0	«Sec 6 IS Outer» «Sec 6 Ins Inner» «Sec 6 Ins Outer» «Sec 6 OS Inner» «Sec 6 OS Outer»

63	29	1574.14000	-414.00000	4	0	0	0	«Sec 7 IS Outer»
NAMESS								
6362	6463	5763	639					
64	42	1786.89000	-294.00000	4	0	0	0	«Sec 7 Ins Inner»
NAMESS								
6463	6564	5864	6416					
65	42	1786.89000	28.00000	4	0	0	0	«Sec 7 Ins Outer»
NAMESS								
6564	6665	5965	6515					
66	44	2060.25000	85.00000	4	0	0	0	«Sec 7 OS Inner»
NAMESS								
6665	6766	6066	668					
67	44	2060.25000	85.00000	3	0	1	0	«Sec 7 OS Outer»
NAMESS								
6766	6167	677						
NAMESA								
667								

ICONSS	ICNSI	ICNSJ	ARCSIJ	DISTSIJ	DESCRIPTION
78	7	8	19879.20000	0.34000	«Sec 8 OS In-Out Conduction»
910	9	10	17494.40000	0.31000	«Sec 8 IS In-Out Conduction»
1112	11	12	1787620.00000	0.34000	«Propellant Surface Area at Midpoint of Outer Tank Wall»
1314	13	14	1456350.00000	0.31000	«Propellant Surface Area at Midpoint of Tank Wall»
1014	10	14	724.84000	5.34857	«Sec 8-Prp IS Inner»
913	9	13	725.45000	5.35309	«Sec 8-Prp IS Outer»
812	8	12	906.02100	6.07775	«Sec 8-Prp OS Inner»
711	7	11	906.76400	6.08273	«Sec 8-Prp OS Outer»
815	8	15	19862.90000	12.59000	«Sec 8 Ins-OS Conduction»
1516	15	16	18686.10000	24.84000	«Sec 8 Ins In-Out Conduction»
169	16	9	17509.20000	12.58000	«Sec 8 IS-Ins Conduction»
1217	12	17	1785250.00000	12.59000	«Propellant Outer Sphere-Insulation Interface Area»
1718	17	18	1617900.00000	24.84000	«Propellant Surface Area at Midpoint of Insulation»
1813	18	13	1458310.00000	12.58000	«Propellant Inner Sphere-Insulation Interface Area»
1517	15	17	63514.80000	5.89529	«Sec 8-Prp Ins Outer»
1618	16	18	59636.70000	5.53533	«Sec 8-Prp Ins Inner»
2726	27	26	88392.50000	0.31000	«Sec 1 IS In-Out Conduction»
2827	28	27	89193.00000	12.58000	«Sec 1 IS-Ins Conduction»
2928	29	28	156764.00000	24.84000	«Sec 1 Ins In-Out Conduction»
3029	30	29	232091.00000	12.59000	«Sec 1 Ins-OS Conduction»
3130	31	30	233187.00000	0.34000	«Sec 1 OS In-Out Conduction»
3332	33	32	37254.40000	0.31000	«Sec 2 IS In-Out Conduction»
3433	34	33	37286.00000	12.58000	«Sec 2 IS-Ins Conduction»
3534	35	34	39792.10000	24.84000	«Sec 2 Ins In-Out Conduction»
3635	36	35	42298.20000	12.59000	«Sec 2 Ins-OS Conduction»
3736	37	36	42332.90000	0.34000	«Sec 2 OS In-Out Conduction»
3938	39	38	28991.20000	0.31000	«Sec 3 IS In-Out Conduction»
4039	40	39	29015.70000	12.58000	«Sec 3 IS-Ins Conduction»
4140	41	40	30966.00000	24.84000	«Sec 3 Ins In-Out Conduction»
4241	42	41	32916.20000	12.59000	«Sec 3 Ins-OS Conduction»
4342	43	42	32943.20000	0.34000	«Sec 3 OS In-Out Conduction»
4544	45	44	24727.40000	0.31000	«Sec 4 IS In-Out Conduction»

NODEAM

6

TAMB

85.00000

DESCRIPTION

«Ambient Condition»

4645	46	45	24748.30000	12.58000	«Sec 4 IS-Ins Conduction»
4746	47	46	26411.80000	24.84000	«Sec 4 Ins In-Out Conduction»
4847	48	47	28075.20000	12.59000	«Sec 4 Ins-OS Conduction»
4948	49	48	28098.20000	0.34000	«Sec 4 OS In-Out Conduction»
5150	51	50	22011.70000	0.31000	«Sec 5 IS In-Out Conduction»
5251	52	51	22030.40000	12.58000	«Sec 5 IS-Ins Conduction»
5352	53	52	23511.10000	24.84000	«Sec 5 Ins In-Out Conduction»
5453	54	53	24991.80000	12.59000	«Sec 5 Ins-OS Conduction»
5554	55	54	25012.30000	0.34000	«Sec 5 OS In-Out Conduction»
5756	57	56	20089.60000	0.31000	«Sec 6 IS In-Out Conduction»
5857	58	57	20106.60000	12.58000	«Sec 6 IS-Ins Conduction»
5958	59	58	21458.00000	24.84000	«Sec 6 Ins In-Out Conduction»
6059	60	59	22809.50000	12.59000	«Sec 6 Ins-OS Conduction»
6160	61	60	22828.20000	0.34000	«Sec 6 OS In-Out Conduction»
6362	63	62	18638.60000	0.31000	«Sec 7 IS In-Out Conduction»
6463	64	63	18654.40000	12.58000	«Sec 7 IS-Ins Conduction»
6564	65	64	19908.20000	24.84000	«Sec 7 Ins In-Out Conduction»
6665	66	65	21162.00000	12.59000	«Sec 7 Ins-OS Conduction»
6766	67	66	21179.40000	0.34000	«Sec 7 OS In-Out Conduction»
2632	26	32	724.83700	185.78600	«Sec 1-2 IS Inner»
3238	32	38	724.83700	28.05150	«Sec 2-3 IS Inner»
3844	38	44	724.83700	20.39420	«Sec 3-4 IS Inner»
4450	44	50	724.83700	16.53240	«Sec 4-5 IS Inner»
5056	50	56	724.83700	14.12770	«Sec 5-6 IS Inner»
5662	56	62	724.83700	12.46210	«Sec 6-7 IS Inner»
6210	62	10	724.83700	11.22990	«Sec 7-8 IS Inner»
2733	27	33	725.45000	185.94300	«Sec 1-2 IS Outer»
3339	33	39	725.45000	28.07530	«Sec 2-3 IS Outer»
3945	39	45	725.45000	20.41150	«Sec 3-4 IS Outer»
4551	45	51	725.45000	16.54640	«Sec 4-5 IS Outer»
5157	51	57	725.45000	14.13970	«Sec 5-6 IS Outer»
5763	57	63	725.45000	12.47270	«Sec 6-7 IS Outer»
639	63	9	725.45000	11.23940	«Sec /-8 IS Outer»
2834	28	34	59636.70000	192.27400	«Sec 1-2 Ins Inner»
3440	34	40	59636.70000	29.03110	«Sec 2-3 Ins Inner»
4046	40	46	59636.70000	21.10640	«Sec 3-4 Ins Inner»
4652	46	52	59636.70000	17.10970	«Sec 4-5 Ins Inner»
5258	52	58	59636.70000	14.62110	«Sec 5-6 Ins Inner»
5804	38 64	04	59630.70000	12.89730	«Sec 0-7 Ins Inner»
0410	04	10	59636.70000	11.62200	"Sec 7-8 Ins Inner"
2935	29	35	63514.80000	204.77700	Sec 1-2 Ins Outer
5541 4147	33	41	63514.80000	30.91890	«Sec 2-5 Ins Outer»
4147	41	47 52	62514.80000	18 22230	«Sec 3-4 fils Outer»
5350	47 53	50	63514.80000	15.22230	«Sec 4-5 fills Outer»
5965	50	65	63514.80000	13 73600	«Sec 6.7 Ins Outer»
6515	65	15	63514.80000	12 37780	«Sec 7-8 Ins Outer»
3036	30	36	906 02100	211 11500	«Sec 1-2 OS Inner»
3642	36	42	906.02100	31 87590	«Sec 2-3 OS Inner»
4248	42	48	906.02100	23.17460	«Sec 3-4 OS Inner»
4854	48	54	906.02100	18.78630	«Sec 4-5 OS Inner»
5460	54	60	906.02100	16.05380	«Sec 5-6 OS Inner»
6066	60	66	906.02100	14.16110	«Sec 6-7 OS Inner»
668	66	8	906.02100	12.76090	«Sec 7-8 OS Inner»

3137	31	3	7	900	6.76400		211.2880	00	«Sec 1-2	OS Oute	r»		
3743	37	4	3	900	6.76400		31.90200	0	«Sec 2-3	OS Oute	r»		
4349	43	4	9	900	6.76400		23.1936	0	«Sec 3-4	OS Oute	r»		
4955	49	5	5	900	6.76400		18.80170	0	"Sec 4-5 OS Outer"				
5561	55	6	1	900	6.76400		16.06700	0	"Sec 5-6	OS Oute	r"		
6167	61	6	7	900	6.76400		14.17270	0	"Sec 6-7	OS Oute	r"		
677	67	7		90	6.76400		12.7714	0	"Sec 7-8	OS Oute	r"		
ICONSF	ICS	ICF	MOI	DEL	ARSF		HCSF		EMSF	S	EMSFF		DESCRIPTION
102	10	2	0		1.74796e	+04	1.00000	e+00	0.0000	0e+00	0.00000)e+00	«Sec 8 IS Ullage Wall»
144	14	4	0		1.45439e	+06	0.00000	e+00	0.0000	0e+00	0.00000)e+00	«Propellant-Tank Wall
2610	26	10	0		9 75020-	.04	1 00000	00	0.0000	000	0.00000		Surface Area»
2019	20	19	0		8.73930e	+04	1.00000	e+00	0.0000	100 + 00	0.00000	e+00	«Sec I IS Ullage wall»
3220	32 20	20	0		3.12229e	+04	1.00000	e+00	0.0000	100 + 00	0.00000	e+00	«Sec 2 IS Ullage Wall»
3821	38	21	0		2.89007e	+04	1.00000	e+00	0.0000	00e+00	0.00000	e+00	«Sec 3 IS Ullage Wall»
4422 50 2 2	44 50	22	0		2.470656	+04	1.00000	e+00	0.0000	00e+00	0.00000	e+00	«Sec 4 IS Ullage Wall»
5023	50	23	0		2.19931e	+04	1.00000	e+00	0.0000	00e+00	0.00000	e+00	«Sec 5 IS Ullage Wall»
5624	20	24	0		2.007266	+04	1.00000	e+00	0.0000	00e+00	0.00000	e+00	«Sec 6 IS Ullage Wall»
6225	62	25	0		1.86228e	+04	1.00000	e+00	0.0000	00e+00	0.00000	e+00	«Sec / IS Ullage Wall»
ICONSA	ICSA	AS ICS	SAA	ARS	SA	HCS	А	EMS	SAS	EMSA	A	DESC	RIPTION
67	7	6		1.98	955e+04	4.440	000e-04	7.00	000e-01	7.0000	De-01	"Sec 8	B OS-Amb Convection"
611	11	6		1.78	999e+06	4.440	000e-04	7.00	000e-01	7.0000	De-01	"Prop	ellant Space Outer Surface
(21	21			• • •	2 0 5 0 5		000 04	- 00	000 01	-	0.01	of (Juter Tank"
631	31	6		2.34	285e+05	4.44(J00e-04	7.00	1000e-01	7.0000	Je-01	"Sec I	OS-Amb Convection"
637	37	6		4.23	676e+04	4.44(J00e-04	7.00	000e-01	7.0000	Je-01	"Sec 2	2 OS-Amb Convection"
643	43	6		3.29	702e+04	4.44(000e-04	7.00	000e-01	7.0000	Je-01	"Sec 3	OS-Amb Convection"
649	49	6		2.81	212e+04	4.44(000e-04	7.00	000e-01	7.0000	Je-01	"Sec 4	OS-Amb Convection"
655	55	6		2.50	328e+04	0.440	000e-04	7.00	000e-01	7.0000	Je-01	"Sec 5	OS-Amb Convection"
661	61	6		2.28	469e+04	4.44(000e-04	7.00	000e-01	7.0000	De-01	"Sec 6	OS-Amb Convection"
667	67	6		2.11	967e+04	4.44(000e-04	7.00	000e-01	7.0000	De-01	"Sec 7	OS-Amb Convection"

E.2 LC-39 Perlite Sample Output Data File

ISTEP =1	800 $TAU = 0.13$	8000E+05				
BOUNDA	ARY NODES					
NODE	P (PSI)	TF (F)	Z (COMP)	RHO (LBM/FT^3)	QUALITY	
1	0.1470E+02	0.8500E+02	0.0000E+00	0.5065E-02	0.1000E+01	
3	0.1631E+02	-0.4236E+03	0.0000E+00	0.4437E+01	0.0000E+00	
SOLUTIC	DN					
INTERNA	AL NODES					
NODE	P (PSI)	TF (F)	Z (COMP)	RHO	EM (LBM)	QUALITY
				(LBM/FT^3)		
2	0.1470E+02	-0.4231E+03	0.5835E+00	0.1297E+00	0.1200E+03	0.6378E+00
4	0.1344E+02	-0.4237E+03	0.1583E-01	0.4439E+01	0.5077E+06	0.6524E-07
19	0.1470E+02	-0.3259E+03	0.9988E+00	0.2068E-01	0.1913E+02	0.1000E+01
20	0.1470E+02	-0.3742E+03	0.9913E+00	0.3262E-01	0.3017E+02	0.1000E+01
21	0.1470E+02	-0.3856E+03	0.9863E+00	0.3782E-01	0.3498E+02	0.1000E+01
22	0.1470E+02	-0.3956E+03	0.9791E+00	0.4409E-01	0.4078E+02	0.1000E+01
23	0.1470E+02	-0.4049E+03	0.9677E+00	0.5216E-01	0.4824E+02	0.1000E+01
24	0.1470E+02	-0.4136E+03	0.9487E+00	0.6323E-01	0.5848E+02	0.1000E+01
25	0.1470E+02	-0.4231E+03	0.9056E+00	0.8349E-01	0.7721E+02	0.1000E+01

NODE	Н	ENTROPY	EMU	COND	СР	GAMA
	BTU/LB	BTU/LB-R	LBM/FT-SEC	BTU/FT-S-R	BTU/LB-R	
2	0.1277E+02	0.7340E+01	0.1135E-05	0.7419E-05	0.2606E+01	0.1821E+01
4	-0.1106E+03	0.1907E+01	0.9181E-05	0.1579E-04	0.2250E+01	0.1698E+01
19	0.3333E+03	0.7340E+01	0.2280E-05	0.8964E-05	0.2734E+01	0.1576E+01
20	0.2085E+03	0.7340E+01	0.1610E-05	0.5781E-05	0.2505E+01	0.1691E+01
21	0.1799E+03	0.7340E+01	0.1431E-05	0.5075E-05	0.2529E+01	0.1698E+01
22	0.1544E+03	0.7340E+01	0.1264E-05	0.4449E-05	0.2549E+01	0.1714E+01
23	0.1306E+03	0.7340E+01	0.1103E-05	0.3877E-05	0.2586E+01	0.1736E+01
24	0.1080E+03	0.7340E+01	0.9434E-06	0.3280E-05	0.2647E+01	0.1776E+01
25	0.8222E+02	0.7340E+01	0.7594E-06	0.2617E-05	0.2791E+01	0.1874E+01

BRANCHES

BRANCH	KFACTOR	DELP	LOW RATE	VELOCITY	REYN. NO.	MACH NO	ENTROPY GEN.	LOST WORK
	(LBF-S^2/	(PSI)	(LBM/SEC)	(FT/SEC)			BTU/(R-SEC)	LBF-FT/SEC
	(LBM-FT)^2)							
34	0.000E+00	0.287E+01	0.173E-10	0.561E-04	0.807E-02	0.457E-07	0.000E+00	0.000E+00
252	0.000E+00	0.410E-03	-0.172E-02	-0.929E-05	0.453E+02	0.715E-08	0.000E+00	0.000E+00
2425	0.000E+00	0.272E-03	-0.167E-02	-0.150E-04	0.679E+02	0.106E-07	0.000E+00	0.000E+00
2324	0.000E+00	0.211E-03	-0.164E-02	-0.211E-04	0.560E+02	0.138E-07	0.000E+00	0.000E+00
2223	0.000E+00	0.177E-03	-0.161E-02	-0.279E-04	0.495E+02	0.169E-07	0.000E+00	0.000E+00
2122	0.000E+00	0.155E-03	-0.159E-02	-0.370E-04	0.454E+02	0.210E-07	0.000E+00	0.000E+00
2021	0.000E+00	0.145E-03	-0.156E-02	-0.514E-04	0.434E+02	0.272E-07	0.000E+00	0.000E+00
1920	0.000E+00	0.220E-03	-0.154E-02	-0.815E-04	0.448E+02	0.358E-07	0.000E+00	0.000E+00
191	0.609E+01	-0.110E-05	0.151E-02	0.871E-01	0.816E+03	0.382E-04	0.971E-11	0.101E-05

SOLID NODES

NODESL	CPSLD	TS
NODLOL	BTU/I B F	F
7	$0.110E \pm 00$	0.850E±02
8	0.110E+00	0.850E+02
0	0.110E+00	0.03000002
9 10	0.090E-01	-0.423E+03
10	0.090E-01	-0.423E+03
11	0.110E+00	0.850E+02
12	0.110E+00	0.850E+02
13	0.690E-01	-0.424E+03
14	0.690E-01	-0.424E+03
15	0.200E+00	0.257E+02
16	0.200E+00	-0.299E+03
17	0.200E+00	0.138E+02
18	0.200E+00	-0.324E+03
26	0.690E-01	-0.323E+03
27	0.690E-01	-0.323E+03
28	0.200E+00	-0.291E+03
29	0.200E+00	0.281E+02
30	0.110E+00	0.850E+02
31	0.110E+00	0.850E+02
32	0.690E-01	-0.374E+03
33	0.690E-01	-0.374E+03
34	0.200E+00	-0.293E+03
35	0.200E+00	0.273E+02
36	0.110E+00	0.850E+02
37	0.110E+00	0.850E+02
38	0.690E-01	-0.385E+03

39	0.690E-01	-0.385E+03
40	0.200E+00	-0.294E+03
41	0.200E+00	0.273E+02
42	0.110E+00	0.850E+02
43	0.110E+00	0.850E+02
44	0.690E-01	-0.395E+03
45	0.690E-01	-0.395E+03
46	0.200E+00	-0.294E+03
47	0.200E+00	0.273E+02
48	0.110E+00	0.850E+02
49	0.110E+00	0.850E+02
50	0.690E-01	-0.405E+03
51	0.690E-01	-0.405E+03
52	0.200E+00	-0.295E+03
53	0.200E+00	0.273E+02
54	0.110E+00	0.850E+02
55	0.110E+00	0.850E+02
56	0.690E-01	-0.413E+03
57	0.690E-01	-0.413E+03
58	0.200E+00	-0.295E+03
59	0.200E+00	0.273E+02
60	0.110E+00	0.850E+02
61	0.110E+00	0.850E+02
62	0.690E-01	-0.420E+03
63	0.690E-01	-0.420E+03
64	0.200E+00	-0.295E+03
65	0.200E+00	0.272E+02
67	0.110E+00	0.850E+02

SOLID TO SOLID CONDUCTOR

ICONSS	CONDKIJ	QDOTSS
	BTU/S FT F	BTU/S
78	0.750E-02	0.265E-02
910	0.167E-02	0.919E-02
1112	0.750E-02	0.271E+00
1314	0.167E-02	0.326E+00
1014	0.167E-02	0.165E-01
913	0.167E-02	0.165E-01
812	0.750E-02	0.247E-03
711	0.750E-02	0.246E-03
815	0.322E-06	0.251E-02
1516	0.161E-06	0.327E-02
169	0.322E-06	0.463E-02
1217	0.322E-06	0.271E+00
1718	0.161E-06	0.295E+00
1813	0.322E-06	0.310E+00
1517	0.161E-06	0.172E-02
1618	0.161E-06	0.367E-02
2726	0.167E-02	0.797E-01
2827	0.322E-06	0.610E-02
2928	0.161E-06	0.270E-01
3029	0.322E-06	0.281E-01
3130	0.750E-02	0.281E-01
3332	0.167E-02	0.873E-02

3433	0.322E-06	0.638E-02
3534	0.161E-06	0.689E-02
3635	0.322E-06	0.520E-02
3736	0.750E-02	0.520E-02
3938	0.167E-02	0.635E-02
4039	0.322E-06	0.564E-02
4140	0.161E-06	0.537E-02
4241	0.322E-06	0.405E-02
4342	0.750E-02	0.405E-02
4544	0.167E-02	0.518E-02
4645	0.322E-06	0.533E-02
4746	0.161E-06	0.459E-02
4847	0.322E-06	0.345E-02
4948	0.750E-02	0.346E-02
5150	0.167E-02	0.525E-02
5251	0.322E-06	0.516E-02
5352	0.161E-06	0.409E-02
5453	0.322E-06	0.307E-02
5554	0.750E-02	0.308E-02
5756	0.167E-02	0.775E-02
5857	0.322E-06	0.506E-02
5958	0.161E-06	0.373E-02
6059	0.322E-06	0.281E-02
6160	0.750E-02	0.283E-02
6362	0.167E-02	0.460E-01
6463	0.322E-06	0.498E-02
6564	0.161E-06	0.347E-02
6665	0.322E-06	0.260E-02
6766	0.750E-02	0.267E-02
2632	0.167E-02	0.272E-01
3238	0.167E-02	0.413E-01
3844	0.167E-02	0.501E-01
4450	0.167E-02	0.563E-01
5056	0.167E-02	0.603E-01
5662	0.167E-02	0.602E-01
6210	0.167E-02	0.207E-01
2733	0.167E-02	0.272E-01
3339	0.167E-02	0.413E-01
3945	0.167E-02	0.501E-01
4551	0.167E-02	0.563E-01
5157	0.167E-02	0.603E-01
5763	0.167E-02	0.602E-01
639	0.167E-02	0.208E-01
2834	0.161E-06	0.866E-05
3440	0.161E-06	0.138E-04
4046	0.161E-06	0.149E-04
4652	0.161E-06	0.151E-04
5258	0.161E-06	0.157E-04
5864	0.161E-06	0.220E-04
6416	0.161E-06	0.238E-03
3541	0.161E-06	0.861E-07
4147	0.161E-06	0.676E-07
4753	0.161E-06	0.651E-07
5359	0.161E-06	0.106E-06

5965	0.161E-06	0.289E-05
6515	0.161E-06	0.107E-03
3036	0.750E-02	0.166E-05
4248	0.750E-02	0.394E-05
5460	0.750E-02	0.134E-04
6066	0.750E-02	0.405E-04
668	0.750E-02	0.110E-03
3137	0.750E-02	0.166E-05
3743	0.750E-02	0.421E-06
4349	0.750E-02	0.101E-05
4955	0.750E-02	0.393E-05
5561	0.750E-02	0.134E-04
6167	0.750E-02	0.404E-04
677	0.750E-02	0.110E-03

SOLID TO FLUID CONDUCTOR

ICONSF	QDOTSF	HCSF	HCSFR
	BTU/S	BTU/S FT**2 F	BTU/S FT**2 F
102	-0.137E-01	0.307E-03	0.000E+00
2619	-0.153E+00	0.102E-03	0.000E+00
3220	-0.111E-01	0.788E-04	0.000E+00
3821	-0.705E-02	0.808E-04	0.000E+00
4422	-0.503E-02	0.836E-04	0.000E+00
5023	-0.533E-02	0.956E-04	0.000E+00
5624	-0.870E-01	0.255E-03	0.000E+00

SOLID TO AMBIENT CONDUCTOR

ICONSA	QDOTSA	HCSA		HCSAR			
	BTU/S	BTU/S	FT**2 F	BTU/S F	Г**2 F		
67	0.278E-02	0.444E	-03	0.166E-03	3		
611	0.270E+00	0.444E	-03	0.166E-03	3		
631	0.281E-01	0.444E	-03	0.166E-03	3		
637	0.520E-02	0.444E	-03	0.166E-03			
643	0.405E-02	0.444E	-03	0.166E-03	3		
649	0.346E-02	0.444E	-03	0.166E-03	3		
655	0.309E-02	0.444E	-03	0.166E-03	3		
661	0.286E-02	0.444E	-03	0.166E-03	3		
667	-0.461E-01	0.444E	-03	0.166E-03	3		
NUMBER	OF PRESSUR	ZATION SY	STEMS = 1				
NODUL	NODPRP	QULPRP	QULWAL	QCOND	TNKTM	VOLPROP	VOLULG
2	4	0.0003	0.0000	0.0000	36.0000	******	924.8683

E.2.1 LC-39 Perlite Sample Output Plots

LC-39 perlite propellant path solid node temperature prediction, ullage inner sphere solid node temperature prediction, propellant path heat transfer rates, and boiloff rate output plots are shown in figures 35–38, respectively.

Figure 35. LC-39 perlite propellant path solid node temperature predictions.

Figure 36. LC-39 perlite ullage inner sphere solid node temperature predictions.

Figure 38. LC-39 perlite boiloff rates.

E.3 LC-39 Glass Bubbles Input Data File

GFSSP VE 500 GFSSP INS C:\Progr ANALYST Todd Ste INPUT DA D:\KSC_ OUTPUT F LC39B_ TITL F	RSI STAI am F adm TA F _Cry FILE LH2	ON Files\GF an FILE NA otank\F NAME _glas06	ON PATI SSP\ AME ull_scal	H e_tank\LC39	9B_LH2_glas()6.dat			
LC-39 L	iquio	d Hydro	gen Tan	k - 85% Full	l by Height				
USETUP F									
DENCON F HEX		GRAV T HCOE	ITY E T F F	ENERGY REACTING	MIXTURE F INERTIA	THRUST F CONDX	STEADY F ADDPROP	TRANSV T PRINTI	SAVER T ROTATION
F BUOYANO T	CY	F HRATI T	F E I T	NVAL	F MSORCE F	F MOVBND F	F TPA F	F VARGEO F	F TVM F
SHEAR F PRESS		PRNTI F INSUC	IN F T C V	PRNTADD	OPVALVE F CYCLIC	TRANSQ F CHKVALS	CONJUG T	RADIAT T	WINPLOT T
T		F	F	ECONDI	F	Т			
F		F	L S F	ECONDL	T				
NNODES		NINT 9	N Q	IBR	NF 1				
RELAXK 1 DTAU 10 NFLUID(I) 10), I =	RELAX 0.5 TIMEF 45000 1, NF	XD F 0 7 T 0	RELAXH 1.01 TMEL 000	CC 1e-06 NPSTEP 300	NITER 500			
NODE	INI 2	DEX	DES "Ven	CRIPTION t Exit (Ambi	ient)"				
2 3	1 2		"Ulla "LH2	ige Node 8" 2 Tank Pseud	lo Node"				
4	1		"LH2	2 Propellant	Volume"				
19 21	1		"Ulla	ige Node 1"					
21 22	1		"Ulla	ige Node 5 ige Node 4"					
23	1		"Ulla	ige Node 5"					
24	1		"Ulla	ige Node 6"					
25	1		"Ulla	ige Node 7"					
REFEREN 19	CE Ì	NODE F	FOR DE	NSITY					
NODE	PRI (PS	ES I)	TEMP (DEGE	MASS) SOURC	HEAT SOURC	THRST I	NODE-VOLU	ME	
2	14.	7	-421	, 200mc	0	0	1.5982e+06		

4	16.3	-423.6	0	0	0	1.9767e+08
19	14.7	-421	0	0	0	1.5982e+06
20	14.7	-421	0	0	0	1.5982e+06
22	14.7	-421	0	0	0	1.5982e+06
23	14.7	-421	0	0	0	1.5982e+06
24	14.7	-421	0	0	0	1.5982e+06
25	14.7	-421	0	0	0	1.5982e+06
In Jonesh 1	dat					

ln2prsh1.dat lh2prsh3.dat

INODE	NUMBR	NAMEBR				
2	1	252				
4	1	34				
19	2	1920	191			
20	2	2021	1920			
21	2	2122	2021			
22	2	2223	2122			
23	2	2324	2223			
24	2	2425	2324			
25	2	252	2425			
BRANCH	UPNODE	DNNODE	OPTION	DESC	RIPTION	
34	3	4	2	"Prope	llant Surface (Pseudo Branch)"
252	25	2	1	"Pipe 2	252"	
2425	24	25	1	"Pipe 2	2425"	
2324	23	24	1	"Pipe 2	2324"	
2223	22	23	1	"Pipe 2	2223"	
2122	21	22	1	"Pipe 2	2122"	
2021	20	21	1	«Pipe 2	2021»	
1920	19	20	1	«Pipe	1920»	
191	19	1	1	«Vent]	Line»	
BRANCH	OPTION -2	FLOW COEFF	AREA			
34		0	1e-05			
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
252		7.79	511.82	0	0	2.0574e+05
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
2425		8.34	494.59	0	0	1.9212e+05
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
2324		9.07	474.71	0	0	1.7699e+05
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
2223		10.07	451.17	0	0	1.5987e+05
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
2122		11.57	422.14	0	0	1.3996e+05
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
2021		14.27	383.83	0	0	1.1571e+05
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
1920		45.81	325.3	0	0	83109
BRANCH	OPTION -1	LENGTH	DIA	EPSD	ANGLE	AREA
191		897	12.39	6.4568e-0.	5 90	120.57

INITIAL FLOWRATES IN BRANCHES FOR UNSTEADY FLOW

0.0001 34 252 0

2425 2324 2223	0 0 0							
2225	0							
2021	0							
1920	0							
191	0.	0001						
NUMBER 1	OF PRES	SSURIZATI	ON PROPELI	LANT TANKS	S IN CIRCU	JIT		
TNKTYPE	NC	DUL 1	NODULB	NODPRP	IBRPRI	P TN	KAR	TNKTH
0	2		3	4	34	2.56	666e+05	0.625
TNKRHO	TN	KCP	TNKCON	ARHC	FCTHC	C TN	КТМ	
467	0.0	7 (0.0017	2.1816e+05	0.00265	-423	3.6	
RESTART	NODE II	NFORMATI	ION FILE					
FNDLC: RESTART	BRANC	H INFORM	ATION FILE					
FBRLC3	39B.DAT					_		
NSOLID 54	NAN 1	AB NSS 93	SC NSFC 9	C NSAC 9	NSSI 0	R		
NODESL 7	MATRL 44	, SMASS 1933.78000	TS 0 85.00000	NUMSS	NUMSF 0	NUMSA 1	NUMSSR 0	DESCRIPTION «Sec 8 OS Outer»
NAMESS								
78	711	677						
NAMESA 67								
8 NAMESS	44	1933.78000) 85.00000) 4	0	0	0	«Sec 7 OS Inner»
78	812	815	668					
9	29	1477.42000	-417.000	00 4	0	0	0	«Sec 8 IS Outer»
NAMESS								
910	913	169	639					
10	29	1477.42000	-418.000	00 3	1	0	0	«Sec 8 IS Inner»
NAMESS	1014	6210						
910 NAMESE	1014	0210						
102								
102	44	173893.000	000 85.00000) 2	0	1	0	«Outer Half of Propellant Outer Tank Wall»
NAMESS								
1112	711							
NAMESA								
611								
12	44	173893.000	00 85.00000) 3	0	0	0	«Inner Half of Propellant
MANTEGO								Outer Tank Wall»
NAMESS	010	1017						
1112	812 20	1217	000 423 600	00 3	0	0	0	"Outer Half of Propellant
15	<i>L</i> 9	122993.000	-+23.000	00 5	U	U	U	Tank Wall»
NAMESS								runk (tull"
1314	913	1813						
14	29	122995.000	-423.600	00 2	1	0	0	«Inner Half of Propellant Tank Wall»

NAMESS 1314 NAMESF 144	1014							
15 NAMESS	43	1073.27000	28.00000	4	0	0	0	«Sec 8 Ins Outer»
815 16 NAMESS	1516 43	1517 1073.27000	6515 -294.00000	4	0	0	0	«Sec 8 Ins Inner»
1516 17	169 43	1618 93001.30000	6416 14.00000	3	0	0	0	«Outer Half of Propellant Insulation»
NAMESS 1217 18	1718 43	1517 93001.30000	-324.00000	3	0	0	0	«Inner Half of Propellant
NAMESS 1718 26	1813 29	1618 7195.20000	-408.00000	2	1	0	0	«Sec 1 IS Inner»
NAMESS 2726 NAMESF 2619	2632				-	-	-	
27 NAMESS	29	7195.20000	-408.00000	3	0	0	0	«Sec 1 IS Outer»
2726 28	2827 43	2733 9078.26000	-294.00000	3	0	0	0	«Sec 1 Ins Inner»
NAMESS 2827 29	2928 43	2834 9078.26000	28.00000	3	0	0	0	«Sec 1 Ins Outer»
NAMESS 2928 30	3029 44	2935 22683.70000	85.00000	3	0	0	0	«Sec 1 OS Inner»
NAMESS 3029 31	3130 44	3036 22683.70000	85.00000	2	0	1	0	«Sec 1 OS Outer»
NAMESS 3130 NAMESA 631	3137							
32 NAMES	29	3146.34000	-409.00000	3	1	0	0	«Sec 2 IS Inner»
3332 NAMESF 3220	2632	3238						
33 NAMESS	29	3146.34000	-409.00000	4	0	0	0	«Sec 2 IS Outer»
3332 34 NAMESS	3433 43	2733 2285.53000	3339 -294.00000	4	0	0	0	«Sec 2 Ins Inner»
3433 35 NAMESS	3534 43	2834 2285.53000	3440 28.00000	4	0	0	0	«Sec 2 Ins Outer»
3534	3635	2935	3541					

36	44	4117.99000	85.00000	4	0	0	0	«Sec 2 OS Inner»
NAMES								
3635	3736	3036	3642		0			
37	44	4117.99000	85.00000	3	0	1	0	«Sec 2 OS Outer»
NAMESS		2712						
3736	3137	3743						
NAMESA								
637	•	2 4 4 9 2 2 9 9 9 9	110 00000	2		0	0	0.0101
38	29	2448.33000	-410.00000	3	1	0	0	«Sec 3 IS Inner»
NAMESS	2220	2011						
3938	3238	3844						
NAMESE								
3821	20	2449 22000	410,00000	4	0	0	0	G
39 MAMEGO	29	2448.33000	-410.00000	4	0	0	0	«Sec 3 IS Outer»
NAMESS	4020	2220	2045					
3938 40	4039	3339 1778 50000	3943	4	0	0	0	See 2 Ing Innon
40 NAMESS	43	1778.39000	-294.00000	4	0	0	0	«Sec 5 ms miler»
MANIESS 4020	4140	2440	4046					
4039	4140	1778 50000 28	4040	4	0	0	0	«See 2 Ins Outer»
NAMESS	43	1778.39000 28.	00000	4	0	0	0	«Sec 5 Ills Outer»
A140	4241	35/11	4147					
42		3204 60000	85 00000	4	0	0	0	«Sec 3 OS Inner»
NAMESS		5204.00000	05.00000	т	0	0	0	«Dee 5 OD Inner»
4241	4342	3642	4248					
43	44	3204 60000	85 00000	3	0	1	0	«Sec 3 OS Outer»
NAMESS	••	520 1100000	02100000	5	0	1	0	
4342	3743	4349						
NAMESA								
643								
44	29	2088.37000	-411.00000	3	1	0	0	«Sec 4 IS Inner»
NAMESS								
4544	3844	4450						
NAMESF								
4422								
45	29	2088.37000	-411.00000	4	0	0	0	«Sec 4 IS Outer»
NAMESS								
4544 46	45	3945 4551						
46	43	1517.01000	-294.00000	4	0	0	0	«Sec 4 Ins Inner»
NAMESS								
4645	4746	4046	4652					
47	43	1517.01000	28.00000	4	0	0	0	«Sec 4 Ins Outer»
NAMESS								
4746	4847	4147	4753					
48	44	2733.29000	85.00000	4	0	0	0	«Sec 4 OS Inner»
NAMESS	10.10	12.10	1051					
4847	4948	4248	4854	2	0		0	a 103.0
49	44	2733.29000	85.00000	3	0	1	0	«Sec 4 OS Outer»
NAMESS	12.40	4055						
4948	4349	4900						
INAIVIESA								
049 50	20	1850 02000	112 00000	3	1	0	0	VSac 5 IS Immon
30	29	1639.02000	-412.00000	3	1	U	0	«Sec 5 15 Inner»

NAMESS 5150	4450	5056						
NAMESF 5023								
51 NAMESS	29	1859.02000	-412.00000	4	0	0	0	«Sec 5 IS Outer»
5150 52 NAMESS	5251 43	4551 1350.40000	5157 -294.00000	4	0	0	0	"Sec 5 Ins Inner"
5251 53	5352 43	4652 1350.40000	5258 28.00000	4	0	0	0	"Sec 5 Ins Outer"
5352 54	5453 44	4753 2433.11000	5359 85.00000	4	0	0	0	"Sec 5 OS Inner"
NAMESS 5453 55	5554 44	4854 2433.11000	5460 85.00000	3	0	1	0	"Sec 5 OS Outer"
NAMESS 5554	4955	5561		2		-	5	
NAMESA 655 56	20	1606 60000	412 00000	2	1	0	0	"See 6 IS Inner"
NAMESS 5756	29 5056	5662	-413.00000	5	1	0	0	Sec 0 15 Inner
NAMESF 5624								
57 NAMESS	29	1696.69000	-413.00000	4	0	0	0	"Sec 6 IS Outer"
5756 58	5857 43	5157 1232.48000	5763 -294.00000	4	0	0	0	"Sec 6 Ins Inner"
5857 59	5958 43	5258 1232.48000	5864 28.00000	4	0	0	0	"Sec 6 Ins Outer"
NAMESS 5958 60	6059 44	5359 2220 64000	5965 85.00000	4	0	0	0	"Sec 6 OS Inner"
NAMESS 6059	6160	5460	6066	т	0	0	0	See 0 05 miller
61 NAMESS	44	2220.64000	85.00000	3	0	1	0	"Sec 6 OS Outer"
6160 NAMESA 661	5561	6167						
62 NAMESS	29	1574.14000	-414.00000	3	1	0	0	"Sec 7 IS Inner"
6362 NAMESF 6225	5662	6210						
63 NAMESS	29	1574.14000	-414.00000	4	0	0	0	"Sec 7 IS Outer"
6362 64	6463 43	5763 1143.46000	639 -294.00000	4	0	0	0	"Sec 7 Ins Inner"
NAMESS 6463	6564	5864	6416					

65 NAMESS	43	1143.46000	28.00000	4	0	0	0	"Sec 7 Ins Outer"
6564	6665	5965	6515	1	0	0	0	"See 7 OS Inner"
NAMESS	44	2000.23000	83.00000 2	+	0	0	0	Sec / OS Inner
6665	6766	6066	668					
67	44	2060 25000	85,00000	3	0	1	0	"Sec 7 OS Outer"
NAMESS		2000.25000	05.00000	5	0	1	0	
6766	6167	677						
NAMESA								
667								
NODEAM		AB DES	CRIPTION					
0	85.0	0000 Am	ibient Condition					
ICONSS	ICNS	I ICNSJ	ARCSIJ		DISTSIJ	DESCRI	PTION	
78	7	8	19879.20000		0.34000	"Sec 8 O	S In-Out C	onduction"
910	9	10	17494.40000		0.31000	"Sec 8 IS	In-Out Co	nduction"
1112	11	12	1787620.000	00	0.34000	"Propella	nt Surface A	Area at Midpoint of Outer Tank Wall"
1314	13	14	1456350.000	00	0.31000	"Propella	nt Surface	Area at Midpoint of Tank Wall"
1014	10	14	724.84000		5.34857	"Sec 8-Pi	p IS Inner	,
913	9	13	725.45000		5.35309	"Sec 8-P1	p IS Outer	"
812	8	12	906.02100		6.07775	"Sec 8-P1	p OS Inne	r''
711	7	11	906.76400		6.08273	"Sec 8-Pi	p OS Oute	r''
815	8	15	19862.90000		12.59000	"Sec 8 Ins-OS Conduction"		
1516	15	16	18686.10000		24.84000	"Sec 8 Ins In-Out Conduction"		
169	16	9	17509.20000		12.58000	"Sec 8 IS-Ins Conduction"		
1217	12	17	1785250.000	00	12.59000	"Propella	nt Outer S	phere-Insulation Interface Area"
1718	17	18	1617900.000	00	24.84000	"Propella	nt Surface	Area at Midpoint of Insulation"
1813	18	13	1458310.000	00	12.58000	"Propella	nt Inner Sp	bhere-Insulation Interface Area"
1517	15	17	63514.80000		5.89529	"Sec 8-Pi	p Ins Oute	r''
1618	16	18	59636.70000		5.53533	"Sec 8-Pi	p Ins Inne	r ²⁷
2726	27	26	88392.50000		0.31000	"Sec 1 IS	In-Out Co	nduction"
2827	28	27	89193.00000	0	12.58000	"Sec I IS	-Ins Condu	iction"
2928	29	28	156/64.0000	0	24.84000	"Sec I In	s In-Out C	onduction"
3029	30	29	232091.0000	0	12.59000	"Sec I In	s-US Cond	
2222	31 22	30	255187.0000	0	0.34000	Sec 1 0	S In-Out C	onduction advation"
2422	23 24	32	37234.40000		12 58000	Sec 2 15	In-Out Co	viduction
3534	34	34	30702 10000		24.84000	"Sec 2 In	• In Out C	anduction"
3635	36	35	42298 20000		12 59000	"Sec 2 In	s-OS Cond	luction"
3736	37	36	42332 90000		0.34000	"Sec 2 0	S In-Out C	onduction"
3938	39	38	28991 20000		0.31000	"Sec 3 IS	In-Out Co	induction"
4039	40	39	29015.70000		12.58000	"Sec 3 IS	-Ins Condi	iction"
4140	41	40	30966.00000		24.84000	"Sec 3 In	s In-Out C	onduction"
4241	42	41	32916.20000		12.59000	"Sec 3 In	s-OS Cond	luction"
4342	43	42	32943.20000		0.34000	"Sec 3 O	S In-Out C	onduction"
4544	45	44	24727.40000		0.31000	"Sec 4 IS	In-Out Co	nduction"
4645	46	45	24748.30000		12.58000	"Sec 4 IS	-Ins Condu	iction"
4746	47	46	26411.80000		24.84000	"Sec 4 In	s In-Out C	onduction"
4847	48	47	28075.20000		12.59000	"Sec 4 In	s-OS Cond	luction"
4948	49	48	28098.20000		0.34000	"Sec 4 O	S In-Out C	onduction"
5150	51	50	22011.70000		0.31000	"Sec 5 IS	In-Out Co	nduction"
5251	52	51	22030.40000		12.58000	"Sec 5 IS	-Ins Condu	iction"

5352	53	52	23511.10000	24.84000	"Sec 5 Ins In-Out Conduction"
5453	54	53	24991.80000	12,59000	"Sec 5 Ins-OS Conduction"
5554	55	54	25012.30000	0.34000	"Sec 5 OS In-Out Conduction"
5756	57	56	20089.60000	0.31000	"Sec 6 IS In-Out Conduction"
5857	58	57	20106.60000	12.58000	"Sec 6 IS-Ins Conduction"
5958	59	58	21458.00000	24.84000	"Sec 6 Ins In-Out Conduction"
6059	60	59	22809 50000	12,59000	"Sec 6 Ins-OS Conduction"
6160	61	60	22828 20000	0.34000	"Sec 6 OS In-Out Conduction"
6362	63	62	18638 60000	0.31000	"Sec 7 IS In-Out Conduction"
6463	64	63	18654 40000	12 58000	"Sec 7 IS-Ins Conduction"
6564	65	64	19908 20000	24 84000	"Sec 7 Ins In-Out Conduction"
6665	66	65	21162 00000	12 59000	"Sec 7 Ins-OS Conduction"
6766	67	66	21179 40000	0.34000	"Sec 7 OS In-Out Conduction"
2632	26	32	724 83700	185 78600	"Sec 1-2 IS Inner"
3238	32	38	724.83700	28.05150	"Sec 2-3 IS Inner"
3844	38	58 44	724.83700	20.05150	"Sec 3_4 IS Inner"
4450	50 44	50	724.83700	16 53240	"Sec 4-5 IS Inner"
5056	50	56	724.83700	14 12770	"Sec 5-6 IS Inner"
5662	56	62	724.83700	12 46210	"Sec 6-7 IS Inner"
6210	50 62	10	724.83700	11 22000	"Sec 7 8 IS Inner"
2733	27	33	724.85700	185 9/300	"Sec 1 2 IS Outer"
2735	27	30	725.45000	28 07530	"Sec 2 3 IS Outer"
3945	30	45	725.45000	20.07550	"Sec 3-4 IS Outer"
4551	15	51	725.45000	16 54640	"Sec 4 5 IS Outer"
5157	51	57	725.45000	1/ 13070	"Sec 5 6 IS Outer"
5763	57	63	725.45000	12 47270	"Sec 6 7 IS Outer"
630	63	0.5	725.45000	12.47270	"Sec 7 8 IS Outer"
2834	28	31	50636 70000	102 27400	"Sec 1 2 Ins Inner"
2034	20	24 40	59636 70000	20 03110	"Sec 2 3 Ins Inner"
J440 4046	34 40	40	59636 70000	29.05110	"Sec 3 / Ins Inner"
4652	46	52	59636 70000	17 10970	"Sec 4-5 Ins Inner"
5258	40 52	58	59636 70000	1/.10970	"Sec 5 6 Ins Inner"
5864	58	58 64	59636 70000	12 80730	"Sec 6.7 Ins Inner"
500 4 6416	50 64	16	59636 70000	12.69750	"Sec 7 8 Ins Inner"
2035	20	10	63514 80000	204 77700	"Sec 1 2 Ins Outer"
2935	29	33	63514.80000	204.77700	"Sec 2.2 Ins Outer"
3341 4147	33 41	41	63514.80000	30.91890	"Sec 2-3 IIIs Outer"
4147	41 47	47 52	63514.80000	18 22230	"See 4.5 Ins Outer"
4755 5250	47 52	50	62514.80000	16.22230	"Sec 4-5 fills Outer"
5065	50	59	63514.80000	12,72600	"See 5-0 IIIs Outer"
5905 6515	59	15	62514.80000	12 27780	"Sec 0-7 IIIs Outer"
2026	20	15	03314.80000	211 11500	"See 1 2 OS Innor"
2642	26	30	900.02100	211.11300	"Sec 2.2 OS Inner"
5042 4249	30 42	42	900.02100	31.67390	Sec 2-5 OS Inner "Sec 2 4 OS Inner"
4240	42	40 54	900.02100	19 79620	"Sec 3-4 OS Inner"
40J4 5460	40 54	54	900.02100	16.76030	"Sec 5 6 OS Inner"
5400	54 60	66	900.02100	14 16110	Sec 3-0 OS Inner "See 6.7 OS Inner"
669	66	00	900.02100	14.10110	"Sec 0-7 OS Inner"
2127	21	0 27	900.02100	12.70090	"See 1.2 OS Outer"
3137	31 27	31 12	900.70400 006 76400	211.20000	"Sec 2.3 OS Outer"
3743 1310	31 12	40	900.70400	31.90200 23 10260	"Sec 2-3 OS Outer"
4049 1055	43 40	47 55	900.70400 906 76/00	23.19300 18 90170	"Sec 4 5 OS Outer"
5561	49 55	55 61	900.70400 006 76400	16.00170	"Sec 5 6 OS Outer"
2201	55	01	200./0400	10.00700	

6167	61		67	906.764	400	14.1	7270) "Sec	6-7 OS	Outer"		
677	67		7	906.764	400	12.7	7140	"Sec	7-8 OS	Outer"		
ICONSF	ICS	ICF	MODE	L ARSF		HCSF		EMSFS		EMSFF		DESCRIPTION
102	10	2	0	1.74796e+04	4	1.00000e+	00	0.00000e-	+00	0.00000	e+00	«Sec 8 IS Ullage Wall»
144	14	4	0	1.45439e+06	6	0.00000e+	00	0.00000e-	+00	0.00000	e+00	«Propellant-Tank Wall
												Surface Area»
2619	26	19	0	8.75930e+04	4	1.00000e+	00	0.00000e-	+00	0.00000	e+00	«Sec 1 IS Ullage Wall»
3220	32	20	0	3.72229e+04	4	1.00000e+	00	0.00000e-	+00	0.00000	e+00	«Sec 2 IS Ullage Wall»
3821	38	21	0	2.89667e+04	4	1.00000e+	00	0.00000e-	+00	0.00000	e+00	«Sec 3 IS Ullage Wall»
4422	44	22	0	2.47065e+04	4	1.00000e+	00	0.00000e-	+00	0.00000	e+00	«Sec 4 IS Ullage Wall»
5023	50	23	0	2.19931e+04	4	1.00000e+	00	0.00000e-	+00	0.00000	e+00	«Sec 5 IS Ullage Wall»
5624	56	24	0	2.00726e+04	4	1.00000e+	00	0.00000e-	+00	0.00000	e+00	«Sec 6 IS Ullage Wall»
6225	62	25	0	1.86228e+04	4	1.00000e+	00	0.00000e-	+00	0.00000	e+00	«Sec 7IS Ullage Wall»
ICONSA	ICS	AS IO	CSAA	ARSA	HO	CSA	EM	ISAS	EMS	AA	DESCI	RIPTION
67	7	6		1.98955e+04	4.4	14000e-04	7.0	0000e-01	7.000	00e-01	"Sec 8	OS-Amb Convection"
611	11	6		1.78999e+06	4.4	14000e-04	7.0	0000e-01	7.000	00e-01	"Prope	llant Space Outer Surface
											-	of Outer Tank"
631	31	6		2.34285e+05	4.4	14000e-04	7.0	0000e-01	7.000	00e-01	"Sec 1	OS-Amb Convection"
637	37	6		4.23676e+04	4.4	14000e-04	7.0	0000e-01	7.000	00e-01	"Sec 2	OS-Amb Convection"
643	43	6		3.29702e+04	4.4	14000e-04	7.0	0000e-01	7.000	00e-01	"Sec 3	OS-Amb Convection"
649	49	6		2.81212e+04	4.4	14000e-04	7.0	0000e-01	7.000	00e-01	"Sec 4	OS-Amb Convection"
655	55	6		2.50328e+04	4.4	14000e-04	7.0	0000e-01	7.000	00e-01	"Sec 5	OS-Amb Convection"
661	61	6		2.28469e+04	4.4	14000e-04	7.0	0000e-01	7.000	00e-01	"Sec 6	OS-Amb Convection"
667	67	6		2.11967e+04	4.4	14000e-04	7.0	0000e-01	7.000	00e-01	"Sec 7	OS-Amb Convection"

E.4 LC-39 Glass Bubbles Sample Output Data File

ISTEP =	1500 TAU =	0.60000E+05				
BOUND	ARY NODES					
NODE	P (PSI)	TF (F)	Z (COMP)	RHO	QUALITY	
				(LBM/FT^3)		
1	0.1470E+02	0.8500E+02	0.0000E+00	0.5065E-02	0.1000E+01	
3	0.1631E+02	-0.4241E+03	0.0000E+00	0.4458E+01	0.0000E+00	
SOLUTI	ION					
INTERN	NAL NODES					
NODE	P (PSI)	TF (F)	Z (COMP)	RHO	EM (LBM)	QUALITY
				(LBM/FT^3)		-
2	0.1470E+02	-0.4228E+03	0.9076E+00	0.8264E-01	0.7643E+02	0.1000E+01
4	0.1345E+02	-0.4236E+03	0.1584E-01	0.4438E+01	0.5077E+06	0.5202E-06
19	0.1470E+02	-0.2606E+03	0.1001E+01	0.1387E-01	0.1283E+02	0.1000E+01
20	0.1470E+02	-0.3344E+03	0.9982E+00	0.2209E-01	0.2043E+02	0.1000E+01
21	0.1470E+02	-0.3571E+03	0.9954E+00	0.2707E-01	0.2504E+02	0.1000E+01
22	0.1470E+02	-0.3746E+03	0.9911E+00	0.3279E-01	0.3033E+02	0.1000E+01
23	0.1470E+02	-0.3885E+03	0.9846E+00	0.3945E-01	0.3649E+02	0.1000E+01
24	0.1470E+02	-0.4004E+03	0.9740E+00	0.4792E-01	0.4432E+02	0.1000E+01
25	0.1470E+02	-0.4112E+03	0.9550E+00	0.5980E-01	0.5531E+02	0.1000E+01
NODE	Н	ENTROPY	EMU	COND	СР	GAMA
	BTU/LB	BTU/LB-R	LBM/FT-SEC	BTU/FT-S-R	BTU/LB-R	
2	0.8304E+02	0.7340E+01	0.7653E-06	0.2637E-05	0.2784E+01	0.1869E+01

4	-0.1105E+03	0.1907E+0	0.9179	9E-05 (0.1579E-04	0.2250E+01	0.1698E+01	
19	0.5334E+03	0.7340E+0	0.2985	5E-05 (0.1460E-04	0.3413E+01	0.1409E+01	
20	0.3104E+03	0.7340E+0	0.217	1E-05 ().8381E-05	0.2666E+01	0.1602E+01	
21	0.2515E+03	0.7340E+0	0.186	1E-05 (0.6841E-05	0.2535E+01	0.1663E+01	
22	0.2074E+03	0.7340E+0	0.1603	3E-05 (0.5754E-05	0.2505E+01	0.1692E+01	
23	0.1725E+03	0.7340E+0	0.1383	3E-05 ().4893E-05	0.2531E+01	0.1703E+01	
24	0.1421E+03	0.7340E+0	0.1182	2E-05	0.4150E-05	0.2566E+01	0.1724E+01	
25	0.1141E+03	0.7340E+0	0.9868	8E-06 (0.3441E-05	0.2626E+01	0.1762E+01	
BRANCH	ES							
BRANCH	KFACTOR	DELP	FLOW	VELOCIT	Y REYN. NO	MACH NO.	ENTROPY	LOST WORK
			RATE				GEN.	
	(LBF-S^2/	(PSI)	(LBM/SEC)	(FT/SEC)			BTU/(R-SEC)LBF-FT/SEC
	(LBM-FT)^2)							
34	0.000E+00	0.286E+01	0.624E-11	0.202E-04	0.284E-02	0.167E-07	0.000E+00	0.000E+00
252	0.000E+00	0.274E-03	-0.126E-02	-0.107E-04	4 0.492E+02	0.736E-08	0.000E+00	0.000E+00
2425	0.000E+00	0.207E-03	-0.125E-02	-0.156E-04	4 0.391E+02	0.987E-08	0.000E+00	0.000E+00
2324	0.000E+00	0.170E-03	-0.124E-02	-0.210E-04	4 0.337E+02	0.122E-07	0.000E+00	0.000E+00
2223	0.000E+00	0.144E-03	-0.123E-02	-0.282E-04	4 0.302E+02	0.150E-07	0.000E+00	0.000E+00
2122	0.000E+00	0.123E-03	-0.123E-02	0.387E-04	0.278E+02	0.189E-07	0.000E+00	0.000E+00
2021	0.000E+00	0.107E-03	-0.122E-02	0.560E-04	0.261E+02	0.252E-07	0.000E+00	0.000E+00
1920	0.000E+00	0.152E-03	-0.119E-02	0.930E-04	0.257E+02	0.354E-07	0.000E+00	0.000E+00
191	0.153E+02	-0.531E-06	60.117E-02	0.101E+00	0.484E+03	0.384E-04	0.115E-10	0.178E-05

SOLID NODES

NODESL	CPSLD	TS
	BTU/LB F	F
7	0.110E+00	0.850E+02
8	0.110E+00	0.850E+02
9	0.107E+00	-0.420E+03
10	0.107E+00	-0.420E+03
11	0.110E+00	0.850E+02
12	0.110E+00	0.850E+02
13	0.107E+00	-0.424E+03
14	0.107E+00	-0.424E+03
15	0.190E+00	0.275E+02
16	0.190E+00	-0.295E+03
17	0.190E+00	0.140E+02
18	0.190E+00	-0.324E+03
26	0.116E+00	-0.257E+03
27	0.116E+00	-0.257E+03
28	0.190E+00	-0.293E+03
29	0.190E+00	0.280E+02
30	0.110E+00	0.850E+02
31	0.110E+00	0.850E+02
32	0.112E+00	-0.333E+03
33	0.112E+00	-0.333E+03
34	0.190E+00	-0.294E+03
35	0.190E+00	0.279E+02
36	0.110E+00	0.850E+02
37	0.110E+00	0.850E+02
38	0.110E+00	-0.356E+03
39	0.110E+00	-0.356E+03
40	0.190E+00	-0.294E+03

41	0.190E+00	0.279E+02
42	0.110E+00	0.850E+02
43	0.110E+00	0.850E+02
44	0.109E+00	-0.374E+03
45	0.109E+00	-0.374E+03
46	0.190E+00	-0.294E+03
47	0.190E+00	0.279E+02
48	0.110E+00	0.850E+02
49	0.110E+00	0.850E+02
50	0.109E+00	-0.388E+03
51	0.109E+00	-0.388E+03
52	0.190E+00	-0.294E+03
53	0.190E+00	0.279E+02
54	0.110E+00	0.850E+02
55	0.110E+00	0.850E+02
56	0.108E+00	-0.400E+03
57	0.108E+00	-0.400E+03
58	0.190E+00	-0.294E+03
59	0.190E+00	0.279E+02
60	0.110E+00	0.850E+02
61	0.110E+00	0.850E+02
62	0.107E+00	-0.411E+03
63	0.107E+00	-0.411E+03
64	0.190E+00	-0.294E+03
65	0.190E+00	0.279E+02
66	0.110E+00	0.850E+02
67	0.110E+00	0.850E+02

SOLID TO SOLID CONDUCTOR

ICONSS	CONDKIJ	QDOTSS
	BTU/S FT F	BTU/S
78	0.750E-02	0.155E-02
910	0.255E-02	0.391E-01
1112	0.750E-02	0.161E+00
1314	0.255E-02	0.281E+00
1014	0.255E-02	0.961E-01
913	0.255E-02	0.962E-01
812	0.750E-02	0.161E-03
711	0.750E-02	0.161E-03
815	0.192E-06	0.145E-02
1516	0.960E-07	0.194E-02
169	0.192E-06	0.279E-02
1217	0.192E-06	0.161E+00
1718	0.960E-07	0.176E+00
1813	0.192E-06	0.185E+00
1517	0.960E-07	0.117E-02
1618	0.960E-07	0.251E-02
2726	0.275E-02	0.111E+00
2827	0.192E-06	-0.412E-02
2928	0.960E-07	0.162E-01
3029	0.192E-06	0.168E-01
3130	0.750E-02	0.168E-01
3332	0.267E-02	0.167E-01
3433	0.192E-06	0.186E-02

3534	0.960E-07	0.412E-02
3635	0.192E-06	0.307E-02
3736	0.750E-02	0.307E-02
3938	0.264E-02	0.124E-01
4039	0.192E-06	0.229E-02
4140	0.960E-07	0.321E-02
4241	0.192E-06	0.239E-02
4342	0.750E-02	0.239E-02
4544	0.262E-02	0.845E-02
4645	0.192E-06	0.251E-02
4746	0.960E-07	0 274E-02
4847	0.192E-06	0.204E-02
4948	0.750E-02	0.201E 02
5150	0.750E-02 0.260E-02	0.204E-02
5251	0.200E-02	0.337E-02
5257	0.192E-00	0.203E-02
5452	0.900E-07	0.244E-02
5455	0.192E-00	0.101E-02
5554	0.750E-02	0.182E-02
5/50	0.258E-02	0.433E-02
5857	0.192E-06	0.271E-02
5958	0.960E-07	0.223E-02
6059	0.192E-06	0.166E-02
6160	0.750E-02	0.167E-02
6362	0.257E-02	0.568E-02
6463	0.192E-06	0.276E-02
6564	0.960E-07	0.206E-02
6665	0.192E-06	0.154E-02
6766	0.750E-02	0.158E-02
2632	0.271E-02	0.668E-01
3238	0.266E-02	0.131E+00
3844	0.263E-02	0.139E+00
4450	0.261E-02	0.135E+00
5056	0.259E-02	0.134E+00
5662	0.258E-02	0.134E+00
6210	0.256E-02	0.132E+00
2733	0.271E-02	0.668E-01
3339	0.266E-02	0.131E+00
3945	0.263E-02	0.139E+00
4551	0.261E-02	0.135E+00
5157	0.259E-02	0.134E+00
5763	0.258E-02	0.134E+00
639	0.256E-02	0.132E+00
2834	0.960E-07	0.842E-06
3440	0.960E-07	0.274E-05
4046	0.960E-07	0.246E-05
4652	0.960E-07	0.274E-05
5258	0.960E-07	0.221E 05
5864	0.960E-07	0.227E-05
6416	0.960E-07	0.252E-05
2025	0.2001-07	0.3115-04
2933	0.2001-07	0.370E-00
7141 717	0.900E-07	0.272E-00
+1+7 1752	0.900E-07	0.170E-00
4/33	0.900E-07	0.1/8E-08
3339	0.960E-07	U.199E-08

5965	0.960E-07	0.675E-07
6515	0.960E-07	0.135E-04
3036	0.750E-02	0.459E-06
3642	0.750E-02	0.161E-06
4248	0.750E-02	0.566E-06
4854	0.750E-02	0.229E-05
5460	0.750E-02	0.785E-05
6066	0.750E-02	0.237E-04
668	0.750E-02	0.649E-04
3137	0.750E-02	0.458E-06
3743	0.750E-02	0.161E-06
4349	0.750E-02	0.566E-06
4955	0.750E-02	0.229E-05
5561	0.750E-02	0.784E-05
6167	0.750E-02	0.237E-04
677	0.750E-02	0.648E-04

SOLID TO FLUID CONDUCTOR

ICONSF	QDOTSF	HCSF	HCSFR
	BTU/S	BTU/S FT**2 F	BTU/S FT**2 F
102	-0.755E-01	0.249E-03	0.000E+00
144	-0.376E+00	0.113E-02	0.000E+00
2619	-0.225E+00	0.105E-03	0.000E+00
3220	-0.315E-01	0.871E-04	0.000E+00
3821	-0.225E-01	0.917E-04	0.000E+00
4422	-0.144E-01	0.933E-04	0.000E+00
5023	-0.811E-02	0.915E-04	0.000E+00
5624	-0.594E-02	0.959E-04	0.000E+00
6225	-0.857E-02	0.120E-03	0.000E+00

SOLID TO AMBIENT CONDUCTOR

ICONSA	QDOTSA	А Н	CSA	HCSAR			
	BTU/S	В	TU/S FT**2 F	BTU/S FT*	**2 F		
67	0.164E-0	2 0.	.444E-03	0.166E-03			
611	0.161E+0	0.00	.444E-03	0.166E-03			
631	0.168E-0	1 0.	.444E-03	0.166E-03			
637	0.307E-0	2 0.	.444E-03	0.166E-03			
643	0.239E-0	2 0.	.444E-03	0.166E-03			
649	0.204E-0	2 0.	.444E-03	0.166E-03			
655	0.182E-0	2 0.	.444E-03	0.166E-03			
661	0.169E-0	2 0.	.444E-03	0.166E-03			
667	-0.473E-0	01 0.	.444E-03	0.166E-03			
NUMBER	OF PRESSURI	ZATION SY	YSTEMS = 1				
NODUL	NODPRP	QULPRP	QULWAL	QCOND	TNKTM	VOLPROP	VOLULG
2	4	0.0003	0.0000	0.0000	36.0000	******	924.8683

E.5.1 LC-39 Glass Bubbles Sample Output Plots

LC-39 glass bubbles propellant path solid node temperature prediction, ullage inner sphere solid node temperature prediction, propellant path heat transfer rates, and boiloff rate output plots are shown in figures 39–42, respectively.

Figure 39. LC-39 glass bubbles propellant path solid node temperature predictions.

Figure 40. LC-39 glass bubbles ullage inner sphere solid node temperature predictions.

Figure 41. LC-39 glass bubbles propellant path heat transfer rates.

Figure 42. LC-39 glass bubbles boiloff rates.

REFERENCES

- 1. Fesmire, J.E.; and Augustynowicz, S.D.: "Thermal Performance Testing of Glass Microspheres Under Cryogenic Vacuum Conditions," *Paper No. CEC C2-C-04*, Cryogenic Engineering Conference, Anchorage, AL, September 22–26, 2003.
- Fesmire, J.E.; Augustynowicz, S.D.; Nagy, Z.F.; et al.: "Vibration and Thermal Cycling Effects on Bulk-Fill Insulation Materials for Cryogenic Tanks," *Paper No. CEC C2-T-04*, Cryogenic Engineering Conference, Keystone, CO, August 29–September 2, 2005.
- 3. Majumdar, A.K.: "A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation," *Paper No. AIAA 99-0934*, 37th AIAA Aerospace Sciences Meeting Conference and Exhibit, Reno, NV, January 11–14, 1999.
- 4. Majumdar, A.K.; and Steadman, T.: "Numerical Modeling of Pressurization of a Propellant Tank," *Journal of Propulsion and Power*, Vol. 17, No. 2, pp. 385–391, March–April 2001.
- 5. Majumdar, A.K.: "Numerical Modeling of Conjugate Heat Transfer in Fluid Network," Thermal Fluid Analysis Workshop, Jet Propulsion Laboratory, Pasadena, CA, August 30–September 3, 2004.
- Hendricks, R.C.; Baron, A.K.; and Peller, I.C.: "GASP—A Computer Code for Calculating the Thermodynamic and Transport Properties for Ten Fluids: Parahydrogen, Helium, Neon, Methane, Nitrogen, Carbon Monoxide, Oxygen, Fluorine, Argon, and Carbon Dioxide," NASA-TN-D-7808, Glenn Research Center, February 1975.
- Hendricks, R.C.; Peller, I.C.; and Baron, A.K.: "WASP—A Flexible FORTRAN IV Computer Code for Calculating Water and Steam Properties," *NASA-TN-D-7391*, Glenn Research Center, November 1973.
- 8. Cryodata Inc., User's Guide to GASPAK, Version 3.20, November 1994.
- 9. Van Hooser, K.; Bailey, J.W.; and Majumdar, A.K.: "Numerical Prediction of Transient Axial Thrust and Internal Flows in a Rocket Engine Turbopump," *Paper No. AIAA 99-2189*, 35th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference, Los Angeles, CA, June 20–24, 1999.
- Holt, K.; Majumdar, A.; Steadman, T.; and Hedayat, A.: "Numerical Modeling and Test Data Comparison of Propulsion Test Article Helium Pressurization System," *Paper No. AIAA-2000-3719*, 36th AIAA /ASME /SAE /ASEE Joint Propulsion Conference and Exhibit, Huntsville, AL, July 16–19, 2000.

- Sass, J.P.; Fesmire, J.E.; Morris, D.L.; et al.: "Thermal Performance Comparison of Glass Microsphere and Perlite Insulation Systems for Liquid Hydrogen Storage Tanks," *Paper No. C3-K-05*, Cryogenic Engineering Conference and International Cryogenic Materials Conference, Chattanooga, TN, July 16–20, 2007.
- Fesmire, J.E.; Sass, J.P.; Morris, D.L.; et al.: "Cost-Efficient Storage of Cryogens," *Paper No. C3-K-06*, Cryogenic Engineering Conference and International Cryogenic Materials Conference, Chattanooga, TN, July 16–20, 2007.

REPORT	Form Approved OMB No. 0704-0188						
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintain- ing the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operation and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503							
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE November 2007	3. REPORT TYPE AND DATES CON Technical	OVERED				
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS				
Numerical Modeling of P Storage Tank							
6. AUTHORS							
A.K. Majumdar, T.E. Stea							
7. PERFORMING ORGANIZATION NAME(S	8. PERFORMING ORGANIZATION REPORT NUMBER						
George C. Marshall Space Marshall Space Flight Ce	M-1206						
9. SPONSORING/MONITORING AGENCY	10. SPONSORING/MONITORING AGENCY REPORT NUMBER						
National Aeronautics and Washington, DC 20546–(NASA/TM—2007–215131						
11. SUPPLEMENTARY NOTES Prepared by the Propulsion Systems Department, Engineering Directorate *Sverdrup Technology, Inc., Huntsville, AL							
12a. DISTRIBUTION/AVAILABILITY STATE	12b. DISTRIBUTION CODE						
Unclassified-Unlimited							
Subject Category 14							
Availability: NASA CAS							
13. ABSTRACT (Maximum 200 words) This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies. 14. SUBJECT TERMS cryogenic tanks, thermal insulation, propellant boiloff, finite volume method, 102 16. PRICE CODE							
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT							
of report Unclassified	Unlimited						

National Aeronautics and Space Administration IS20 **George C. Marshall Space Flight Center** Marshall Space Flight Center, Alabama 35812