Geopositional Statistical Methods

Kenton Ross

Science Systems and Applications, Inc. John C. Stennis Space Center, MS 39529
phone: 228-688-1869
e-mail: Kenton.Ross@ssc.nasa.gov

High Spatial Resolution Commercial Imagery Workshop
Reston, Virginia, USA
November 8, 2004

Contributors

NASA, Stennis Space Center

Vicki Zanoni Tom Stanley

Science Systems and Applications, Inc. Stennis Space Center
 Mary Pagnutti

Lockheed Martin Integrated Systems \& Solutions
 Charles Smith

This work was directed by the NASA Applied Sciences Directorate (formerly the Earth Science Applications Directorate) at the John C. Stennis Space Center, Mississippi. Participation in this work by Lockheed Martin Space Operations - Stennis Programs was supported under contract number NAS 13-650. Participation in this work by Computer Sciences Corporation and by Science Systems and Applications, Inc., was supported under NASA Task Order NNS04AB54T.

Outline

- Background
- Sources of error in geopositional assessment
- Error model
- Discussion of geopositional error computation methods
- Modeled performance of geopositional error computation methods
- Conclusions and recommendations

Background

- 1947 - U.S. Bureau of the Budget. National Map Accuracy Standards.
- Establishes equivalent of circular error criteria as error standard of maps of various scales.
- 1962 - Clyde Greenwalt and Melvin Shultz. Principles of Error Theory and Cartographic Applications.
- Provides rigorous treatment of circular error assuming that error is
- Zero mean (no horizontal bias) • Normally distributed . Near-circular
- 1963 - Melvin Shultz. Circular Error Probability of a Quantity Affected by a Bias.
- Provides limited treatment of error with horizontal bias.
- 1990 - MIL-STD-600001. Mapping, Charting and Geodesy Accuracy.
- Adopts the 1963 Shultz approach to horizontal bias., Discusses empirical approach as an alternative estimate.
- 1998 - Federal Geographic Data Committee. National Standard for Spatial Data Accuracy (NSSDA).
- Adopts Greenwalt and Shultz approach, but swaps RMSE for standard deviation. No provision for horizontal bias.
- 2003 - Joseph McCollum (USFS). Map Error and Root Mean Square.
- Paper calls Greenwalt and Shultz method into question.
- 2003 - USGS Proposal for Revision of NSSDA.
- Out of Geography Discipline. POC: John Conroy, iconroy@usgs.gov.
- 2004 (first version 2002?) - Tom Ager (NIMA InnoVision). An Analysis of Metric Accuracy Definitions and Methods of Computation.
- White paper supports empirical approach. Also modifies Shultz approach to provide for large horizontal bias.

Revision Status

- The revision of the NSSDA standard is currently in step 4, or the draft stage, of the 12-step FGDC standards approval process (http://www.fgdc.gov/standards/directives/dir1.html).
- Progress on the standard development will continue based on funding priorities.

Proposal Stage
Step 1, Develop Proposal
Step 2, Review Proposal
Project Stage
Step 3, Set Up Project
Draft Stage
Step 4, Produce Working Draft
Step 5, Review Working Draft
Review Stage
Step 6, Review and Evaluate Committee Draft
Step 7, Approve Standard for Public Review
Step 8, Coordinate Public Review
Step 9, Respond to Public Comments
Step 10, Evaluate Responsiveness to Public Comments
Step 11, Approve Standard for Endorsement
Final Stage
Step 12, Endorsement

Sources of Error in Geopositional Assessment

- Assessment Error
- Ground Control Error
- Pointing
- Measurement
- Analyst Error
- Pointing
- Product Error (potential)
- Spatial Resolution
- Pointing (Displacement)
- Azimuth
- Scale
- Orthogonality
- Other product distortion
- Terrain effects
- "Pointing error" for surveyors \& analysts is here intended to mean the errors these individuals have in picking their target.

- random error

- "Measurement error" for ground control is here intended to mean the error inherent in the measuring instrument or system (GPS in this case).

- constant systematic error

- "Pointing error" for a geo-imaging system is here intended to mean the constant separation between estimated target coordinates and actual target coordinates.
- functional systematic error

Check Point Error

- Check Point Error - differences between image and reference coordinates

$$
\begin{aligned}
& \Delta X_{i}=X_{\text {image }, i}-X_{\text {reference }, i} \\
& \Delta Y_{i}=Y_{\text {image }, i}-Y_{\text {reference }, i}
\end{aligned}
$$

- Check point error radial magnitude calculated by

$$
\Delta R_{i}=\sqrt{\Delta X_{i}^{2}+\Delta Y_{i}^{2}}
$$

Error Component Estimates

- The error model chosen for generalized assessment

$$
X_{\text {image }}=X+\varepsilon \quad \text { where } \quad \varepsilon=\varepsilon_{\text {cons } \tan t}+\varepsilon_{\text {zero-mean }}
$$

- Horizontal Bias - an estimate of the constant error, designated here as μ_{H}, is the magnitude of the vector sum of the average error in the X and the Y

$$
\mu_{H}=\sqrt{(\overline{\Delta X})^{2}+(\overline{\Delta Y})^{2}}
$$

- Circular Standard Error - an estimate of the zero-mean circular equivalent error valid even for elliptical error distributions with minimum to maximum error ratios as low as 0.6

$$
\sigma_{C} \cong \frac{\sigma_{\Delta X}+\sigma_{\Delta Y}}{2} \quad \text { where } \quad \sigma_{\Delta X}=\sqrt{\frac{\sum\left(\Delta X_{i}-\overline{\Delta X}\right)^{2}}{n-1}} \& \sigma_{\Delta Y}=\sqrt{\frac{\sum\left(\Delta Y_{i}-\overline{\Delta Y}\right)^{2}}{n-1}}
$$

$$
\begin{aligned}
& \text { Tom Ager used the horizontal error defined on the right, } \\
& \text { but Greenwalt and Shultz found this to be invalid for } \\
& \text { minimum to maximum error ratios less than 0.8. }
\end{aligned} \quad \sigma_{H}=\sqrt{\frac{\left(\sigma_{\Delta X}^{2}+\sigma_{\Delta Y}^{2}\right)}{2}}
$$

RMSE Definitions

- RMSE - Root mean square error (horizontal bias \& zeromean error not decoupled)
- 1D

$$
\text { RMSE }_{x}=\sqrt{\sum \frac{\Delta X_{i}{ }^{2}}{n}} \quad \text { RMSE }_{y}=\sqrt{\sum \frac{\Delta Y_{i}{ }^{2}}{n}}
$$

- 2D (NSSDA General)

$$
R M S E_{r}=\sqrt{R M S E_{x}^{2}+R M S E_{\vec{y}}^{2}}
$$

- 2D (NSSDA Case 2*)

$$
R M S E_{c}=0.5 *\left(R M S E_{x}+R M S E_{y}\right)
$$

> * $R M S E_{c}$ is a recasting of terms in formula from NSSDA Appendix A Case 2 . It is not found explicitly in the NSSDA.

Circular Error Definitions

- CE_{90} - The radial error which 90% of all errors in a circular distribution will not exceed (adapted from Greenwalt and Shultz, 1962)
- Equivalent to the Circular Map Accuracy Standard (CMAS)
- CE_{95} - The radial error which 95% of all errors in a circular distribution will not exceed (adapted from Greenwalt and Shultz, 1962)
- Equivalent to Accuracy ${ }_{r}$ (from NSSDA)
- In the normal case, circular error may be generally defined as the circle radius, R, that satisfies the conditions of the equation below (where C.L. is the desired confidence level); however, there is no analytical solution to this equation.

$$
\text { C.L. }=\int_{-R}^{R} \int_{\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} \frac{1}{2 \pi \sigma_{x} \sigma_{y}\left(1-\rho^{2}\right)} \exp \left[\frac{-1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}-2 \rho\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right]\right] d y d x
$$

Common CE $_{90}$ Estimates

- RMSE based (NSSDA)
- Appendix A: General $\longrightarrow C E_{90}=1.5175 \cdot \mathrm{RMSE}_{\mathrm{r}}$
- Appendix A: Case $2 \longrightarrow C E_{90}=2.1460 \cdot \mathrm{RMSE}_{\mathrm{c}}$
- Bias and Standard Circular

Error based

- Sum of squares

$$
\longrightarrow C E_{90}=\sqrt{\left(2.1460 \cdot \sigma_{\mathrm{C}}\right)^{2}+\mu_{H}^{2}}
$$

- Shultz approach accounting for bias

$$
\longrightarrow C E_{90}=2.1272 \sigma_{\mathrm{C}}+0.1674 \mu_{H}+0.3623 \frac{\mu_{H}{ }^{2}}{\sigma_{\mathrm{C}}}-0.055 \frac{\mu_{H}{ }^{3}}{\sigma_{\mathrm{C}}{ }^{2}}
$$

- Ager approach Ager approach
accounting for bias
(modified Shultz) $\rightarrow\left\{\begin{array}{l}\text { When } \mu_{H} / \sigma_{C} \leq 0.1 \quad C E_{90}=2.1460 \sigma_{\mathrm{C}} \\ \text { When } 0.1<\mu_{H} / \sigma_{C} \leq 3 \quad \text { apply equation from Shultz } \\ \text { When } \mu_{H} / \sigma_{C}>3 \quad C E_{90}=0.986 \mu_{H}+1.4548 \sigma_{\mathrm{C}}\end{array}\right.$
- Empirically estimated
- $90^{\text {th }}$ percentile $\longrightarrow C E_{90}=90^{\text {th }}$ percentile of ΔR
- Radial error for $1^{\text {st }}$ point of percentile rank > 90

Circular Error Modeling Study

- Assumed bivariate normal distribution of errors
- Modeled population (all possible check points) as 1M points
- Modeled sample (simulated target range) as 40 points (generated 10,000 trials of 40)
- Constrained σ_{C} to 1 (unitless for modeling purposes, but for spaceborne commercial imaging $\sigma_{C} \sim 1$ meter)
- Varied $\sigma_{\min } / \sigma_{\max }$ from 0 to 1 (distributions from univariate through elliptical to perfectly circular)
- Varied μ_{H} from 0 to 10,000

Example Trial

Bias Direction $=45^{\circ}$
$\frac{\sigma_{\min }}{\sigma_{\max }}=0.5$
$\frac{\mu_{H}}{\sigma_{\mathrm{C}}}=30$

NSSDA RMSE ${ }_{\text {Based }}$

$C E_{90}=1.5175 \cdot \mathrm{RMSE}_{\mathrm{r}}$

NSSDA RMSE ${ }_{r}$ Based Confidence Interval

NSSDA Case 2

$C E_{90}=2.1460 \cdot \mathrm{RMSE}_{\mathrm{c}}$

NSSDA Case 2 Confidence Interval (cardinal direction)

NSSDA Case 2 Confidence Interval (45° off axis)

Sum of Squares

$$
C E_{90}=\sqrt{\left(2.1460 \cdot \sigma_{\mathrm{C}}\right)^{2}+\mu_{H}^{2}}
$$

Sum of Squares Confidence Interval

Sum of Squares Results by Error Distribution Shape

Ager Approach

- When $\mu_{H} / \sigma_{C} \leq 0.1$

$$
C E_{90}=2.1460 \sigma_{\mathrm{C}}
$$

- When $0.1<\mu_{H} / \sigma_{C} \leq 3$

$$
C E_{90}=2.1272 \sigma_{\mathrm{C}}+0.1674 \mu_{H}+0.3623 \frac{\mu_{H}^{2}}{\sigma_{\mathrm{C}}}-0.055 \frac{\mu_{H}^{3}}{\sigma_{\mathrm{C}}{ }^{2}}
$$

- When $\mu_{H} / \sigma_{C}>3$

$$
C E_{90}=0.986 \mu_{H}+1.4548 \sigma_{\mathrm{C}}
$$

Ager Approach Confidence Interval

> Ager Approach CE_{90}
> with $95 \% \mathrm{Cl}$

Ager Approach Results by Error Distribution Shape

"Empirical" Approach

- Given radial error magnitude calculated by

$$
\begin{aligned}
& \Delta R_{i}=\sqrt{\Delta X_{i}^{2}+\Delta Y_{i}^{2}} \\
& C E_{90}=90^{\text {th }} \text { percentile of } \Delta R
\end{aligned}
$$

"Empirical" Approach Confidence Interval

"Empirical" Approach Results by Error Distribution Shape

Side-by-Side Summary

- Empirical method has 0 estimation bias, 0 effect from non-circular distribution, but higher uncertainty.

Conclusions and Recommendations

- RMSE based methods distort circular error estimates (up to 50\% overestimation).
- The empirical approach is the only statistically unbiased estimator offered.
- Ager modification to Shultz approach is nearly unbiased, but cumbersome.
- All methods hover around 20\% uncertainty (@ 95\% confidence) for low geopositional bias error estimates. This requires careful consideration in assessment of higher accuracy products.

