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ABSTRACT
A key technological concept for producing reliable engine diagnostics and prognostics exploits the benefits of

fusing sensor data, information, and/or processing algorithms. This report describes the development of a hybrid
engine model for a propulsion gas turbine engine which is the result of fusing two diverse modeling methodolo-
gies; a physics-based model approach and an empirical model approach. The report describes the process and
methods involved in deriving and implementing a hybrid model configuration for a commercial turbofan engine.
Among the intended uses for such a model is to enable real-time, on-board tracking of engine module performance
changes and engine parameter synthesis for fault detection and accommodation.

Enhanced Self Tuning On-Board Real-Time Model (eSTORM) 
for Aircraft Engine Performance Health Tracking 

 
Al Volponi 

Pratt & Whitney 
East Hartford, Connecticut 06108 

NASA/CR—2008-215272 1



1.  INTRODUCTION

A practical consideration for implementing a real-time on-board engine component performance tracking
system is the development of high-fidelity engine models capable of providing a reference level from which
performance changes can be trended. Real-time engine models made their advent as state variable models (SVM)
in the mid-80s and used a piecewise linear model that granted a reasonable representation of the engine during
steady-state operation and mild transients. Increased processor speeds over the next decade allowed more complex
models, which were a combination of linear and non-linear physics-based elements, to be considered. While the
latter provided greater fidelity over transient operation and the engine operational flight envelope, these models
could be improved to provide the high level of accuracy required for long-term performance tracking, as well as
address the issue of engine-to-engine variation. Over time, these models may deviate enough from the actual
engine being monitored, as a result of improvements made during an engine’s life cycle such as hardware
modifications, bleed and stator vane schedules alterations, cooling flow adjustments, which cause the module
performance estimations to be inaccurate and often misleading. Thus, the challenge is to find a modeling approach
that will address all of these shortcomings, while maintaining the execution speed required for real-time
implementation.

To address this challenge, an alternate approach to engine modeling has been introduced; wherein, a hybrid
engine model architecture incorporates physics-based and empirical components. This methodology provides a
means to automatically tune the engine model to a particular configuration as the engine evolves over the course of
its life, and, furthermore, aligns the model to the particular engine being monitored to insure accurate performance
tracking, while not compromising real-time operation.

Overall benefits that can be derived from hybrid models include reduction of health management system false
alarms and missed detections, improvement of engine diagnostics for the accurate isolation of faults, as well as
increased engine prognostic capabilities. These enhancements would directly support NASA and industry
aeronautic strategic goals of reduced operating cost, increased safety, and increased reliability.

1.1 TEAMING ARRANGEMENT

The vast majority of the work contained in this report was accomplished by members of three companies
(Table 1-1) with support from Glenn Research Center (GRC). 

 

Although there was considerable synergy and technical contribution overlap between the primary members of
the team in all areas during this development, the major responsibilities are illustrated in Table 1-2:

Table 1-1.  Participating RASER Task Order No. 26 Companies

Company/Agency Role Principal Investigator

Pratt & Whitney (P&W) Prime Contractor Al Volponi

Intelligent Automation Corporation (IAC) Sub-Contractor Tom Brotherton

Rob Luppold

Jesse Ma

NASA GRC Program Support Don Simon (COTR)

Table 1-2.  Major Responsibilities Per Company

Company Responsibility

P&W Program Management, Technical Direction, Analytical Support, Algorithm Development

IAC Empirical Modeling, Algorithm Development, System Integration, Real-Time Software Development
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1.2 CHRONOLOGY

This program was a follow-on development effort to develop, refine, and demonstrate a real-time hybrid
engine model building strategy to enable accurate engine module performance tracking. The original exploration
and development of the hybrid engine model approach were initiated under previous programs and funded by
NASA GRC and NASA Dryden Flight Research Center (DFRC) as Small Business Innovative Research (SBIR)
grants. These (Phase I and Phase II) grants were awarded to IAC and the development (which took place from 2001
through 2004) was carried out under close collaboration with P&W. These earlier programs provided a proof of
concept for using a hybrid model approach with simulated engine data for a P&W F117 military transport (C17)
engine. Real-time operation of an F117 hybrid engine model (developed off-line) was demonstrated on a target 300
MHz processor using streaming (20 Hz) simulated Aeronautical Radio, Incorporated (ARINC) 429 F117 flight
data and was the culmination of the SBIR efforts.

These efforts were based on a P&W real-time engine model strategy referred to as the self-tuning onboard real-
time model (STORM). The enhancements developed under these SBIRs (as well as under the current program) are
referred to as enhanced STORM (eSTORM).

1.3 PROGRAM GOALS

The present program was initiated by NASA GRC as a follow-on effort with the end goal of refining the hybrid
engine model building methodology to be used entirely in an on-board configuration and demonstrating the real-
time software on the target processor driven by actual streaming flight data. This included both model building
across the flight regime (previously done off-line on a PC) and operation of the model in real-time using actual
engine flight data.

To accomplish these goals many sub-tasks had to be addressed. First, a suitable target engine for the study
needed to be identified having the following attributes:

• Be a high-bypass engine used for transport applications

• Have sufficient flight and/or test cell data available to P&W to support initial eSTORM creation and
development

• Have an operational STORM model that already exists, which can serve as the primary physics-based
portion of the eSTORM hybrid model.

The P&W commercial PW6000 engine was chosen as the application engine for this development. It is a high-
bypass engine that had recently (September through October 2004) completed flight certification and there was a
large database of flight-recorded data available. It also had an on-board operational STORM system.

Before discussing the specific tasks and achievements of the current program, a brief overview of the STORM
and eSTORM methodologies is provided. Further detail can be found in references 1 through 5, (see Section 4,
References).

1.4 BACKGROUND: STORM OVERVIEW

The first attempts at constructing on-board engine models used a simple real-time engine model, typically a
SVM coupled with a Kalman filter (KF) observer that together provided an adaptable engine model capable of
tracking the monitored engine during steady state and transient operation. The KF observer would act upon the
residuals formed by the output of the SVM and the actual observed measurements to provide a set of tuners that
would adapt the SVM to match the actual observations (driving the residuals to zero, on the average). The tuners
consist of a set of engine module performance parameters, such as efficiencies and flow parameters, that would
allow the engine states and output parameters to be adjusted to provide a more faithful match to the actual engine.
A typical architecture for such a model is depicted in Figure 1-1.
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The measured engine parameters, denoted by P in Figure 1-1, typically consist of some set of engine speeds,
and inter-stage temperatures and pressures. The input set consists of the independent engine and flight condition
parameters required to drive the actual engine and the engine model. These are typically fuel flow, bleed
commands, variable stator vane positions, altitude, Mach number, and the like. The engine model produces a noise
free estimation of the measured engine parameters, denoted by , which represent the nominal baseline levels and
are compared to the actual measured values to produce a residual parameter vector :

The residual vector contains the effects of module deterioration, (denoted by ), measurement noise, sensor
bias (if present) and any attendant modeling error. The vector  consists of some subset of Module performance
parameters, such as changes in adiabatic efficiency ( ), flow capacity ( ), and nozzle areas ( ) for the
compressor(s) and turbine(s). This vector ( ), sometimes referred to as the set of tuners, is made available to the
engine model (SVM), where they are used to adjust the output engine parameters to more closely match the
observed values. In the closed loop operation, these tuners attain the required level to force the residuals to an
average level of zero. The result of such a system is the creation of a set of virtual sensors, ( ), that can be used for
fault detection and accommodation typically performed by the engine control [full-authority digital electronic
control (FADEC)].

The primary goal of this engine model-KF system (depicted in Figure 1-1) was to increase the accuracy of
engine parameter synthesis and provide engine module performance tracking. The module performance changes
calculated by the KF are used to adapt or tune the SVM to the engine being monitored by forcing the model
estimated parameters to more closely match (and track) the measured engine parameters as the engine underwent
various power maneuvers and degrading over time.

For this architecture to work, an implicit assumption is being made, i.e., that the physics-based model (SVM) is
a fairly good match of the particular engine being monitored. Unfortunately, this assumption is seldom satisfied
due to engine-to-engine variation, the simplicity of the SVM itself (needed for real-time operation), not to mention
that engine modifications/improvements occurring over the engine’s life cycle typically do not find their way into
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revised models for on-board usage in a timely fashion (if at all). The results of an engine/model mismatch will
cause corruption in the performance measures (tuners) that are being tracked. In effect, the tuners (as their name
suggests) become unwilling mathematical artifacts, assuming whatever value is required to drive the residuals to
zero. This is illustrated in Figures 1-2 and 1-3.

In Figure 1-2, there is a simulated (very) slow transient (2,000 seconds) from idle to takeoff back to idle
power. The blue traces represent the outputs from a non-linear aero-thermal engine simulation of the monitored gas
path parameters ( ) and the red traces the output of the SVM ( ) without the KF in the loop. The mismatch is
intentional to show what the effects would be on the tuners when the KF is enabled to drive the mismatch as close
to zero as possible. This is depicted in Figure 1-3. As can be seen, the performance measures meander between
±10 percent to effect closure, thereby rendering them ineffective as true performance tracking measures. Since the
residual is being driven as close to zero (as possible with the tuners) when the KF is enabled, the attendant
estimated parameters ( ) in this case will be closer to those observed on the actual engine being monitored, as can
be seen in Figure 1-4. The closure is not perfect, but is certainly better than that observed in Figure 1-2. Thus, the
analytical redundancy provided by these virtual sensors ( ) could still be of benefit to the fault detection and
accommodation (FDA) logic typically used in modern FADECs to facilitate the control adaptation in the case of
dual channel mismatches. However, for enabling meaningful performance tracking, a more faithful model
representation would be needed.

  

P P̂

P̂

P̂

193442.cdr

Figure 1-2.  Simulated SVM/Engine Mismatch: Without KF
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1.5 BACKGROUND: ESTORM OVERVIEW
To provide a more accurate tracking of the module performances changes of the engine being monitored, a

modification to the original STORM system is required. To prevent any simple engine model (SVM) deficiencies
from being absorbed into the tuners (efficiencies, flow capacities, etc.), it is necessary to create a more accurate
model for the particular engine being monitored. Engine-to-engine variation along with the real-time constraints
imposed on the system would all but rule out a physics-based model approach to the problem. Instead, a hybrid
model solution will provide the requisite accuracy and speed. This system is referred to as eSTORM.

A hybrid gas turbine engine model consists of physics-based and empirically derived constituents.
Physics-based models would consist of piecewise linear or non-linear aero-thermal models of varying complexity,
wherein the SVM is a simple example. In contrast, empirical models are derived solely on the basis of collected
data. A typical architecture for such a hybrid model that might be used for the purpose of engine performance
tracking is depicted in Figures 1-5 and 1-6.

 

Figure 1-5 illustrates a typical configuration wherein an empirical modeling process captures the difference
between the physics-based engine model and the actual engine being monitored. The empirical element can take
many forms, however, it has been convenient to use a multi-level perceptron (MLP) artificial neural network
(ANN) for this purpose. When the empirical model is complete, the hybrid structure would take the general form
shown in Figure 1-6.
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The combination of the empirical element and the physics-based engine model provides a more faithful
representation for the particular engine being monitored. This provides more meaningful residual information from
which an engine performance change assessment can be performed since potential (physics-based) model
inaccuracies and shortcomings have been effectively removed by virtue of the empirical element.

This strategy accomplishes two things. It will improve the parameter synthesis accuracy beyond that which is
achieved through the basic STORM approach (previously illustrated in Figure 1-4) and it provides a zero reference
for the estimation of the module performance changes (tuners). These two effects are illustrated in Figures 1-7 and
1-8, respectively, for the 2,000-second power transient under consideration.
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Figure 1-6.  Implementing the Empirical Model Element to Form the Hybrid Model
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Figure 1-7.  Simulated SVM/Engine Mismatch: With Hybrid Model eSTORM
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The approximate zeroing out of the module performance deltas (tuners) in the eSTORM system as seen in
Figure 1-8, ultimately supports the (visible) tracking of these parameters as deterioration occurs over time. An ill-
performing module will now stand out among its neighbors, as illustrated in Figure 1-9.

This increased visibility in module performance tracking in addition to the increased accuracy in the engine
parameter synthesis substantiates the use of the hybrid model approach.
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Figure 1-9.  Increased Performance Deviation Visibility Using eSTORM Hybrid Model
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2.  CURRENT PROGRAM ACTIVITIES

The goals of the present program required refining the hybrid engine model building methodology to be used
entirely in an on-board configuration and demonstrating the real-time software on the target processor driven by
actual streaming flight data. The PW6000 engine was chosen as the target for this activity since it had an opera-
tional STORM system and a large repository of flight data was available from recent flight certification activities. 

To accomplish these goals, the following general tasks were identified:

1. Initialize basic eSTORM configuration for chosen target engine.

a. This entailed a re-configuration of the PW6000 STORM system to standards developed under previous
eSTORM activities mentioned earlier in this report.

2. Model refinements entailing

a. Enhancements required for various ambient and flight envelope excursions during quasi-steady-state
operating conditions. 

b. Accommodations required for engine transients.

c. Data normalization methods supporting model development.

d. Extension of the basic engine SVM to include thermocouple modeling for all temperature measure-
ments (T25, T3, and T49).

e. Redesign of the KF to incorporate the thermocouple model changes and accommodate the associated
state dynamics.

f. Validation of model and filter design against PW6000 flight data.

3. Develop incremental empirical model training methods.

a. Refinement of current incremental modeling training methodology for real-time operation

b. Develop means of invoking segmented model elements and smoothly transitioning between individual
model elements over the flight regime.

c. Develop an adequate data clustering process to support model regime recognition in real-time.

d. Develop adequate neural network training methods for real-time or near real-time implementation.

4. Real-time implementation development

a. Determination of bandwidth requirements.

b. Generation of software code.

c. Demonstration of real-time system in a real-time test bench facility using hardware representative of
flight hardware, along with streaming flight data.

In following sections, P&W will provide an overview description of the activities under these tasks, highlight-
ing the technical issues, algorithm development, and implementation challenges.

2.1 INITIALIZING BASIC ESTORM CONFIGURATION

2.1.1 PW6000 STORM System
The current on-board PW6000 STORM consists of an engine SVM with two KF observers. The two-KF

STORM system is somewhat unique to the PW6000 and was originally developed to aid in detecting and accom-
modating measurement error. A Matlab/Simulink version of this STORM system was also available. Several initial
tasks were required to baseline the eSTORM system for the PW6000, as follows:
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a. Re-configure the PW6000 STORM to a one-KF STORM system amenable to subsequent eSTORM
development.

b. Confirm that the ground-based Matlab/Simulink SVM is the same as the in-flight SVM embedded in
the on-board system.

c. Locate PW6000 flight-data database

— Identify required engine/flight parameters required for eSTORM development

— Prepare automated scripting to download required parameters and populate Matlab/Simulink envi-
ronment

d. Prepare Matlab/Simulink environment to accept recorded flight data and process through re-config-
ured STORM.

All of the above tasks were accomplished in the period of performance extending from January 2005 through
September 2006. Several observations were made during this investigation:

a. The Matlab/Simulink PW6000 SVM is essentially identical to the on-board SVM. Several plots of a
typical flight indicate some differences; however, they are explainable as follows:

— For temperatures, the on-board system has thermocouple lags enabled. The Matlab/Simulink sys-
tem did not have thermocouple lags modeled, and thus there was an expected lead observed during
transients.

— The on-board SVM parameter outputs (on ARINC) were recorded at a substantially lower sample
rate (approximately ½ to 1 second) as opposed to the Matlab/Simulink model which has a 100 ms
output.

b. There is a steady-state mismatch between the actual PW6000 engine (recorded data) and the model
outputs (SVM). The considerable difference will have to be absorbed by the empirical modeling within
eSTORM. 

Appendix A contains plots depicting the differences between the actual engine (blue), the on-board STORM
(green), and the Matlab/Simulink eSTORM (red). This data represents a sea-level power transient, idle-T/O-idle in
190 seconds, wherein the STORM tuners were turned off. Thus, the output observed is essentially directly out of
the on-board model SVM (green). The Matlab/Simulink (eSTORM) was run with ANN off and the tuners disabled
so that the output (red) is essentially the model SVM output. This way a direct comparison can be made between
the two STORM (SVM) systems and with the actual engine.
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The red and green plots coincide fairly well (except for the temperatures and fast acceleration/deceleration
areas for the reasons noted above). P&W has concluded from these that the SVM models (on-board and Matlab)
were essentially the same.

It was also evident that the actual engine did not seem to match either model, especially at steady state, with the
exception of P5 engine pressure ratio (EPR). The disparity is quite large as noted in Table 2-1.

This level of error would have a dramatic effect on the STORM tuners, if they had been enabled. The disparity
is believed to have been due to the use of a Block 4 fan module during certification testing. A re-run of the STORM
model with tuners enabled supported this hypothesis. Figure 2-1 depicts the performance tuners during the high
power steady-state area (approximately 60 to 140 seconds).

Table 2-1.  Error Between SVM and Current PW6000 Engine

Location Percent Error

N1 2.14

N2 3.78

T25 3.6

P25 11.8

T3 1.05

Pb 3.96

P5 1.54

T5 1.94

P
e

rc
e

n
t

D
e

lt
a

-4

-2

0

2

4

6

8

10

50 60 70 80 90 100 110 120 130 140

Time – seconds

PW6000 STORM Block 4: Engine Model Mismatch Effect on Tuners

FAN

LPC

HPC

HPT

LPT

193450.cdr

Figure 2-1.  Performance Tuners During High Power Steady State Operation
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The presence of the tuners reduces the model/engine mismatch error dramatically in all parameters except Pb
and P51. These errors are tabulated in the Table 2-2.

2.2 MODEL REFINEMENTS

As noted above, there was an unacceptably high level of disagreement between the current MatLab/Simulink
PW6000 SVM and the data obtained during flight certification of the engine. There were two areas that were
investigated: 

1. Thermocouple modeling to align the temperature dynamics of the SVM to the actual engine

2. A re-generation of steady-state base points from the P&W non-linear engine simulation (state-of-the-art
performance program [SOAPP]) to address the steady-state errors.

2.2.1 Temperature Thermocouple Modeling
The transient response of the gas temperatures (T25, T3, and T5) from the PW6000 SVM was faster than the

observed engine temperatures. This was due to the lack of thermocouple models in the SVM. Thermocouple
models were added to the basic SVM and the resultant transient lag now matches the actual data response with
greater fidelity (Figures 2-2 through 2-4).

Table 2-2.  Error Between SVM and Current PW6000 Engine with Tuners Enabled

Location Percent Error

N1 0.25

N2 0.12

T25 0.31

P25 0.30

T3 0.51

Pb 2.11

P5 1.38

T5 0.18

1  The lack of closure relative to these particular parameters is due to the reduced informational content of these parameters (relative to 
the other gaspath parameters) for the specific health parameter set chosen that is estimated by the Kalman Filter.)
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In Figures 2-2 through 2-4, blue represents the actual temperature transient values, green the model value
without the thermocouple model, and red with the thermocouple model. Because these values impacted the residual
values and dynamics, the KF had to be redesigned to accommodate this addition. This was accomplished by aug-
menting the state equations in the SVM by adding three additional temperature states representing the
thermocouple temperatures. The basic model is a 1st-order lag:

where: 

 The time constants for T25, T3, and T5 were scheduled as a function of burner pressure ( ). The
addition of the 1st-order lag for these three temperatures is accomplished by augmenting the state vector to include
the TC temperatures as states as follows:

This formulation incorporates the 1st-order lag dynamics directly into the state equations, so that the resultant
system with KF observes the appropriate parameter dynamics. More details can be found in Appendix A.1,
Accommodating Thermocouple Dynamics.

2.3 EMPIRICAL ELEMENT MODEL BUILDING
P&W has introduced the basic hybrid model concept, but has not discussed any of the many implementation

issues associated with this type of an approach. Since this methodology is predicated on developing an empirical
description of the difference between a (simple) fixed physics-based engine model and the actual engine being
monitored, the method employed for determining the empirical element, and the associated data collection require-
ments play a central role in this development. Other issues, such as the configuration management of the hybrid
model, accommodating the effects of simple line maintenance activities, instrumentation problems and replace-
ments, and flight domain excursions, also contribute to the feasibility of a real-time performance diagnostic
tracking system, but fall outside the scope of the present study and will not be addressed.
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The empirical model that will be used in this application will take the form of a series of n node hidden layer
multi-layer perceptron neural networks (MLP NNs) for each of the parameter residuals being modeled. For this
study P&W chose n=25, which appears to be adequate for the task at hand. For the PW6000, there were eight such
MLPs, one each of the measured parameters (N1, N2, T25, P25, T3, P3, T5, and P5). The inputs for each of these
MLPs consisted of engine and flight parameters:

1. Altitude

2. Mach number

3. Normalized low rotor speed

4. Stator vane angle

5. B25 bleed

6. B8 stability bleed

7. Active clearance control (ACC)

8. Air-oil cooling (AOC).

The architecture for each MLP is depicted in Figure 2-5.

An empirical model of this type (represented by an MLP), trained at a fixed flight condition, does exhibit a
degree of robustness in the sense that it encapsulates a region surrounding that operating point with sufficient accu-
racy such that the parameter synthesis estimates and the module performance tracking are left uncorrupted.
However, it could not be expected to cover an entire flight regime. Thus, it is natural to consider a partitioning of a
typical flight envelope into contiguous regions and developing individual empirical models for each region in order
to provide adequate coverage. The resultant configuration would require a means to smoothly transition between
models as the aircraft’s flight trajectory progressed across the flight envelope. A suitable partition might entail
having regions as depicted in Figure 2-6.
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Figure 2-5.  Parameter Residual Empirical Model MLP Structure
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Each region is defined by its center point (red dot) and a ± distance in altitude and Mach number (about that
point). Empirical models (MLPs) would be derived for each measured parameter residual and each region in the
partition. For this project, a partition of 12 cells was used, hence the number of (sub-)models required would be 96
(=8× 12). This may seem like a large number, however, given the small size of the MLPs and their computational
efficiency, their implementation in real-time operation is easily achievable as will be seen in the later sections. The
more difficult task to address is how to collect sufficient data and train the networks to provide sufficient flight
envelope coverage.

Traditionally, MLPs are trained offline in a batch mode once sufficient data has been collected for that purpose.
This would become a burdensome proposition to apply across a fleet of engines. It would also defeat the goal of
providing the level of autonomy P&W seeks in an on-board diagnostic system. Since P&W is tracking to what
degree component performance may change on a given engine, what is needed is a methodology for training the
system onboard without the need to download engine and flight data to a ground station for batch processing. It is
also evident that this methodology must support sequential building of the empirical model (ANN) over many
flights, since it is unlikely that sufficient data would be collected on any single flight to capture the entire flight
envelope, or for that matter, any given partition of the flight envelope. Such a method would need to be performed
within the computational bandwidth of present day microprocessors, not require excessive amounts of memory for
storing data of the interim models and have a means for self-determining when a given model is complete (in order
to end the model building phase).

To achieve autonomy, it is necessary to develop a strategy and process that supports model building to be done
in an incremental fashion as data is collected during flight as opposed to the traditional method of collecting all the
necessary data and then developing the model. Earlier in 2004, a bootstrap methodology was developed that pro-
vided the first introduction to such an incremental empirical model building strategy. A recent algorithmic
breakthrough in this development has achieved (from benchmark testing) a real-time computational reduction of
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1,000 to 11, with an attendant reduction in operating memory requirements relative to the original bootstrap
concept.

The new methodology takes advantage of the source of data, (i.e., a gas turbine engine in flight). The first step
in the bootstrap process was to partition the data into groups that would be subsequently represented by a set of
radial basis functions used to generate the pseudo-data for modeling purposes2. Most self-organizing strategies for
partitioning data are generic in the sense that the data processed by these algorithms can be quite varied in its form
and magnitude. This is certainly the case with batch processing a set of data collected over a long time period.
However, in formulating an incremental strategy advantage can be taken  of the fact that from discrete time k to
k+13, the inputs (altitude, mach number, etc.) and gas turbine parameter outputs (speed, temperature, pressure
residuals) are not changing radically. This fact enables a simple (and effective) ad hoc self-organizing strategy to be
incorporated (which will be described momentarily). The second advantage comes from the realization that there is
nothing gained (from a model information perspective) by using random (pseudo) data above and beyond the
statistical moments (mean and variance) used to generate them. Thus, it would be sufficient to use the mean and
variance (weighted by sample size) directly in the model building process. To do this, the MLP training algorithm
needed to be changed to use these quantities directly in such a way that the quantities μ, σ, nsample would have the
same effect as a sample of random data of size nsample generated from the normal distribution N(μ σ) . Across a
flight envelope partition (cell) this would yield a tremendous reduction in the training set and is largely responsible
for the 1,000 to 1 reduction in computation time. The algorithm, which will be described in the sequel, makes use
of Gaussian mixture models (GMMs) which are essentially multi-dimensional normal distributions (or radial basis
functions) consisting of (n-dimensional) quantities {μ, σ, nsample}.

2.3.1 Empirical Model Building Overview
To accomplish the empirical model building task that would be suitable for a real-time, on-board environment,

operating in a totally autonomous operational mode, a two-stage model building strategy was adopted. This strat-
egy incorporates a real-time process and a non-real-time (off-line) process. Both processes are envisioned to be
accomplished on-board, automatically, without manual intervention.

The first stage of the process is performed in real-time. It is the process of forming the GMMs alluded to in the
preceding section. In essence, this can be thought of as a data compression phase, wherein clusters of input and
residual parameter data are formed, in real-time during flight and temporarily stored for subsequent processing in
the second (off-line) stage of the model building procedure. In addition to forming the (compressed) data clusters,
the first stage of this process also performs: 

a. Regime recognition (i.e., knowing what cell partition, and hence sub-model is being built)

b. Whether the current data point should be part of a new cluster or is indeed already covered by an exist-
ing cluster from a previous flight (in which case the current data point is already modeled and the
eSTORM configuration in Figure 1-6 can be executed using existing MLPs to track performance
changes).

1  Time reduction depends on sample size of the data being processed and is non-linear with sample size.
2  A Bootstrap Data Methodology for Sequential Hybrid Model Building, Proceedings of the 2005 IEEE Aerospace Conference. Big 

Sky, MT, March 2005
3  Assuming typical sampling rates of in the range of 10-20 Hz.
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The overview structure of this two-stage process is depicted in Figure 2-7.

Figure 2-7 depicts only the overview process of GMM creation (real-time) and the sequential MLP training
(off-line, but on-board) and does not indicate the intricacies involved in steps a) and b) and the general control of
the eSTORM program. Relative to Figure 2-7, the steps enclosed within the red dashed lines form the first stage of
the process that is performed on-board in real-time. As each data point is received, (typically at 10 to 20 Hz), its
cell classification is determined using altitude and mach number. This defines where in the flight envelope the data
resides and what sub-model is in effect. Using the input parameters (N1, N2, T25, P25, T3, P3, T5, and P5) (of this
data point), a determination is made as to whether the data point should be processed by an existing MLP sub-
model (as depicted in overview in Figure 1-6) or whether the current data point represents an area in the flight
regime that has not been previously modeled. This determination is made, by establishing whether or not the n-
dimensional input vector falls within a neighborhood of an already existing GMM residing in the GMM database.
A nearest neighbor criterion, to be described later, is used for this determination. If the data point falls outside any
already established GMM, it is a candidate for the formation of a new GMM. The formation of a new GMM is
essentially a data clustering process that is performed in real-time.

The steps enclosed in the blue dashed lines in Figure 2-7 are performed off-line (i.e., non-real-time), and are
performed on-board at the end of the flight. This can be launched by a weight-on-wheels (WOW) signal. This is the
second stage of the incremental model building process. The GMM database is perused to determine if new GMMs
have been added to the database. In this case, on a cell-by-cell basis, new MLPs are generated for each residual
parameter (8 total), for each cell (or sub-model) that has new GMMs, and become the current incremental model in
the MLP database. The training of the MLPs are done individually. Relative to traditional MLP training methodol-
ogy that would train directly on stored flight data, the proposed method trains on the GMMs. The effect (on the
residual) model is essentially the same. Figure 2-8 highlights the departure from traditional batch training.
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To summarize, for each incoming data point:

1. Determine the flight envelope partition (cell) to which the data point belongs. This is accomplished by
choosing the nearest neighbor cell (Altitude and Mach number).

2. Determine if the current data point belongs to a previously defined cluster (within this cell [i.e., GMM]).
Note: These clusters include mean and standard deviation of the input vector and the measurement Resid-
ual vector. The input vector (means) are used to determine the current point’s proximity to existing
clusters, while the residual (means) are the compressed data that provide (training) definition for the sub-
sequent empirical modeling (MLP).

3. If the point lies within an existing cluster, process the point through eSTORM, obtain the next data point
and go to 1. If the point is outside any existing cluster, begin the GMM cluster process, obtain next data
point, and go to 1.

4. When the flight has ended (queued off of WOW), peruse Empirical Model (GMM) Database for new infor-
mation. MLP training and updates are accomplished during time between WOW and engine shutdown.

Since the training of the empirical model is done incrementally, it is necessary for the eSTORM system to be
able to process data that resides in already trained regions and to process new training whenever required without
compromising the STORM tuners (module health parameters). The overall process (in overview) is depicted in
Figure 2-9.
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2.3.2 GMM Clustering Process
The empirical model database contains information relating to the reduced order encapsulation of the physics-

model/engine residual difference data determined in the on-board stage of the process referred to as GMMs and the
actual empirical model of the residual difference determined from the GMMs. This latter model is determined in
the second stage of the process (off-line).

The GMMs are multi-dimensional Gaussian distributions that are characterized by two statistical quantities, a
mean and a measure of dispersion, the standard deviation. These GMMs are multi-dimensional quantities and are
determined for the vector of independent input parameters u and the vector of dependent engine parameter residu-
als r. The residual vector r is determined as the difference between measured engine parameters y, and estimations
of these parameters from a physics-based model component (Figure 1-5). The input parameters, u, includes alti-
tude, mach number, fuel flow demand, engine bleed commands, active clearance control commands, variable
geometry commands and other parameters as needed. The measured engine parameters, y (and hence the residuals
r), can include engine speeds, inter-stage temperatures and pressures, flows, etc. A GMM will consist of a vector of
means and a vector of standard deviations for both the inputs and residuals that are computed recursively during
the GMM clustering process as follows:

Inputs:

 

Residuals:

where mc and mr are the number of inputs and measured engine parameter residuals respectively, with , 
representing the mc× 1 vectors of (running) input means and standard deviations and ,  representing the
vectors of engine parameter residuals means and standard deviations after N data points have been processed.
When the GMM cluster process terminates (to be described below), these mean and standard deviation vectors,
along with the sample size (N) (at termination) are stored in the GMM database.

The process of generating the GMMs during flight and the subsequent determination of the incremental resid-
ual model offline will be described in a series of process steps. The system continuously processes engine data as it
transcends a trajectory within the flight envelope. The first step is to determine if the flight has terminated. This can
be achieved by monitoring a number of possible parameters. As an example, WOW would provide such an indica-
tion. If the flight is determined to be in progress, the system will continue to monitor and build the GMM database;
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if the flight has ended then the system ceases to monitor any further engine data and performs an empirical model
(EM) update by re-evaluating the MLP models in the EM database. P&W describes both phases in the sequel.

In the former case, as a data point is received (vectors u and r), some form of data correction and normalization
is performed to help reduce the variability in the data. Standard corrections such as gas path standard-day correc-
tions are applied to remove the effects of ambient temperature and pressure. This in itself reduces the order of the
empirical modeling effort. Once this is accomplished, the normalized input parameters, altitude and mach are used
to determine which cell is in effect. This can be done by calculating the distance from the pre-stored cell centers
and selecting the cell that yields the shortest distance.

Once the cell is determined, the sub-model element is defined and the current GMM models are loaded from
the database for that cell. The next step is to determine if the current point is adequately represented by an existing
GMM (in which case no update is necessary) otherwise, a new GMM model element is initiated. The initiation and
determination of a new GMM model element entails a number of process steps including an exit criterion to deter-
mine when to end the GMM building process. Since the GMM effectively represents a (multi-dimensional) cluster,
the process needs to determine when to exit the cluster-building calculation. The criterion depends on the number
of points collected to represent the current GMM cluster (which itself depends on certain stability calculations) as
well as a distance migration from cluster initiation. A simplified process diagram appears in Figure 2-10.

To form a GMM cluster, a minimum number of data points (NMIN) is required. This number depends on whether
or not the data is acquired in steady state (where the input parameters are not migrating) or transient conditions.
Thus there are two minimum number specifications, one for steady state (NMIN_SS) and one for transient (NMIN_Trans),
where NMIN_SS > NMIN_Trans·NMIN is set to one of these two numbers according to a transient operation calculation. This
test looks at the rate of change of inputs (e.g., Altitude), and determines if the rate exceeds a pre-defined Limit in
which case NMIN_Trans will be chosen, otherwise NMIN_SS is chosen for NMIN. Once NMIN data points have been collected,
the initial GMM cluster mean and standard deviation vectors (for the input vector u), μ0 and σ0 are determined and
temporarily stored for reference. As each new data point is acquired, a running exponential average of the input
vector is calculated as follows:   
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These statistics are updated for each incoming data point until an exit criterion is satisfied to end the GMM
clustering process and establish a new GMM cluster point for the database. There are two exit criteria that are
applied. If N represents the current number of data points in the current GMM cluster which is being formed then
the process ends when one of two conditions are met, i.e. either N is larger than some pre-defined maximum NMAX,
(N ≥ NMAX) or the running average  has migrated sufficiently far from the initial average μ0. This latter condition
is tested by calculating a Mahalanobis-type of vector distance d(μ0, ) and comparing to a pre-defined Threshold.
The distance measure is calculated by:

where γ (i) is a weighting factor for the ith input parameter noise sensitivity. Thus, the clustering process will end if
either of the following conditions are satisfied:

When the current cluster (GMM creation) terminates, the newly formed GMM is added to the database and the
next data point received follows the same overall process to determine if it is within the domain of an existing
GMM and if not, a new GMM formation is initiated.

Referring back to Figure 2-9, when a data point is determined to be within the domain of an existing GMM, it
is processed by the (existing) hybrid model as depicted in Figure 1-6 using current MLP empirical model ele-
ments. Since the data point is already represented by an existing GMM, an existing MLP empirical model provides
the requisite compensation to allow performance estimation to be determined without corruption. If the data point
is not within the domain of an existing GMM, the hybrid model is run in frozen mode and a new GMM cluster
process is initiated as described above. Running the hybrid model in frozen mode simply means to process the
point as indicated in Figure 1-5 where the Initial Performance Level input to the KF is frozen at the last known
value estimated (from data within the current GMM database domain). This will insure that the residuals that are
calculated (and used in the GMM cluster formation) do not contain presently known deterioration effects. This is
important since we only want to capture (empirically) the differences between the actual engine and physics-based
model representation and not absorb any deterioration we might have accrued since installation.

Once the flight has terminated, (e.g. with a WOW indication), the second phase of the empirical model process
is initiated. The GMM database is perused for newly generated clusters on a cell- by-cell basis. If a given cell (sub-
model) is found to have newly generated GMMs, the entire collection of GMMs for that cell (sub-model) are used
to generate a new MLP empirical model for each of the residual measurements. The collection of GMMs within a
cell contain a compact representation of the flight data (within that cell) in the form of Input parameter and Resid-
ual parameter averages, standard deviations and associated sample sizes. This compact data representation can now
be modeled with an MLP (or some other representation). This final modeling process is performed offline after
weight-on-wheels indication and the subsequent MLPs generated are stored in the EM database, replacing (and
hence updating) the previously stored MLPs. These MLPs will constitute the EM element in the hybrid model rep-
resentation depicted in Figure 1-5 for subsequent analysis of future flight data.

uN
α

uN
α

2

1 0

0
0 )()(

)()(),( ∑
=

⎟⎟⎠

⎞
⎜⎜⎝

⎛ −=
cm

i

N
N ii

iiuud
σγ

μμ
α

α
2

1 0

0
0 )()(

)()(),( ∑
=

⎟⎟⎠

⎞
⎜⎜⎝

⎛ −=
cm

i

N
N ii

iiuud
σγ

μμ
α

α

MAX

N

NN
or

Thresholdud

≥

≥),( 0
αμ

NASA/CR—2008-215272 26



2.3.3 MLP Training using Clusters
In the second stage of the process, the empirical sub-models are sequentially updated to reflect the new data

that was collected during the current flight. In this stage, the GMMs are used as the input data in the training proce-
dure. As mentioned previously, the MLP training process had to be adjusted to use the GMM information directly
in such a way as to yield essentially the same residual model result that would have been obtained if the actual
residual data had been stored and accumulated over time and used directly in the training in a batch process mode.
In order to describe this procedure we will introduce a slightly different nomenclature wherein M represents the
GMM model with component centers M.c, standard deviation M.s, and the number of points included in the GMM
cluster M.n.

The MLP training is performed by adjusting the various parameters in the neural net to optimize some perfor-
mance functional. For standard MLP training, this is simply the sum-of-squares-error (SSE) defined as:

where r(k) is the k-th point of the residual sequence we are trying to predict, u(k) is the k-th point of the multi-
dimensional input data set, and F(•) is the mapping function approximated by the MLP neural net. There are N
points in the training data set.

Assume that the GMM model is made up of C clusters. M.n(i) is the number of points represented by cluster i
which has center M.c(i) and standard deviation M.s(i). Taking into account the cluster parameters, an equivalent
SSE error function to be used for training can be derived as follows:

where:

and the 'r' and 'u' subscripts refer to the components in the i-th cluster that correspond to the residual and inputs
respectively:

M.c(i) = {M.cu(i) M.cr(i)}.

This is the only change required in the trainer.

2.4 APPLICATION EXAMPLE

To illustrate the algorithms used in this methodology, P&W will apply actual PW6000 engine flight data. In
this example, P&W uses some flight data that was collected during a several hour ferry flight that contains stable
data at several altitudes and climbs and descents between these altitudes. To illustrate the process we will focus our
attention on two segments of this flight. The first segment will contain a level flight at an altitude of 36k ft. The
second segment will contain 36k ft altitude level flight, followed by a climb to 38k and level flight at this new alti-
tude. Figure 2-11 shows the altitude profile for this data.
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Figure 2-12 shows the input parameters for Segment 1.
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Figure 2-11.  Altitude Profile for Example Data
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Figure 2-12.  Segment 1 Input Parameters
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Since the ordinate axis values in Figure 2-12 have been removed (to preserve the proprietary nature of the
data), it is difficult to gauge the stability and non-repeatability of the data. Figure 2-13 depicts the measurement
residuals (in percent) between the main gaspath measurements and the model (SVM) estimates. This plot illustrates
that the variation in the measured parameters is a couple of percent, indicating a fairly stable flight condition. It can
also be observed that all parameters have a mean value other than zero (which implies that is not a good model-
engine match).

If the KF is enabled, then the residuals drive closer to zero as shown in Figure 2-14, however total closure is
not produced (i.e., there are several parameter residuals exhibiting a non-zero mean). The lack of closure is
primarily due to the diminished visibility of the estimated health parameter faults in these particular parameters,
i.e., the informational content of these measured residuals is weak relative to the other gas path parameters in
tracking (estimating) the fault set selected. 

193462.cdr

Figure 2-13.  Segment 1 Measurement Residual Parameters (Percent Δ) Without KF
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This partial closure in the residuals comes at the price of corrupting the tuners, which have now absorbed the
engine-model difference, plotted in Figure 2-15.
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Figure 2-14.  Segment 1 Measurement Residual Parameters (Percent Δ) With KF
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Using the process described above a series of GMM clusters are created in the first stage of the empirical
model building procedure. This process uses the input data (Figure 2-12) and the residual difference between the
SVM model and the engine measurements (Figure 2-13) to create this compressed representation. For the Segment
1 data, 23 GMM vectors were created to represent the 93,395 data points in this segment. This represents approxi-
mately a 4,000:1 compression. The location of GMMs created are plotted in Figure 2-16. In this plot the green
points represent the altitude-mach location of the Segment 1 data and the pink points represent the GMM center
locations with a one sigma band superimposed.

The appearance of the GMM distribution relative to the actual data might appear strange at first glance in that
they seem to be clustered together in certain regions and sparse in others. The reason for this is that the GMM
centers are multi-dimensional vectors and only altitude and mach are depicted. The (seemingly) dense distribution
in altitude and mach is really due to the other six input parameters not shown. In actuality the GMM centers are
uniformly dispersed throughout the eight-dimensional input space in Segment 1. The 4,000:1 compression repre-
sented in this segment is rather dramatic and it would be natural to question the suitability of the GMM formulation
and whether or not training an MLP on 23 GMMs (in the second stage of the process) would yield essentially the
same result as training on the original 93,395 data points directly. The efficacy of the GMM compression can be
tested by running the Segment 1 data back through the hybrid model system depicted in Figure 1-6, where the
MLP has been trained using the 23 GMMs. The effect on the residuals and the tuners are depicted in Figures 2-17
and 2-18, respectively.
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Figure 2-16.  Segment 1: GMM Centers
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Figure 2-17.  Segment 1 Measurement Residuals (Percent Δ) With Hybrid Model Trained With 23 GMMs
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Figure 2-18.  Segment 1 STORM Tuners Using Hybrid Model Trained With 23 GMMs
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Segment 2 (Figure 2-11) contains a level flight at 36k feet altitude, followed by a climb to 38k feet and then
level flight at that altitude. The input parameters for Segment 2 are depicted in Figure 2-19.

Figure 2-20 depicts the measurement residuals (in percent) between the main gaspath measurements and the
model (SVM) estimates. It can be seen from this plot that all parameter residuals have a mean value other than zero
(which implies that there is not a good model-engine match).
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Figure 2-19.  Segment 2 Input Parameters
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If the model was run with the NN enabled at this point (but with the KF disabled), a different set of residuals
would be generated. The NN at this stage would be the MLP trained on the 23 GMMs formed during Segment 1 of
the flight. The residuals that would be formed would be the difference between the incremental hybrid model (i.e.,
the SVM plus Segment 1 MLP) and the actual engine. These residuals are depicted in Figure 2-21.
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Figure 2-20.  Segment 2 Measurement Residual Parameters (Percent Δ) Without KF
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Figure 2-21.  Segment 2 Measurement Residual Parameters (Percent Δ) Without KF and Segment 1 MLP Enabled
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Since Segment 2 begins at 36k feet altitude, much of that portion of the segment is covered by the previous
flight training (which was also at 36k feet). Differences in the other seven input parameters could yield differences
between this incremental hybrid model and the engine (at 36k feet); however, it can be observed in Figure 2-21
that the residuals are all approximately zero during the 36k feet portion of Segment 2. The short portion attributed
to the climb to 38k feet can be seen to affect all residuals. If we were to engage the KF along with this incremental
hybrid model we would produce the following set of STORM tuners as depicted in Figure 2-22.
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Figure 2-22.  Segment 2 STORM Tuners Using Hybrid Model Trained With 23 GMMs
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During the Segment 2 flight, 36 additional GMMs were formed, which represent any un-modeled portion of
the 36K feet flight, the climb to 38K feet and the stable 38K feet portion. Between Segments 1 and 2, a total of 59
(23 plus 36) GMMs were formed. These are depicted in Figure 2-23.

Training the MLP, in the second stage of the process, using all 59 GMMs, will now produce the next incremen-
tal change in the empirical portion of the hybrid model. Processing the Segment 2 data relative to the new model
would yield residuals that are now zero on the average as depicted in Figure 2-24.
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Figure 2-23.  Segment 1 and 2: GMM Centers
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Figure 2-24.  Segment 2 Measurement Residuals (Percent Δ) With Hybrid Model Trained With 59 GMMs
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The resultant performance Δs, now appear as depicted in Figure 2-25. As can be observed, the performance Δs
are now essentially at a zero level.

 

This process would continue with every new flight that the vehicle would take. At some point in time, on a
cell-by-cell basis, no new GMMs would be found. In which case, the real-time assessment would be to run the
hybrid eSTORM model residing in the database. The second stage processing would not be invoked. In essence,
the data itself, determines when the training process is complete.

2.5 REAL-TIME CODE DEVELOPMENT

The eSTORM algorithm has been transitioned onto a hardware platform for real-time implementation and
demonstration. The hardware platform used was based on the IAC-1209 vibration management enhancement
program (VMEP) on-board data collection and processing unit developed for Army helicopters (Section 4, Refer-
ences, 6 and 7). The hardware system includes an Ethernet interface for input of eSTORM parameters, data, and
output of results. The IAC-1,209 real-time software architecture includes different processing modules as stand-
alone data processing units (DPUs). The eSTORM software was developed as a stand-alone DPU that fits within
this structure. 

The hardware system was originally purchased for IAC’s NASA SBIR where the original real-time demonstra-
tion of the eSTORM concept was implemented. To facilitate a cost effective demonstration of the recent advances
in the eSTORM algorithm, NASA transferred that hardware system to the current project. The embedded eSTORM
DPU was developed directly from the Simulink implementation, using tools available from the MathWorks. The
hardware system, real-time software architecture, and real-time system demonstration are described below.

Figure 2-26 shows the hardware of the embedded target system. This system is a variation of the IAC-1209
VMEP hardware developed by IAC for U.S. Army applications. The system hardware includes two COTS PC-104
cards that support an ARINC 429 interface card and a CPU/Ethernet card, respectively. The ARINC 429 interface
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Figure 2-25.   Segment 2 STORM Tuners using Hybrid Model Trained With 59 GMMs
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card can be used for reading data from the aircraft’s ARINC 429 bus. In the eSTORM SBIR Phase II Demonstra-
tion, P&W used this card to process C-17 data for an embedded eSTORM algorithm. In this program, P&W did not
use that bus; instead, data was input to the eSTORM algorithm from RAM disk (DiskOnChip). 

The CPU card forms the computation platform within the IAC-1209 box. This card includes an Ethernet port
for real-time output of eSTORM results and to allow the user to simulate component degradations. The computa-
tional core is supplied by a 233 MHz Pentium II compatible processor. In terms of computational speed, this box’s
throughput is comparable to a high end 1997 desktop PC. The inclusion of an Ethernet interface is a departure from
the standard VMEP configuration. However, for the demonstration on this project, the Ethernet interface allows us
to set processing parameters, input PW6000 data, and display eSTORM processing results immediately.

For embedded software development on the target platform,
we used a VxWorks development station shown in Figure 2-27.
The development station has the stack of PC-104 cards and inter-
faces that allow easy access to both the hardware and software
components of the system. VxWorks supplies debugging tools to
facilitate the embedded system development process. After the
embedded system has been verified and validated on the develop-
ment station, it is then transitioned to the target platform.

Figure 2-26.  Hardware System Summary

Temperature Range: -40 through 55° C
Input Power: 6-40VDC, MIL-STD-704D
Power: <18 W
Dimensions: 3 in. ×  5 in. ×  9 in. without mounting ears
Weight: 4 lbs 5 oz.
Mounting: via mounting plate
Interconnection: MIL-STD 38999 connectors
Remote front panel interface
Processor: Pentium compatible 233 MHz
SDRAM: 128 Mbyte
Disk on Chip: 96 Mbyte
Compatibility: PC/AT compatibility
Communication Channels: Ethernet, ARINC 429

Figure 2-27.  Development Station
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The real-time eSTORM
software runs in the VMEP
real-time system environment
(Section 4, References, 6 and
7). To fit within that architec-
ture, the entire eSTORM
algorithm was implemented as a
stand-alone DPU. Figure 2-28
shows the real-time embedded
system architecture with the
eSTORM DPU as the lone DPU
executing in the system. For the
final demonstration on this proj-
ect, the ARINC-429 interface
was not used. Instead, the
eSTORM input data was
obtained through the Ethernet
interface. Management of the
input data is handled by the
Measurement Executive. The
Measurement Executive then schedules the eSTORM DPU to run after all of its inputs have been read. Outputs
from the eSTORM DPU are sent to the File Manager and are available to the user via the Comms module, which
transmits this information back out over Ethernet to a PC client.

Transition of the eSTORM
algorithm written in terms of Sim-
ulink block diagrams to C-code
embedded in the real-time target
system was performed using tools
available from The MathWorks.
More specifically, the Real Time
Workshop (RTW) with the Embed-
ded Coder extension was used to
automatically generate production
quality C source code from the
Simulink block diagrams.
Figure 2-29 shows a high level
flow diagram for the steps required
in performing that transition.
Extensive use of the Target Lan-
guage Compiler (TLC) to inline all
five of the S-functions was used in
the eSTORM Simulink implementation. In-lining Simulink S-functions is a necessary step for real-time code gen-
eration if the advantages of the RTW Embedded Coder are to be realized. By using the Embedded Coder extension
of RTW, all of the overhead code that mimics the Simulink simulation environment is removed in auto-generated
code. Hence, the eSTORM code produced for the real-time demonstration has a reduced memory foot print and an
accelerated execution time relative to that produced by the conventional RTW auto-code generator.
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Figure 2-28.  Operating System Architecture
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Figure 2-29.  Simulink to Embedded System Development
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Figure 2-30 shows the overall processing flow for
the real-time demonstration. In a previous demonstra-
tion, the ARINC-429 interface was used to simulate
input of aircraft bus data to the real-time system. Since
P&W has already demonstrated that the ARINC-429
interface on the real-time system works, for this dem-
onstration we elected to process the data as fast as the
real-time system could run, as a matter of convenience.

PW6000 data collected from flight test was read
from the demonstration computer disk. Rather then
play that data back in real-time, an entire segment of
data was loaded to the disk-on-a-chip memory within
the real-time system via the Ethernet connection. The
demonstration computer then commands the real-time
system to run. The real-time system then executes the
eSTORM code as fast as it can to process that data.
Data is read from the disk-on-a-chip memory, processed, and the results transmitted to the demonstration computer
via the Ethernet connection as they become available. Those results are then displayed on the demonstration
computer.

The C source code developed with RTW was compiled into a run-time module in the Microsoft Visual Studio
Integrated Design Environment (VS IDE). The executable module produced by VS IDE required only 136 kilo-
bytes of memory on a PC laptop running the Windows XP operating system. That PC had a 1.2 GHz Pentium III
processor and 512 megabytes of RAM. The code ran approximately 120 times real-time on the laptop. Note that
the eSTORM execution time estimate was not aided by assigning the application a high priority within the
Windows operating system.

With the 233 MHz Pentium II processor in the IAC-1209, P&W expected the code to run about 5 times slower
then on the 1.2 GHz machine; (i.e., about 24 times real-time). However, P&W found that the actual code cycle time
on the IAC-1209 was about 4 times real time. This timing result is most likely due to the disk-on-a-chip and ISA
busses employed by the IAC-1209 box. The ISA bus is particularly slow when compared to the PCI bus used by
the PC.

This will not be an issue in future applications with the latest version of the IAC real-time hardware system
(the IAC-1134). That hardware includes a Xilinx Virtex-IV FPGA processor. Embedded in that chip are two Pow-
erPCs each rated at 450 MHz. In addition the IAC-1134 will include PCI bus structure for passing data between
memory and processing elements.
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Figure 2-30.  Demonstration Software to Hardware 
Mapping
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3.  SUMMARY
The concept of a hybrid engine model has been introduced and discussed. A pivotal requirement for successful

implementation of such systems (containing empirical model elements) is the ability to perform the empirical mod-
eling task in a manner that imposes little additional burden in terms of data manipulation, infrastructure, memory,
and computation. A two-stage on-board empirical modeling strategy as been presented in this report that supports
autonomous real-time model derivation and subsequent model operation. Hybrid models show great promise in
providing increased accuracy for parameter synthesis and module performance tracking. 

NASA/CR—2008-215272 41





APPENDIX A
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Figure A-1.  PW6000 Block 4: Measurement Comparison — N1
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Figure A-2.  PW6000 Block 4: Measurement Comparison — N2
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Figure A-3.  PW6000 Block 4: Measurement Comparison — P25
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Figure A-4.  PW6000 Block 4: Measurement Comparison — Pb
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Figure A-5.  PW6000 Block 4: Measurement Comparison — P5
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Figure A-6.  PW6000 Block 4: Measurement Comparison — T25
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Figure A-7.  PW6000 Block 4: Measurement Comparison — T3
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Figure A-8.  PW6000 Block 4: Measurement Comparison — T5
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A.1 ACCOMMODATING THERMOCOUPLE DYNAMICS

The PW6000 instrumentation suite contains three temperature measurements, i.e., T2.5, T3, and T5 (EGT). The
sensor transducers used to make these measurements are thermocouples. The dynamic response of these measuring
devices can be characterized with a first order lag system whose transfer function is given by:

where τ  is the so-called dominant sensor time-constant, s is the Laplace Transform variable, u(·) is the sensor
input, and y(·) is the sensor output. The engine’s rotor speed and pressure transducers could also be characterized in
the same manner, but the dominant time constants of these transfer functions are significantly greater than the
open-loop engine dynamics (i.e., their transfer functions can be approximated as unity in the frequency range asso-
ciated with the PW6000 SVM). The thermocouple time-constants, however, are well within the bandwidth of the
SVM and should be addressed in the design of the eSTORM KF to minimize transient estimation error when the
system is driven with real engine data. Extensive empirical studies at P&W have shown that the PW6000 thermo-
couple time-constants vary with engine power level (i.e., the time-constants are larger [sensor response is more
sluggish] at low power and become smaller at the higher engine power levels). To reflect this observed phenome-
non, the thermocouple time constants for each temperature sensor are tabulated as a function of uncorrected burner
pressure over the nominal engine operating line.

To augment the dynamic SVM with the thermocouple dynamics, the following approach was used. At a spe-
cific engine power condition, the dynamic SVM can be expressed mathematically as: 

In this particular state-space realization of the engine model, the state vector, xEng(t), contains the high and low
rotor speeds and four engine core metal temperatures. The engine input vector, uEng(t), contains control system
commands, installation effects, and incremental variations in gas path rotating machinery efficiencies and airflow
capacities. The engine output vector, yEng(t), contained in the PW6000 measurement suite is composed of eight ele-
ments: two rotor speeds, three pressures, and three temperatures. For the purposes of this discussion, let’s assume
that the three metal temperatures are located in the last three elements of yEng. 

A state-space realization of the scalar transfer function (single-input, single output) given by Equation 1 can be
written in a manner similar to the notation used in Equation 2. That is:

where uTC(t) denotes a single element of the engine output vector, yEng(t), corresponding to a specific mea-
sured temperature, e.g., T2.5, the thermocouple state vector, xTC(t), is a scalar reflecting the thermal capacity of the
transducer, and the output, yTC(t), represents the measured temperature time history. Note, that the individual ther-
mocouple states are not dynamically coupled to each other. Using our definition of the thermocouple input vector
and the fact that the xTC states are decoupled from each other, we can express the three thermocouple measurement
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system in terms of engine states, thermocouple states, and the engine input vector. To illustrate the validity of that
last point, let’s integrate the engine model with the thermocouple measurement system which results in an
expanded state-space system that merges Equation 2 with the vector (multi-input, multi-output) version of Equa-
tion 3 such that:

Note that all of the matrices must have compatible dimensions to perform the pre- and post-multiplication
operations represented in Equation 4. With the engine/sensor dynamics expressed in the form of Equation 4, the
task of writing a MATLAB script or function for designing a KF that includes all significant dynamical effects
present in the model is quite simple. The current baseline PW6000 Kalman design tool was updated so that the user
could performed the design procedure with or without the thermocouple dynamics. However, I highly recommend
using the dynamic temperature sensor model if the time-constant data is available and the real-time software appli-
cation possesses the computational resources to support the increased number of arithmetic operations imposed by
the expanded system.

After designing the new filter, the Simulink code that implements the PW6000 SVM was updated to support
the thermocouple measurement model. These coding changes reflect the variations of the thermocouple time con-
stants with engine power level (table lookups based on uncorrected PB), and the implementation of the state equa-
tion augmentations specified by Equation 4. Care was taken to compartmentalize (modularize) these changes so
that switching back to the SVM given by Equation 2 can be effected through user input to a simulation setup script
and Configurable Subsystem blocks embedded within the eSTORM Simulink block diagram. The employment of a
data-driven specification of the PW6000 eSTORM Simulink block diagram closely mimics the techniques devel-
oped in the F117 eSTORM work done on the NASA PHM and Data Fusion programs. This approach provides the
user with large degrees-of-freedom in changing the baseline configuration and avoids the proliferation of spin-off
models to accommodate these off-nominal configuration changes.
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