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A computational fluid dynamics (CFD) model is developed to simulate pressure control 

of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. 

Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered 

within the vessel that injects cooler liquid into the tank, mixing the contents and reducing 

tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own 

vapor with liquid density varying with temperature only and a fully compressible ullage. 

The axisymmetric model is developed using a custom version of the commercially available 

FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests 

performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper 

Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low 

gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. 

Steady and relatively smooth ullage pressurization rates are predicted. This work advances 

current low gravity CFD modeling capabilities for cryogenic pressure control and aids the 

development a low cost CFD-based design process for space hardware. 

Nomenclature 

dp/dt = ullage pressure rise rate 

Vmax = maximum velocity within the domain 

I. Introduction 

ASA’s space exploration program is considering high energy cryogenic propellants for the Earth departure, 

Lunar descent, and Lunar ascent stages. The advancement of cryogenic fluid management (CFM) technology is 

essential to the development of these upper stages. NASA is teaming with its industrial partners to progress 

development/technology that will broaden the experience base for the CFM community as a whole. Microgravity 

experiments and relevant data are highly expensive and limited. This issue has motivated the Marshall Space Flight 

Center (MSFC)/Boeing team to aggressively explore combinations of ground testing and analytical modeling to the 

greatest extent possible.  

Cryogenic propellant computational fluid dynamics (CFD) tools offer low cost design solutions for the aerospace 

industry to model low-g fluid dynamic effects.  During earlier space programs, such as the Apollo and Space 
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Shuttle, design activity related to how a specific tank would perform in zero g was based on estimates for the 

performance using simple models for the internal fluid components such as galleries and collectors.  Qualification of 

these components could involve drop tower testing, parabolic aircraft flight testing or extensive ground testing in 

more severe g-level tank orientations than would be needed in actual flight.  With the advent of these sophisticated 

CFD codes and the ability to model these complex internal propellant management geometries, high fidelity 

solutions and propellant tank operational verification can now be obtained by analysis at a fraction of the original 

cost needed for an elaborate test.     

Propellant tank pressure control in reduced gravity is an enabling technology for implementing in-space 

cryogenic propulsion. Upper stage tank pressure control currently relies on propellant settling and venting as 

required, however, auxiliary systems for propellant settling incur weight penalties in the form of setting propellant 

and hardware. Complexity is also incorporated into the mission operations because venting/resettling of the 

propellant can become necessary at inopportune times such as when liquid propellant is situated at the vent port. The 

thermodynamic vent system (TVS) concept enables tank pressure control and venting without resettling. 

A series of ground tests were conducted at MSFC for Boeing and SRS Technologies using the 2 m
3
 (71 ft

3
) Solar 

Upper Stage Technology Demonstrator (STUSTD) tank (Fig. 1) to demonstrate reduced gravity pressure control. 

Details of the STUSTD program and engineering tests are available in Ref. 4. This paper expands on previously 

published model results (Ref. 1) and presents the pressure control and active TVS performance data for the 

STUSTD tank in a reduced gravity environment.  

 

 

II. Approach 

A. FLOW-3D Software 
FLOW-3D is a general Navier-Stokes equation solver with an extensive history of cryogenic tank modeling in 

both reduced and normal gravity environments. FLOW-3D allows several options to be enabled based on what is 

important to the problem. The current two-phase cryogenic tank model is developed using a custom version of the 

commercially available FLOW-3D software. The customization enables the model to treat phase change effects at 

the liquid-gas interface. First order approximations for momentum and energy equations including the two equation 

k-ε and Renormalization-Group (RNG) turbulence models are enabled. The ullage region is treated as fully 

compressible and liquid density varies with temperature only. Modeling the heat transfer between liquid, gas and 

tank walls is included to capture thermal stratification within the fluids. For details of the formulations and 

assumptions within the FLOW-3D code see Ref. 6. 

 
Figure 1. STUSTD Tank Configuration. 
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B. Model Description 
The model uses a 3,250 cell axisymmetric mesh to simulate the 71 ft

3
 ellipsoidal STUSTD tank (Fig. 2). The 

mesh is derived from a similar tank pressurization model (Ref. 2) The S-IVB mesh has previously been shown to be 

independent of grid size therefore the current STUSTD mesh is expected to provide a grid insensitive solution. The 

tank has a width of 5.78-ft. and a height of 4.08-ft. Liquid acquisition devices (LADs) are omitted from the model 

because the engineering checkout tests do not include LAD operation. The Active TVS (ATVS) is located in the 

center of the tank and is 1-ft. in diameter and 0.63-ft. tall. The outlet of the axial jet is 0.14-ft. (1.7-in.) in diameter.  

A series of dual capacity (20 W and 40 W) tank wall heaters are imbedded in the tank insulation. Due to the 

axisymmetric mesh, the STUSTD model incorporates these variable power tank heaters as solid obstacles adjacent 

to the bulk liquid. The actual tank heaters are approximately 6 inches wide by 26 inches long. Four of these tank 

heater strips are evenly distributed on the tank wall. The tank heat leak is distributed between the tank wall and the 

imbedded heater obstacles. When heaters are not used the incoming tank heat leak is evenly distributed along the 

tank walls including the surface of the inactive heaters. 

The ATVS body is considered adiabatic thus contributing a negligible amount of heat to the liquid. The self-

pressurization models are initially quiescent. The liquid is assumed saturated at a given tank pressure and allowed to 

heat up. Ullage stratification profiles are derived from available test data and applied on a case by case basis. 

Table 1 lists the test cases considered in the present analysis. The focus is on tank self-pressurization and ATVS 

performance in reduced gravity environments.  

By correlating the two-phase cryogenic model to normal gravity test data and using verified low-gravity slosh 

modeling techniques for spacecraft and 

launch vehicles, cryogenic tank pressure 

control in reduced gravity environments 

can be simulated. Here, each of the 

normal gravity cases previously 

discussed (Ref. 1) is run in a 1E-5-g 

acceleration environment with identical 

fills and heat conditions as the normal 

gravity cases. The low gravity model 

uses an identical computational mesh as 

the normal gravity models. Predicted 

ullage pressure, ullage temperature and 

liquid temperature histories are 

presented. Temperature contour and 

velocity plots are included to track 

liquid/gas interaction and illustrate how 

the surface tension dominated fluid 

regions react to external heating in 

reduced acceleration environments.  
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Figure 2. STUSTD Model Mesh and Tank Geometry. 

 

Test Case Test Fluid Heat Leak Rate Fill Level
Mixer Type & Flow 

Rate

1 LH2 25.7 W 87% none

2 LH2 25.7 W 44% none

3 LH2 6.7 W 90% axial jet / 27 gpm
 

Table 1. STUSTD Reduced Gravity Test Cases. 
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III. Results and Discussion 

When in reduced gravity, the surface tension forces in the STUSTD tank are significant compared to all other 

forces. As expected in a low-gravity environment with a tank of this size, the meniscus at the tank wall begins to 

grow as surface tension forces pull the liquid towards a curved shape. The ullage will eventually form a nearly 

spherical ullage bubble within the tank to minimize surface energy. Accordingly in Cases 1 and 3, the initial bubble 

shape is specified as precisely spherical and then the model simulates the equilibrium shape from that initial bubble. 

For the lower fill fraction simulations (Cases 2) a flat initial free surface is specified and the code is allowed to 

develop that initial shape into the equilibrium shape for the fluid, geometry, and tank considered.  

A. Self-Pressurization 
In Case 1, self-pressurization of the STUSTD LH2 tank is simulated using an 87% fill level with 25.7 W heat 

leaks. Heat is distributed between tank walls (5.7 W) and tank heaters operating at 20 W. Figure 3 shows that an 

average tank pressurization rate of 0.72 psi/hr is predicted for Case 1 and remains relatively smooth throughout the 

10,000-sec simulation. Ullage temperatures (Fig. 4) and liquid temperatures (Fig. 5) are measured at 44 inches and 

25 inches from the bottom of the tank respectively. Model results for ullage and liquid temperature for Case 1 

experience a small (1°R) increase in magnitude during self-pressurization. Figures 6a and 6b illustrate that a stable 

liquid/gas interface is maintained throughout the self-pressurization phase. Small localized bubble interface 

disturbances, with velocities on the order of 0.004 ft/s to 0.02 ft/s, are noted but they do not affect the ullage bubble 

significantly. In a reduced gravity environment, the energy exchange between the bulk liquid and tank heater has a 

significant effect on the total tank thermal distribution. In Figure 6a, the influence the tank heaters have on the 

surrounding fluid can be observed. In the absence of strong natural convection currents, warm spots begin to form 

throughout the tank. More noticeably the center of the ullage bubble is generally warmer (typically 1.5 °R warmer 

than surround liquid) than other areas of the tank. The ullage bubble begins to warm the surrounding liquid as well. 

This is illustrated throughout the temperature contour plots where slightly warmer liquid surrounds the ullage 

bubble.  
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Figure 3. Case 1 Ullage Pressure History. 
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Figure 4. Case 1 Ullage Temperature History.                    Figure 5. Case 1 Liquid Temperature 

                                                                                                     History (25-in.). 
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In Case 2 (25.7 W, 44% fill) the tank heaters are activated. A steady self-pressurization rate of 1.44 psi/hr is 

predicted. Figure 10b illustrates pockets of warm gas at the liquid-heater interface slowly traveling along the 

sidewall. The transient motion within the tank cause small scale oscillations in ullage temperatures on the order of 

less than 2 °R. Liquid temperature (Fig. 9) is recorded at 15 inches from the bottom of the tank and experiences little 

change during self-pressurization. At a 44% fill, the liquid-gas interface becomes notably curved as velocity and 

temperature fields with in the tank develop. Surface tension forces draw liquid hydrogen along the walls. The liquid 

has a higher heat capacity than the ullage and therefore when the liquid intercepts incident tank wall heat leak the 

overall heat leak into the ullage region is reduced. This leads to slightly lower ullage pressurization rates than in 

normal gravity for the STUSTD/SRS configurations studied (Ref. 1). 
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                    a.) t = 4680 s, Vmax = 0.00159 ft/s                     b.) t = 10,320 s, Vmax = 0.00832 ft/s 

Figure 6. Case 1 Temperature and Velocity Field Plots.  
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Figure 7. Case 2 Ullage Pressure History. 
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Figure 8. Case 2 Ullage Temperature History.                 Figure 9. Case 2 Liquid Temperature 

                                                                                     History (15-in.). 
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B. Active TVS Activation 
Thermodynamic vent system (TVS) operation in low 

gravity is simulated by Case 3 (6.7 W, 90% fill, 27 

GPM); see Figs. 11 to 14. Total tank heat leak is 6.7 W 

and is evenly distributed along the side walls. The tank 

heaters in this case are deactivated. The LH2 is initially 

saturated at 16.5 psi (37.2 °R) with an initial spherical 

10% ullage bubble. The model predicts a steady ullage 

pressure rise rate of 0.29 psi/hr. This predicted rate is 

equivalent to normal gravity predictions (Ref. 1). The 

small ullage bubble shows a negligible response to the 

reduced gravity environment. At 5,160 seconds (Fig. 

14a), the ullage bubble situates itself toward the forward 

dome of the elliptical STUSTD tank. A small portion of 

the ullage is exposed to the 6.7 W entering through the 

tank walls. Therefore the slightly higher than expected 

ullage pressurization rate may be due to the ullage receiving similar amounts of heat to the normal gravity case 

despite liquid covering the tank walls. Temperatures of the ullage gas (44 inches from tank bottom) and liquid 

temperature (30 inches from tank bottom) are shown in Figures 12 and 13 and illustrate negligible changes during 

self-pressurization. At 28,320 seconds (Fig. 14b) tank pressure reaches about 20 psi and the active TVS is activated. 

Sub-cooled LH2 at 36.8 °R is jetted axially into the tank at approximately 3.82 ft/s while warm LH2 is drawn from 

the bottom of the tank. Figure 14c illustrates good mixing by the axial jet. In a reduced gravity environment, the jet 

achieves complete ullage penetration and impacts the opposite side of the elliptical tank. This generates a small 

ullage bubble toward the center of the tank as the liquid flows along the tank walls. The temperature field within the 

tank is effectively uniform at 37.8 °R. At 320 seconds (Fig. 14d) following active TVS start up, tank pressure 

reaches 18 psi. The model predicts an ullage pressure drop of 31 psi/hr higher than normal gravity results. The 

heaters are activated to 40 W and the tank begins to repressurization. Approximately 680 seconds after the TVS is 

deactivated (Fig. 14e) residual motion on the order of 0.551 ft/s is noted. The small ullage bubble moves toward the 

center of the tank and returns to a spherical shape toward the forward dome of the tank. With the heaters activated, 

thermal boundary layers transport pockets of warm gas at the heat interface along the tank walls (Fig. 14f). During 

repressurization, an expectedly higher average ullage repressurization rate of 2.88 psi/hr and an appreciable increase 

in ullage and liquid temperatures are predicted. 
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Figure 11. Case 3 Ullage Pressure History. 
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Figure 10. Case 2 Temperature and Velocity Field Plots.  
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Figure 12. Case 3 Ullage Temperature History.           Figure 13. Case 3 Liquid Temperature 

                                                                                               History (30-in.). 
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Figure 14. Case 3 Temperature and Velocity Field Plots.  
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A summary of average pressurization rates of the elliptical STUSTD/SRS tank in reduced gravity is presented in 

Table 2. This set of data illustrates the effect on reduced gravity tank self-pressurization by varying heat leak and fill 

fraction and how they compare to normal gravity results. Test cases with higher heating conditions demonstrate 

higher pressurization rates in both operating environments. In addition, high fill fraction (small ullage) test cases 

(e.g., Cases 1 and 3) exhibit an average pressurization rate that is lower than the low fill fraction (large bubble) test 

cases (e.g., Cases 2) for the heat leak boundary conditions assumed. Cases 1 and 2 also show how reduced gravity 

self-pressurization rates are lower in magnitude than in normal gravity. Surface tension forces drive liquid along the 

sidewalls and intercept more of the incident heat leak subsequently reducing the pressurization rate.  

 

 
 

IV. Conclusion 

For reduced gravity environments, pressure control is again demonstrated successfully where stable low gravity 

liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and smooth ullage 

pressurization rates are predicted. The work presented advances current low gravity CFD modeling capabilities for 

cryogenic pressure control and helps the development a low cost CFD-based design process for space hardware. 
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Test Case
Heat Leak 

Rate
Fill Level

Normal gravity 

dp/dt (psi/hr)

Reduced gravity 

dp/dt (psi/hr)

1 25.7 W 87% 1.0 0.7

2 25.7 W 44% 1.45 1.44

3 6.7 W 90% 0.29 0.29  
Table 2. STUSTD Model Results Summary. 


