Jorge Navas et al.: Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications,
Proceedings of The Sixth NASA Langley Formal Methods Workshop, p.29-32

Safe Upper-bounds Inference of Energy Consumption for Java
Bytecode Applications

Jorge Navas', Mario Méndez-Lojo', Manuel V. Hermenegildo'?

! Dept. of Computer Science, University of New Mexico, USA
2 Dept. of Computer Science, Tech. U. of Madrid (Spain) and IMDEA-Software

jorge@cs.unm.edu, mario@cs.unm.edu, herme@fi.upm.es

1. Introduction

Size
Rel. Equations

size
Analysis —

Many space applications such as sensor networks, on-board satellite-based platforms, on-board
vehicle monitoring systems, etc. handle large amounts of data and analysis of such data is often
critical for the scientific mission. Transmitting such large amounts of data to the remote control
station for analysis is usually too expensive for time-critical applications. Instead, modern space
applications are increasingly relying on autonomous on-board data analysis.

All these applications face many resource constraints.
A key requirement is to minimize energy consumption.
Several approaches have been developed for estimating DTEZ"EZ?:V I—
the energy consumption of such applications (e.g. [3, 1])
based on measuring actual consumption at run-time for ﬁ / Upper-bound I ”:"SI""
large sets of random inputs. However, this approach has i
the limitation that it is in general not possible to cover o C— noray cons.
all possible inputs. Using formal techniques offers the i oy S I
potential for inferring safe energy consumption bounds, @
thus being specially interesting for space exploration and o
safety-critical systems.

We have proposed and implemented a general frame-
work for resource usage analysis of Java bytecode [2]. The Figure 1. Energy Consumption Framework
user defines a set of resource(s) of interest to be tracked
and some annotations that describe the cost of some elementary elements of the program for those
resources. These values can be constants or, more generally, functions of the input data sizes.
The analysis then statically derives an upper bound on the amount of those resources that the
program as a whole will consume or provide, also as functions of the input data sizes. This article
develops a novel application of the analysis of [2] to inferring safe upper bounds on the energy
consumption of Java bytecode applications. We first use a resource model that describes the cost
of each bytecode instruction in terms of the joules it consumes. With this resource model, we then
generate energy consumption cost relations, which are then used to infer safe upper bounds. How
energy consumption for each bytecode instruction is measured is beyond the scope of this paper.
Instead, this paper is about how to infer safe energy consumption estimations assuming that those
energy consumption costs are provided. For concreteness, we use a simplified version of an existing
resource model [1] in which an energy consumption cost for individual Java opcodes is defined.

Proceedings of The Sixth NASA Langley Formal Methods Workshop 29

Jorge Navas et al.: Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications

import java.lang.Stream; +
public class SensorNet { $ro
public StringBuffer collectData (Sensor.read(rorl)
L Sensor sensors []) { Sensor Net.collectData(r 0,0 £ et) TemperatureSensor read(r0r1)
:E: r117: sensors.length; Builtin.ne(i0,0void) Y
. :) . Builtin.gtfa(r1 T ; 1
StringBuffer buf = new StringBuffer (); S;:;:gg(rrésgw’rs) empSensor.read(r0.r1)
for (.i:n P 1> 05i——){ . Builtin.sub(i0,1,i1) @Cost("10*size(ret)")
String data = sensors|[i].read (); t—SensorNet.collectData(r0,i1,/4,r3)
buf.append (data); Buffer.append(r3,r2,r6)
Builtin.asg(r6,ret) V
return buf; } SensorNet.collectData(r 0,0, 1,y &t) Sensor read(ror) |
interface Sensor { String read ();} Builtin.eq(i0,0void) SeismicSensor.read(10,11) ‘
class TempSensor implements Sensor { Buiiltin.new(StringBuffer,r4) Y
@Cos.t (7 10% size (ret)”) StringBuffer.init(r4,void) SeismicSensor.read(r0,r 1) ‘
public native String read (); } Builtin.asg(r4.ref)
class SeismicSensor implements Sensor { @Cost(20"size(re’) ‘

@QCost(”20*size (ret)”)
public native String read (); }

}

Figure 2. Motivating example (Java source code and CFG)

2. Energy Consumption Analyzer

For space reasons, we will illustrate the overall energy consumption analyzer through a working
example. The Java program in Fig. 2 emulates the process of collecting data from an array of
sensors within a sensor network for further processing and sending to a remote control station. For
simplicity, we only show the collecting process of the sensor network. The source code is provided
here just for clarity, since the analyzer works directly on the corresponding bytecode. The sensor
network is implemented by class SensorNet and defines the method collectData that receives
an array of sensors (Sensor), reads from each one the data observed, and stores it in a buffer
(StringBuffer) for further processing. There are two types of sensors: TempSensor, which takes
simple temperature measurements, and SeismicSensor which records motions of the ground. The
length of the buffer which the method ultimately produces depends on the size of data measured
by the sensors.

Library methods including builtins (assignment asg, field dereference gtf, method invocations
invokevirtual, etc.) have been annotated such that our analyzer can associate energy con-
sumption costs with them using the cost model of [1]. The objective of the analysis is then to
approximate the energy consumption of the whole program. Additionally, Java programmers can
define native methods to represent methods with absence of any callee code to analyze. In the
example, the energy consumption of reading data from TempSensor and SeismicSensor sensors
is proportional (10 and 20 uJ/character, respectively) to the number of characters read. This
domain knowledge is reflected by the programmer in the native methods that are ultimately re-
sponsible for reading (TempSensor.read and SeismicSensor.read), by adding the annotations
@Cost ("10*size(ret)") and @Cost ("20*size(ret)"). The rest of this section describes the
different steps applied by the analyzer to approximate the energy consumption of the program
depicted in Fig. 2. The main components of the framework are shown in Fig. 1.

Step 1: Constructing the Control Flow Graph. The analysis translates the Java bytecode
into an intermediate representation building a Control Flow Graph (CFG). Edges in the CFG
connect block methods and describe the possible flows originated from conditional jumps, exception

30 Proceedings of The Sixth NASA Langley Formal Methods Workshop

Jorge Navas et al.: Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications

handling, virtual invocations, etc. A (simplified) version of the CFG corresponding to our code
example is also shown in Fig. 2. The for loop has been transformed into a recursion and the
original collectData method has been compiled into two block methods that share the same
signature: class where declared, name (SensorNet.collectData), and number and type of the
formal parameters. The bottommost box represents the base case and the sibling corresponds
to the recursive case. The virtual invocation of read has been transformed into a static call
to a block method named Sensor.read. There are two block methods which are compatible in
signature with that invocation, and which serve as proxies for the intermediate representations of
the interface implementations in TempSensor.read and SeismicSensor.read. The annotations
have been carried through the CFG and are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationships. The algorithm infers in
this phase size relationships between the input and the output formal parameters of every block
method. In this example, the size of (the contents of) a variable is its value. Note that for other
type of variables we have also defined different ways of measuring its size. The following equations
are inferred by the analysis for the two SensorNet.collectData block methods:

0 if Sig = 0

S12€ret(Sros Sins Sry) < . .
ret(Sro Sio» Sr1) { 1+ sizeret(Srgy Sig — 1, 8r,) if 850 >0

The size of the returned value ret is independent from the sizes of the input parameter this
(Sro) but not from the length s;, of the array sensors (ip and r; respectively in the graph). Such
size relationships are computed based on dependency graphs, which represent data dependencies
between variables in a block, and user annotations if available. The equation system must be
approximated by a recurrence solver in order to obtain a closed form solution. In this case, our
analysis yields the solution sizeret(Sry, Sigs Sr1) < Sig-

Step 3: Energy Consumption Analysis. In this phase, the analysis uses the CFG, the data
dependencies, and the size relationships inferred in previous steps in order to infer energy con-
sumption equations for each block method in the CFG and further simplify the resulting obtaining
closed form solutions (in general, approximated —upper bounds). Therefore, the objective of the
analysis is to statically derive safe upper bounds on the energy that each of the block methods in
the CFG consumes. The result given by our analysis for the energy consumption of reading the
array of sensors (SensorNet.collectData) is
241 if 550 =0
coSteollect Data(Sros Sigs Sry) < & 20 X sp, +487 4+ if 55, >0
COStcollectData(Sroa Sig — 17 37’1)
i.e., the energy consumption is proportional to the length of the array of sensors (sensors in the
source, 7o in the CFG), and the size s,, of observed data (re in the CFG). Again, this equation

system is solved by a recurrence solver, resulting in the closed formula cost oicctData(Srqs Sigs Sri)-
<20 x Spy X Sig + 487 x Sio T 241.

References

[1] S. Lafond and J. Lilius. Energy Consumption Analysis for Two Embedded Java Virtual Machines. J.
Syst. Archit.’07.

[2] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Customizable Resource Usage Analysis for Java
Bytecode. TR-CS-2008-02, UNM.

Proceedings of The Sixth NASA Langley Formal Methods Workshop 31

Jorge Navas et al.: Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications

[3] C. Seo, S. Malek, and N. Medvidovic. An Energy Consumption Framework for Distributed Java-based
Systems. ASE 07.

32 Proceedings of The Sixth NASA Langley Formal Methods Workshop

