Thermal Imaging of Aerospace Battery Cells

By

Jack Shue, Julian B. Ramirez*, David Sullivan, Leonine Lee, and Gopalakrishna Rao Goddard Space Flight Center Power Systems Branch, Code 563 Greenbelt MD 20771

(*Summer Student at NASA, From University of Puerto Rico at Mayagüez Campus)

Outline

- Objective
- Experimental
- Nickel Hydrogen Cell (NiH₂)
- Lithium-Ion Cell (Li-Ion)
- Conclusions

Objective

Understand the thermal characteristics of cylindrical aerospace battery cell by studying the surface thermal profiles.

Experimental

- Cells
 - Eagle Picher 50Ah rabbit-ear (cylindrical) Nickel Hydrogen (NiH₂) cell
 - Saft 40 Ah cylindrical Lithium-Ion (Li-ion) cell
- ThermCAM S60 FLIR Systems
- Charge and Discharge with Passive cooling
 - C/2 rate
 - Charge to thermal limit of 35°C
 - Allow cell to cool
 - Discharge to 1.0V

Experimental: Brief Background on I.R. Camera

•The camera is working on the principle of Blackbody Radiation and works from 7.5µm to 13µm wavelengths

•Light is from $0.40\mu m$ to $0.70 \mu m$

•The object under investigation needs to have constant and known emissivity. (preferably > 0.7)

-Metals are variable from 0.045 to $\sim .07$

-Cell was covered with Kapton tape e~ 0.86, checked with thermistor

All measured Temperatures are Surface Temperatures

Experimental: Block Diagram

During Overcharge

NiH₂ Cell: Thermal Image during Charge @ C/2

NiH₂ Cell: Thermal Image during Discharge @ C/2

Towards End of Discharge

Towards start of overcharge

NiH₂ Cell: Popping Noted during Charge (Indicated by Circle)

Short and Defined Surface Feature

Towards end of overcharge.

NiH₂ Cell: Popping Noted (Indicated by Circle)

Defuse Interior Feature

NiH₂ Cell: Popping in Differential Temp. Mode

Spot 2

Post-Popping Return to Ambient Spot 1

Middle of Overcharge

NiH₂ Cell: Popping in Differential Temp Mode. Plot Over Time (Charging)

Note: Each plot has multiple steps of heating.

NiH₂ Cell: Popping Depicted as Circles

Count of pops varies from ~10 to >44

Pattern at end of charging

NiH₂ Cell: Catalytic Wall-wick Strip are Similar to popping pattern

During Overcharge

NiH₂ Cell: Battery Temperature Profile Horizontal Crosscut

Charge

Max Temp 40.3°C Min Temp 36.6°C Delta 3.7°C

Catalytic Strip

NiH₂ Cell: Summary

- Surface Thermal profile have been studied for 50 Ah NiH₂ Cell under
 - Charge (C/2 to Thermal Limit of 35° C) and
 - Discharge (C/2 to Min Voltage of 1.0V)
 - Cell Thermal Gradients
 - Middle of stack to top or bottom is about 12.9°C
 - Bottom is the coldest
 - Top to bottom is about 1°C
 - Across stack is about 4°C

NiH₂ Cell: Summary - Continued

- Popping is demonstrated on the catalytic wallwick strip and at the bottom section of the cell stack; Destructive Physical Analysis of the cell confirmed the signatures
- Thermal Overshoot (After Charge Stopped) indicates cell interior is at least 4°C hotter than the pressure vessel cylindrical surface

Li-Ion Cell: Thermal Image during Charge @ C/2

Li-Ion Cell: Thermal Image during Discharge @ C/2

Li-Ion Cell : Battery Temperature Profile Vertical Crosscut

Max Temp 28.9°C Min Temp 28.0°C* Delta 0.9°C

Li-Ion Cell: Battery Temperature Profile Horizontal Crosscut

> Max Temp 29.3°C Min Temp 28.8°C Delta 0.5°C

During Charge

Li-Ion Cell: Summary

- Surface Thermal profiles have been studied for 40 Ah Lithium-Ion Cell
- Charge (C/2 charge to Voltage Limit of 4.1V with Taper)
- Discharge (C/2 to Min. Voltage of 3V)
- Less than 1°C thermal gradient on the cell vessel surface
- Significantly lower heat generation in Li-Ion cell compared to NiH₂ cell

- May be due to a favorable charge method used for Li-Ion cell

Conclusions:

- Surface Thermal Profiles of Eagle Picher rabbit-ear 50Ah NiH_2 and of Saft 40 Ah Li-ion cylindrical cells have been studied using ThermCAM S60 FLIR Systems
- •Popping Phenomenon in NiH₂ cell is demonstrated
- •Temperature gradient in NiH_2 is slightly higher than normally considered
 - -for example. Middle of stack to top or bottom is about
 - 12.9°C compared to $<7^{\circ}$ C (may be due to passive cooling)
- •Less than 1°C thermal gradient on the Li-Ion cell vessel surface
- •Significantly lower heat generation in Li-Ion cell compared to NiH_2 cell

- May be due to a favorable charge method used for Li-Ion cell