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Abstract 
 
Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating 

rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) 

and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine 

time and space resolution, this paper describes a prototype research framework for  global flood 

monitoring by combining real-time satellite observations with a database of global terrestrial 

characteristics through a hydrologically relevant modeling scheme. Four major components 

included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-

satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land 

surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, 

drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff 

and route the flow through the stream network in order to predict the timing and severity of the 

flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential 

decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood 

Monitor (GFM) system performs consistently at both station and catchment levels. The GFM 

website (experimental version) has been running at near real-time in an effort to offer a cost-

effective solution to the ultimate challenge of building natural disaster early warning systems for 

the data-sparse regions of the world. The interactive GFM website shows close-up maps of the 

flood risks overlaid on topography/population or integrated with the Google-Earth visualization 

tool. One additional capability, which extends forecast lead-time by assimilating QPF into the 

GFM, also will be implemented in the future. 

Keyword: Satellite Precipitation, Global Flood Modeling, TRMM 
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1. INTRODUCTION 

Floods impact more people globally than many other type of natural disaster (World Disasters 

Report, 2003) and they usually return every year in flood-prone regions. It has been established 

by experience that the most effective means to reduce the property damage and loss of life 

caused by floods is the development of flood warning systems (Negri et al., 2004). However, 

progress in large scale flood warning has been constrained by the difficulty of measuring the 

primary causative factor, i.e. rainfall fluxes, continuously over space (catchment-, national-, 

continental-, or even global-scale areas) and time (hourly to daily), due largely to insufficient 

ground monitoring networks, long delay in data transmission and absence of data sharing 

protocols among many geopolitically trans-boundary basins (Hossain, F. and D. P. Lettenmaier 

2006). In addition, in-situ gauging stations are often washed away by the very floods they are 

designed to monitor, making reconstruction of gauges a common post-flood activity around the 

world (Asante et al. 2007), e.g., Hurricane Katrina in 2005 and Mozambique flood in 2000. In 

contrast, space-borne sensors inherently estimate precipitation across international basin 

boundaries and can not be destroyed by flooding. In reality, satellite-based precipitation 

estimates may be the only source of rainfall information available over much of the globe, 

particularly for developing countries in the tropics where abundant extreme rain storms and 

severe flooding events repeat every year. For instance, the Mekong River Commission, a partner 

in the Asia Flood Network, began downloading Tropical Rainfall Measuring Mission (TRMM) 

real-time data since 2003 to help calculate rainfall for the international Mekong River basins, 

located in China, Cambodia, Laos, Thailand, and Vietnam. These facts highlight the opportunity 

and need for researchers to develop alternative satellite-based flood warning systems that may 

supplement in-situ infrastructure for uninterrupted monitoring of extreme rainfall and 
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dissemination of flood alerts when conventional data sources are denied due to natural or 

administrative causes (Asante et al., 2007; Hong et al., 2007a). 

Building on progress in remote sensing technology, researchers have improved the accuracy, 

coverage, and resolution of satellite-based rainfall estimates by combining imagery from infrared, 

passive microwave, and space-borne weather radar sensors (Adler et al., 2003). Today, multi-

satellite imagery acquired and processed in real time can now provide near-real-time rainfall 

fluxes at relatively fine spatiotemporal scales (kilometers to tens of kilometers and 30-minute to 

3-hour). These new suites of rainfall products have the potential for analyzing sub-daily 

variations and extreme flooding events. Shown in Fig. 1 is an example of quasi-global “heavy 

rain” event maps that are displayed at TRMM website. The map shows the areas (in red) over 

land that has accumulated rain totals from a flow of TRMM-based real-time precipitation 

estimation above a pre-selected threshold. Using such a simple rainfall threshold-based rain map, 

researchers and decision-makers alike can look at the evolution of regional to global scale events 

on a daily basis. For example, Fig. 1b identifies the spring flooding of the Southeast of United 

States, wherein data from TRMM and other satellites estimated more than 16 inches of rain in 

the regions of Tennessee, Alabama and Georgia during May 4-9, 2003. Figure 1c shows the 

corresponding rain accumulation that exceeded 35 mm per hour over the 5 day period (left panel); 

while the right panel shows that after 85 hours, rain totaled 472.7 mm within a 200 km radius 

surrounding Nashville, TN.  

While these global heavy rain outlooks on emerging flooding events are potentially useful, this 

rainfall threshold-based approach has limited implications from a terrestrial hydrologic 

perspective. First, they are independent of terrain, soil type, soil moisture and vegetation. 

Furthermore, they do not take into consideration the local/regional hydrologic regimes that 
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determine the pertinent rainfall-runoff relationships. As a result, such a simple statistical 

approach of thresholds is inadequate in capturing the spatiotemporal variability of estimated 

runoff and consequently, does not optimally extract valuable hydrologic information contained in 

rainfall fluxes estimated by satellites. Improvement is particularly important in anticipating the 

planned Global Precipitation Measurement (GPM) mission that beckons hydrologists as an 

opportunity to improve flood prediction capability for medium to large river basins, especially in 

the underdeveloped world where ground instrumentation is absent. The GPM mission 

(http://gpm.gsfc.nasa.gov) is envisioned as a constellation of operational and dedicated research 

satellites to provide microwave-based precipitation estimates for the entire globe. Hossain and 

Lettenmaier (2006) have argued that before the potential of GPM can be realized, there are a 

number of hydrologic issues that must be addressed prior to the adoption of global satellite 

rainfall datasets in hydrologic models. Accuracy, in particular, will depend on the sensible use of 

the spatiotemporally varying rainfall fluxes as derived from satellites and not on the accumulated 

rainfall volumes that are currently adopted in thresholding techniques.  

This paper describes a module-structured framework for Global Flood Monitoring (GFM) that 

integrates the TRMM-based multi-satellite forcing data (Huffman et al., 2007) with a simplified 

hydrological model (Hong et al., 2007b), which can be parameterized by a tailored geospatial 

database, in an effort to evolve toward a more hydrologically-relevant flood modeling system 

with direct rainfall input from real-time satellite nowcasting or quantitative precipitation 

forecasting (QPF). This system is now running in real-time in an experimental mode with results 

being displayed on the TRMM web site, specifically 

http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html. A major outcome of this 

framework is the availability of a global overview of flooding conditions that quickly 
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disseminate through an open-access web-interface. We expect these developments in utilizing 

satellite remote sensing technology to offer a practical solution to the challenge of building a 

cost-effective early warning system for data-sparse and under-developed areas. Additionally, 

through the use of more hydrologically relevant approaches, we hope this framework will spur 

meteorologists engaged in satellite rainfall data production to communicate more effectively 

with hydrologic modelers for development of GPM satellite rainfall algorithms (Hong et al., 

2006; Hossain and Lettenmaier, 2006). 

 
Figure 1 

 
 

2. A Quasi-GLOBAL SATELLITE-BASED FLOOD MONITORING Framework 

Shown in Figure 2 is the conceptual framework for the GFM that puts forward a computationally 

simplified hydrological model to predict floods quasi-globally using a combination of data from 

the TRMM-based multi-satellite products, Shuttle Radar Topography Mission (SRTM), and 

other global geospatial data sets such as soil property and land cover types. This framework is 

modular in design with the flexibility that permits changes in the model structure and in the 

choice of components. Four major components included in the framework are 1) multi-satellite 

high-resolution precipitation products; 2) characteristics of land surface including elevation, 

topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and 

river network; 3) spatially distributed hydrological models to infiltrate rainfall and route overland 

runoff; and 4) an implementation interface to relay the input data to the models and display the 

flood inundation results on website. The simulation results must be updated at regular intervals 

(~3hr), requiring computational efficiency in transferring space-borne observations into the 

operational web-based flood mapping interface, even at the expense of some loss of detail and 

 6



accuracy. Another note is that the flexible module-structured framework also allows for optimal 

use of grid-based precipitation flux fields from multiple sources, including in situ, satellite, and 

numerical model forecasts. 

2.1 Precipitation Input 

Precipitation displays high space-time variability that requires frequent observations for adequate 

representation. Such observations are not possible through surface-based measurements over 

much of the globe, particularly in oceanic, remote, or developing regions (Huffman et al., 2007). 

Continued development in the estimation of precipitation from space has culminated in 

sophisticated satellite instruments and techniques to combine information from multiple satellites 

to produce precipitation products at long-term coarse scale (Adler et al., 2003) and short-term 

finer time-space scales useful for hydrology including flood analysis (Sorooshian et al. 2000; 

Kidd et al. 2003; Joyce et al. 2004; Hong et al., 2004; Turk and Miller 2005; Huffman et al., 

2007). The key data set used in the framework is the TRMM Multi-satellite Precipitation 

Analysis (TMPA; Huffman et al. 2007), which provides a calibration-based sequential scheme 

for combining precipitation estimates from multiple satellites, as well as gauge analyses where 

feasible, at fine scales (0.25°x0.25° and 3-hourly) over the latitude band 50°N-S 

(http://trmm.gsfc.nasa.gov). The TMPA is a TRMM standard product computed for the entire 

TRMM period (January 1998-present) and is available both in real time and retrospectively. 

Although Huffman et al. (2007) verified that the TMPA is successful at approximately 

reproducing the surface-observation-based histogram of precipitation, as well as reasonably 

detecting large daily events, properly characterizing the impact of the rainfall estimation error 

structure on hydrological response uncertainty at small scales remains to be carried out. 
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Over much of the globe, remote sensing precipitation estimates may be the only available source 

of rainfall information, particularly in real time. Correspondingly, remote sensing has 

increasingly become a viable data source to augment the conventional hydrological rainfall-

runoff simulation, especially for inaccessible regions or complex terrains, because remotely 

sensed imageries are able to monitor precipitation and identify land surface characteristics such 

as topography, stream network, land cover, vegetation etc. Artan et al. (2007) demonstrated the 

improved performance of remotely sensed precipitation data in hydrologic modeling when the 

hydrologic model was re-calibrated with satellite data rather than gauge rainfall over four 

subbasins of the Nile and Mekong Rivers. 

 

2.2 A Central Geospatial Database  

A central geospatial database describing the land surface (topography, land cover, and soils etc.) 

is needed to derive comprehensive parameter sets for linking the precipitation input with 

hydrological flood simulation models. The basic topography data considered in this system 

include NASA SRTM (http://www2.jpl.nasa.gov/srtm/) and U.S. Geological Survey’s 

GTOPO30 ((http://edcdaac.usgs.gov/gtopo30/gtopo30.html). The 30m horizontal resolution 

provide by SRTM data is a major breakthrough in digital mapping of the world, particularly for 

large portions of the developing world. The digital elevation data are used to derive topographic 

factors (slope, aspect, curvature etc) and hydrological parameters (river network, flow direction, 

and flow path). Global soil property data sets are taken from Digital Soil of the World published 

in 2003 by the Food and Agriculture Organization of the United Nations 

(http://www.fao.org/AG/agl/agll/dsmw.htm) and the International Satellite Land Surface 

Climatology Project Initiative II Data Collection (http://www.gewex.org/islscp.html). The soil 

 8

http://www2.jpl.nasa.gov/srtm/
http://edcdaac.usgs.gov/gtopo30/gtopo30.html
http://www.fao.org/AG/agl/agll/dsmw.htm
http://www.gewex.org/islscp.html


parameters used in this study are soil property information (including clay mineralogy and soil 

depth) and 12 soil texture classes, following the U.S. Department of Agriculture soil texture 

classification (including sands, loam, silt, clay, and their fractions). The Moderate Resolution 

Imaging Spectroradiometer (MODIS) land classification map is used as proxy of land cover/uses 

at its highest (250-meter) resolution (Fridel et al. 2002). Figure 3 lists several parameters, flow 

direction and river basins, derived from the geospatial database. A large proportion of the 

supporting data for implementing the hydrological models is also available from the NASA 

Goddard Global Land Data Assimilation System (Rodell et al., 2004). 

2.3 A Cost-Effective Hydrological Simulation Model  

Many hydrological models have been introduced in the hydrological literature to predict runoff 

(Singh, 1995) but few of these have become common planning or decision-making tools (Choi et 

al., 2002), either because the data requirements are substantial or because the modeling processes 

are too complicated for operational application. Our initial pool of candidate hydrological 

simulation models included a number of distributed hydrological models (Singh, 1995; Chen et 

al., 1996; DHI, 1999; Liang et al., 1994; Beven and Kirkby, 1979; Coe, 2000 etc.). However, 

many of these models are extremely time-consuming when used to update global flood 

simulation results at sub-daily scale. They require not only more parameterization of the 

hydrological processes, but additional climate variable such as air temperature or net radiation, 

vapor pressure and wind speed, which are not always available in real time and also introduce 

uncertainty due to their unknown error characteristics. Trade-offs between efficiency and 

complexity in terms of the quantity and quality of the data available to meet model input 

requirements and the modeling components to implement (Choi et al., 2002) argue for a 

simplified model in the current works that: 
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(1) Treats only the most important processes related to the hydrological problem to be 

considered (i.e., flood);  

(2) Allows the model to evolve as more data become available or as the modeler gains insight 

during the modeling process; and  

(3) is ready to use, accepting a certain loss of detail and accuracy.  

In fact, such simplification is already an accepted methodology among hydrologists to allow the 

hydrologic modeling effort evolve to the global solution through an iterative process (Klemes, 

1983). Additionally, for rainfall-runoff simulation alone, parsimonious models often perform as 

well as sophisticated ones (Jian et al., 1992; Duan et al., 2003). Hence, we adopt the Hydrologic 

Engineering Center (HEC) Hydrologic Modeling System (HMS) developed by US Army Corps 

of Engineers (USACE, 2002). The HEC-HMS improves upon the capability of the predecessor 

HEC-1, providing additional capabilities for distributed modeling and continuous simulation 

(USACE, 2002). 

 
Figure 2: Framework 

 
3. A Cost-Effective Hydrological Model 

3.1 HEC-HMS and NRCS-CN 

The HEC-HMS improves upon the capability of the predecessor HEC-1, providing additional 

capabilities for distributed modeling and continuous simulation (USACE, 2002). Its simplicity is 

especially critical for the vast un-gauged regions and geopolitically trans-boundary basins of the 

world. In a literature review, Choi et al. (2002) concluded that NRCS-CN has useful skill 

because it responds to major runoff-generating properties including soil type, land/use/treatment, 

and soil moisture conditions. They point out that it has been successfully applied to situations 

that include simple runoff calculation (Heaney et al., 2001), assessment of long-term 
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hydrological impact on land use change (Harbor, 1994) for tens of years, stream-flow estimation 

for watersheds with no stream flow records (Bhaduri et al., 2000), and comprehensive 

hydrologic/water quality simulation (Srinivasan and Arnold, 1994; Engel, 1997; Burges et al., 

1998; Rietz and Hawkins, 2000). Recently, Curtis et al. (2007) used satellite remote sensing 

rainfall and gauged runoff data to estimate CN for basins in eastern North Carolina. Harris and 

Hossain (2007) found that simpler approaches such as the NRCS-CN method to be more robust 

than more complicated schemes for the levels of uncertainty that exist in current satellite rainfall 

data products. On the other hand, we note the risks of implementing this, or any other method 

without fully understanding its associated ‘uncertainty’. As such, we adopt the NRCS-CN 

method to estimate a first-cut global runoff by taking advantage of the multiply years of rainfall 

estimates from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation 

Analysis (TMPA; Huffman et al., 2007). The NRCS-CN method generates runoff as a function 

of precipitation, soil property, land use/cover, and hydrological condition. The later three factors 

are empirically approximated by one parameter, CN. Following methodology adopted from the 

standard lookup tables in USDA (1986) and NEH-4 (1997), we derived a global CN map from 

infiltration characteristics of soils classified by USDA-NRCS (2005) and the MODIS land cover 

classification, at long-term averaged soil wetness conditions (Hong and Adler, 2008). The 

NRCS-CN values are updated by using a 5-day normalized Antecedent Precipitation Index (API) 

from TRMM as a proxy of antecedent moisture conditions (Hong et al., 2007b). 

 

3.2 Mapping NRCS-CN 

One distinct advantage of HEC-HMS is a multi structured hydrologic modeling that allows 

selection of a variety of rainfall-runoff modeling schemes (USACE, 2002). For our framework 
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we use the US Department of Agriculture (USDA) Natural Resources Conservation Service 

(NRCS) method of gridded Curve Number (NRCS-CN; USDA, 1986) for excess rainfall 

generation component and the ModClark (Feldman, 2000) method for sub-basin surface runoff 

routing through gridded river networks. USGS research groups have proved that the NRCS-CN 

method is cost-effective to simulate surface runoff process in their Geospatial Stream Flow 

Model (Artan et al., 2001; Asante et al., 2007). The data sets (i.e., precipitation, soil information, 

and land cover) required by the NRCS-CN runoff generation scheme are all available globally 

with a well-established record in Earth system analysis (Fekete et al., 2000). Information on soil 

properties is obtained from the Digital Soil of the World published in 2003 by Food and 

Agriculture Organization of the United Nations (http://www.fao.org/AG/agl/agll/dsmw.htm). 

The Moderate Resolution Imaging Spectroradiometer (MODIS) land classification map is used 

as a surrogate for land use/cover, with 17 classes of land cover according to the International 

Geosphere-Biosphere Programme classification (Fridel et al., 2002). Routing information is 

taken from the HYDRO1k (http://lpdaac.usgs.gov/gtopo30/hydro/), which provides global 

coverage of topography such as elevation, slope, and flow direction etc. These geo-referenced 

datasets are of value for users who need to run hydrologic models on both regional and global 

scales. 

      The NRCS-CN estimates surface runoff as a function of precipitation, soil type, land cover, 

and antecedent moisture conditions. The latter three factors are usually approximated by one 

parameter, the CN (USDA, 1986). In this case, the set of Equations (1-2) is used to partition 

rainfall into runoff and infiltration: 

)(
)( 2

PRIAP
IAPQ
+−

−
=               (1) 
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254400,25
−=

CN
PR               (2) 

where P is rainfall accumulation (mm/day); IA is initial abstraction; Q is runoff generated by P; 

PR is potential retention; CN is the runoff curve number, with higher CN associated with higher 

runoff potential; and IA was approximated by 0.2PR. 

CN values are approximated from the area's hydrologic soil group (HSG), land use/cover, 

and hydrologic condition, the two former factors being of greatest importance in determining its 

value (USDA, 1986). First, following the USDA (1986) handbook, a global HSG map is derived 

from the digital soil classification which includes 13 textural classes, an important indicator for 

infiltration rate (Table 1). Given “fair” moisture condition (defined below), the MODIS land 

cover classification and the HSG map are used to estimate CN by indexing into the standard 

lookup tables in USDA (1986) and NEH-4 (1997). Thus, for a watershed on a coarse grid, a 

composite CN can be calculated as: 

∑
∑=

i

ii
com A

CNA
CN       (3) 

In which CNcom is the composite CN used for runoff volume computations; i = the index of 

subgrids or watershed subdivisions. Ai = the drainage area of area i. 

 

3.3. Time-variant NRCS-CN and Runoff Simulation 

Note that the CN values obtained from Equations 1-3 are for the “fair” hydrologic condition 

from standard lookup tables, which are used primarily for design applications. However, for the 

same rainfall amount there will be more runoff under wet conditions than under dry. In practice, 

lower and upper enveloping curves can be computed to determine the range of CN according to 

the Antecedent Moisture Conditions (AMC):  
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i

II
iI

i CN
CN

CN
01281.0281.2 −

=     (4) 

II
i

II
iIII

i CN
CNCN

00573.0427.0 +
=    (5) 

Where upper subscripts indicates the AMC, I being dry, II normal (average), and III wet 

(Hawkins 1993). The change of AMC is closely related to antecedent precipitation (NEH-4, 

1997). We apply the concept of an Antecedent Precipitation Index (API) to provide guidance on 

how to estimate the variation of CN values under dry or wet antecedent precipitation conditions. 

Kohler and Linsley (1951) define API as: 

t
T

t
t kPAPI −

−

−=
∑=

1
     (6) 

 

Where T is the number of antecedent days, k is the decay constant, and P is the precipitation 

during day t. The model is also known as “retained rainfall” (Singh 1989). Decay constant k is 

the antilog of the slope on a semi-log plot of soil moisture and time (Heggen, 2001). API practice 

suggests that k is generally between 0.80 and 0.98 (Viessman and Lewis 1996). Here we use 

decay constant k as 0.85 for demonstration purpose. API generally includes moisture conditions 

for the previous five days (or pentad; NEH-4, 1997). In order to obtain time-variant CN, the site-

specified API is first normalized as: 

NAPI =
Ptk

−t

t =−1

−T

∑

P k −t

t =−1

−T

∑
    (7) 

Where T=5 for pentads, the numerator is API, and the denominator is a normalizing operator 

with two components: average daily precipitation P  and the k −t∑ series. The “dry” condition is 
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defined as NAPI < 0.33, the “wet” condition is defined as NAPI>3, and the intermediate range 

0.33~3 is the “fair” hydrological condition. By definition, the surface moisture conditions are 

delineated as dry (or wet) if any pentad API is less than one third (or larger than three times) of 

the climatologically averaged pentad API, and fair conditions for all others. Summarizing, the 

CN can be converted to dry, fair, or wet condition using Equations 4-7 according to the moisture 

conditions approximated by the pentad NAPI. Using the multi-year (1998-2006) satellite-based 

precipitation dataset from NASA TRMM, the 9-year climatological pentad API is shown in 

Figure 3a. Thus, given any date, the pentad NAPI can be determined and thus CN can be updated 

with Equations (4)-(7). For example, on Aug. 25th, 2005, the pentad rainfall accumulation, 

pentad NAPI, resulting hydrological conditions (dry, fair, or wet), and the updated CN on the 

same date are shown in Figures 3b, 3c, 3d, and 3e, respectively. Note that part of text in Section 

3.2 and Section 3.3 are from previous publication by Hong et al., 2007b. 

 
Figure 3 

 
4. IMPLEMENTATION OF THE GFM 

4.1 Retrospective Simulation 

The global CN map enables estimation of runoff by partitioning gridded satellite-based 

precipitation estimates, particularly useful at places lacking in-situ gauge data. After that, the 

ModClark is used for routing the overland flow based on first-order linear differential equations 

(Olivera et al., 2000). Surface topography data from the geospatial database are used to define 

river networks and sub-catchments on a global basis (e.g. Fig. 4). Information regarding soils, 

land cover, and topography from the geospatial database is used for delineating and 

parameteralizing catchments and basin reaches, and the precipitation data is from TMPA. 
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Figure 4: Global Basins and River Networks 

Driven by multiyear remote sensing rainfall, the NAPI and NRCS-CN methods are first used to 

compute the surface runoff for each grid independently and to subsequently route the surface 

runoff to the watershed outlet through downstream cells [U.S. Army Corps of Engineers, 2000]. 

Quasi-global runoff data are thus simulated from this framework over the entire time span (1998-

2006) of TMPA dataset at 3-hour time scale and simulation results were compared to Global 

Runoff Data Center (GRDC) rainfall and runoff data, which are quality controlled and 

objectively analyzed to a 0.5o x 0.5o latitude-longitude grid (Fekete et al., 2000). Finally, 

simulated quasi-global runoff is evaluated with Global Runoff Data Center (GRDC) observed 

runoff (B. M. Fekete et al., Global Composite Runoff Data Set (v1.0), Complex System Research 

Center, University of New Hampshire, Durham, 2000, available at http://www.grdc.unh.edu, 

hereinafter referred to as Fekete et al., Global Composite Runoff Data Set (v1.0), 2000) and 

water balance model–simulated runoff [Thornthwaite and Mather, 1955; Steenhuis and Van der 

Molen, 1986; Vorosmarty et al., 1998]. 

The TRMM-simulated runoff (TRMM-CN) is compared with the three sets of GRDC annual 

runoff fields: observed (OBS), water balance model (WBM)-simulated, and composite (CMP) 

from the OBS and WBM (Fekete et al., Global Composite Runoff Data Set (v1.0), 2000). The 

WBM used the water balance model of Thornthwaite and Mather [1955] with a modified 

potential evaporation scheme from Vorosmarty et al. [1998], driven by input monthly air 

temperature and precipitation from Legates and Willmott [1990a, 1990b]. Note that the three 

GRDC runoff data span a period of incomplete data records (1950–1979), while the TRMM-CN 

runoff is simulated for 9 years (1998–2006) of satellite rainfall with complete spatiotemporal 

coverage. One assumption here is that the change of rainfall between the two time periods is 
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small enough so that the resulting runoff climatology is spatially consistent. Table 1 shows that 

the TRMM-CN runoff corresponds more closely with the WBM, having a relatively high 

correlation and low error. An intercomparison with the GRDC runoff observation demonstrates 

that the WBM has a moderate advantage over the TRMM-CN runoff: The correlation and root-

mean-square difference (RMSD) between the GRDC OBS and WBM are 0.81 and 159.7 mm/yr 

(or 0.44 mm/d), respectively, which is slightly better than for the TRMM-CN case (Table 1). 

 
Table 1 TRMM-CN Runoff Climatology in the Latitude Band 50S–50N Compared to GRDC 

Observed, Water Balance Model, and the Later Two Composite Runoffa 
 GRDC Runoff Climatology 

Statistics OBS WBM CMP 

Corr. Coef. 0.75 0.80 0.79 

Bias ratio 1.28 1.12 1.12 

RMSD 0.56mm/day 0.48mm/day 0.51mm/day 

aAbbreviations are OBS, observed; WBM; water balance model; CMP, composite; and RMSD, 
root-mean-square difference [Source: Hong et al., 2007b]. 

 
Figure 5a shows the annual mean runoff (mm/yr) driven by TRMM daily precipitation for the 

same 9-year period in comparison with the GRDC-observed runoff climatology (Figure 5b). 

Note that the gray areas indicate no data or water surface in Figures 5a and 5b. By averaging 

areas covered by both TRMM-CN and GRDC runoff data, Figure 5c shows the TRMM-CN 

runoff zonal mean profile against the OBS, WBM, and CMP. In general, the TRMM-CN zonal 

mean runoff follows more closely the three GRDC runoff profiles in the Northern Hemisphere 

than in the Southern Hemisphere. We believe that this difference is the result of having many 

more samples in the Northern Hemisphere as well as more accurate GRDC data. Considering the 

TRMM-CN runoff difference as a function of basin area shows the TRMM-CN performance 
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deviates more for basins smaller than 10,000 km2, with significantly better agreement for larger 

basins (Figure 6). 

Figure 5 
 

Figure 6 
 

Fig. 7a shows the locations of GRDC gauge stations, which represents 72% catchment coverage 

of actively discharging land surface (excluding Antarctica, the glaciated portion of Greenland 

and the Canadian Arctic Archipelago). Fig. 7b provides the scatterplot for all annual mean 

rainfall and runoff matchups of GRDC and TMPA. Both the rainfall and runoff scattergrams are 

quite consistent, with correlation coefficient above 0.8. However, it also indicates that TMPA 

overestimated at high range of rainfall and low range of runoff values, causing positive bias 

0.57% and 7.74% comparing to GRDC, respectively. The likely explanation is that a wind loss 

correction is applied to the gauge data used in the TMPA, but not to the GRDC. In contrast to the 

point comparison in Fig. 7, basin-averaged runoff scattergrams in Fig. 6 show that TRMM runoff 

significantly underestimated runoff over small basins and increasingly performed better for 

larger basins. For more evaluation results of this simulation framework, please refer to Hong et 

al., 2007b. 

Figure 7 
 
4.2 Implementation Interface 

Since 2007, the GFM trial version has been operating at near real-time on NASA TRMM 

website in an effort to offer a practical cost-effective solution to the ultimate challenge of 

building flood early warning systems for the data-sparse regions of the world. A hydrograph of 

rainfall-runoff time series is simulated for each grid and basin; and the hydrograph estimates are 

the basis for a web-based interface that displays color-coded maps of flood potentials by 
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comparing current surface runoff with a predefined water depth or bankfull flow value. The 

interactive GFM website shows close-up maps of the flood risks overlaid on topography and 

integrated with the Google-Earth visualization tool 

(http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html). 

Shown in Fig.8 are examples of flood events detected and displayed by the framework. As 

shown in the example in Fig. 8, the GHS-Flood diagnosed flooding events in Mozambique in 

Feb. 2007 as the result of tropical cyclone Favio. This event was verified by Reuters News 

reports: 69+ dead and more than 120,000 lives affected. The hydrograph estimates are the basis 

for a Web-based interface that displays color-coded maps of flood risk by comparing current 

surface runoff in each grid box with a predefined water depth or bank-full flow value. Figure 8c 

shows a map of excess water depth due to heavy rainfall from tropical cyclone George that 

caused widespread flooding in the northwestern Northern Territory, Australia, on March 5, 2007. 

This event is shown as an example of the current Web interface: a quasi-global interactive map 

with flood potential areas highlighted in red and close-up maps of the flood potential overlaid on 

topography or integrated with Google-Earth visualization tools.  

Shown in Fig. 8d is the 9-year rainfall-runoff simulation results over the Limpopo Basin, 

Southern Africa. The runoff spikes in Feb. 2000 indicate the catastrophic Mozambique flood 

disaster within the TMPA’s limited 9-year span. On February 27, floods inundated low 

farmlands in the worst flooding event in Mozambique for last 55 years (ARPAC, 2000). Two 

million people were affected by the floods, 50,000 lost homes, and about 800 were killed. The 

flood also had a tremendous effect on agriculture in Mozambique, destroying 1,400 square 

kilometers of cultivated and grazing land, leaving 113,000 small farming households with 

nothing, and damaging 90% of the country's functioning irrigation infrastructure. One year later, 
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another severe flood occurred in late February, 2001, caused by heavy seasonal rains (Fig. 7d), 

which killed 52 people and displaced almost 80,000 in the central Zambezi Valley of Limpopo 

basin (FAO, 2001). Fig 8b shows the 2007 flood in Mozambique, which worsened when 

Category 4 Cyclone Favio made landfall on February 22. The United Nations Office for the 

Coordination of Humanitarian Affairs reported approximately 121,000 people displaced. 

However, U.S. Agency for International Development (USAID) cited Mozambique’s response to 

2007 flood as a success: “Deaths from this year’s disasters were kept to a minimum – less than 

100 -- due largely to the timely response and efficiency of Mozambican emergency operations”, 

according to USAID regional director, Jay Knott in Mozambique. Overall, U.S. humanitarian 

and development aid to Mozambique amounted to $150 million in 2006, with $200 million 

sought by the Bush administration for 2007. The TRMM website (http://trmm.gsfc.nasa.gov) 

provides more extreme rainfall and flooding examples. 

Figure 8 

 

5. SUMMARY AND DISCUSSION 

5.1 Summary 

Satellite rainfall observations acquired in real time are valuable in improving our understanding 

of the occurrence of flood hazardous events and in lessening their impact on the local economies 

and reducing injuries around the world. This chapter describes a practical modular-structured 

framework, Global Flood Modeling (GFM) that predicts surface runoff by incorporating NASA 

TRMM-based multi-satellite real-time precipitation estimates into a cost-effective hydrological 

model that includes parameters from high-resolution topography and other geospatial data sets. 

As shown in Figure 2, this framework includes four major components: (1) a real-time satellite-
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based precipitation measuring system; (2) a geospatial database containing global land surface 

characteristics; (3) a spatially distributed hydrological model; and (4) an open-access web 

interface. 

Given the increasing availability of global geospatial data describing land surface characteristics, 

we adopt the Hydrologic Engineering Center (HEC) Hydrologic Modeling System (HMS) 

developed by US Army Corps of Engineers (USACE, 2002). The HEC-HMS improves upon the 

capability of the predecessor HEC-1, providing additional capabilities for distributed modeling 

and continuous simulation. The runoff generation method is the NRCS-CN that determines 

runoff as a function of precipitation, soil property, land use/cover, and hydrological conditions. 

The later three factors are empirically approximated by one parameter, the CN. First, this study 

estimated a global CN map primarily based on soil property and land use/cover information 

under the “fair” moisture condition. Then using Antecedent Precipitation Index (API) from 

TRMM rainfall as a proxy of initial moisture conditions, this study further estimated time-variant 

CN values bounded by dry and wet moisture conditions approximated by pentad normalized API 

(Hong et al., 2007b). Finally, driven by 3-hour TMPA precipitation estimates, quasi-global 

runoff was simulated with this framework for period of 1998-2006. Compared to GRDC runoff, 

this framework provides consistent estimation of runoff at both stations and medium-to-large 

basins. Currently, the framework operationally runs in near-real-time and updates flood 

conditions every 3 hours with the most current satellite-based rainfall maps 

(http://trmm.gsfc.nasa.gov/publications_dir/potential_flood_hydro.html). 

 

5.2 Discussion and Future Work 
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Our effort is a first approach to understanding a challenging problem that lies ahead in advancing 

satellite-based global runoff monitoring. Thus, the use of NRCS-CN should not be construed as a 

call for replacement of other more advanced methods for rainfall-runoff simulation. We expect 

that the successes and limitations revealed in this study will lay the basis for applying more 

advanced methods to capture the dynamic variability of the hydrologic process for global runoff 

monitoring in real time. Although this study is able to demonstrate the potential of using this 

framework for quasi-global flood monitoring when driven by satellite-based rainfall estimates, 

there remain several unanswered questions: First, among many methods to estimate CN values, 

Hawkins (1993) recognized that remote sensing data may not be adequate to define the “true” 

value of a CN. Thus, field surveys of basin characteristics should be conducted where feasible in 

order to obtain “true” soil and land cover data. Second, while this study recognized the 

uncertainty of the estimates of actual CN values and assumed that they likely fall within the 

enveloping wet (upper) and dry (lower) conditions approximated by the 5-day Normalized API, 

it may be possible to adjust the CN more precisely to account for local or regional information. 

Finally, one major unaddressed hydrological concern for rainfall-runoff applications of remotely 

sensed precipitation is the thorough evaluation of satellite-based rainfall estimation error and its 

nonlinear influence on rainfall-runoff modeling uncertainty in varying landscapes and climate 

regimes (Hong et al., 2006; Hossain and Anagnostou, 2006; Villarini and Krajewski, 2007). Thus, 

while we conclude that this cost-effective framework seems to provide a reliable tool when using 

coarse resolution satellite precipitation data, we also urge similar studies using more 

sophisticated hydrological models, particularly seeking to serve the vast un-gauged regions and 

geopolitically trans-boundary basins of the world. 
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As an initial step to evolve toward a more hydrologically-relevant approach that can make better 

use of the valuable information contained in the state-of-the-art satellite precipitation data, the 

modular-structured framework allows the use of new components and the integration of locally 

existing flood management tools into a global flood alert system. One on-going activity is to 

continue calibrating and regionalizing this system with local in-situ data when they become 

available. Additionally, more complex hydrological models can be modified and implemented at 

regional or local scales by subsetting the TRMM rainfall input data. An important improvement 

to the GFM will be to link it to the NASA Land Information System (LIS; Peters-Lidard et al., 

2004), allowing for use of LIS databases, local in-situ data, and various hydrological models. 

Particularly, we will utilize the LIS platform to improve/regionalize the land surface modeling 

capability (e.g. VIC) and the associated meteorological data. The LIS will provide three types of 

inputs for local regionalization: 1) Initial conditions, which describe the initial state of the land 

surface; 2) Boundary conditions, which describe both the upper (atmospheric) fluxes or states 

also known as "forcings" and the lower (soil) fluxes or states; and 3) Parameters, which are a 

function of soil, vegetation, topography, etc., for the selected land surface models in order to 

predict terrestrial rainfall-runoff processes. Early results of TMPA real-time rainfall application 

in VIC model show that the TMPA-driven VIC hydrological model simulations were able to 

capture the flooding events and to represent low flows, although peak flows tended to be biased 

upward (Su et al., 2008). After the successful launch and operation of the Regional Visualization 

and Monitoring System (SERVIR) for Mesoamerica (www.servir.net), the NASA Applied 

Science program has again partnered with United States Agency for International Development 

and The Africa Regional Centre for Mapping of Resources for Development (RCMRD) to 

implement an operational flood warning system as part of the SERVIR-Africa project. The 
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ultimate goal of the project is to build up disaster management capacity in East Africa by 

providing local governmental officials and international aid organizations a practical decision-

support tool in order to better assess emerging flood impacts and to quantify spatial extent of 

flood risk, as well as to respond to such flood emergencies more expediently. Although the 

results (Li et al., 2008) suggest that TMPA real-time data can be acceptably used to drive 

hydrological models for flood prediction purpose in Nzoia basin at resolution of 1-km grid scale 

after downscaling, continuous progress in space-borne rainfall estimation technology toward 

higher accuracy and higher spatial resolution is highly appreciated. 

The current GFM uses normalized 5-day antecedent precipitation index as a proxy of 

antecedent moisture conditions to provide initial soil wetness information. In the future, we will 

explore use of the daily AMSR-E soil moisture data as initial soil condition instead of the 

normalized antecedent precipitation index. One additional capability of the framework under 

consideration is to incorporate quantitative precipitation forecasts (QPF) from NOAA Global 

Forecast System (GFS) or other global forecasts to predict runoff within the short to medium 

ranges of lead time. The increased lead time provided by this framework will be a major 

improvement over in-situ monitoring infrastructures that may have to wait for delayed 

transmission of rainfall information from upstream countries and may be defeated by severe 

weather. We expect work reported here to become increasingly fruitful and practical with the 

advent of GPM-related products and research collaborations. 
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Figure 1 TRMM rainfall threshold-based flood potential Map.  

(a) Example 1-day flood potential map; red regions show areas that have received a 24-hour 
rainfall accumulation (May 2, 2003) greater than 35 mm.  

(b) Spring flooding in the Southeastern US: Data from the TMPA estimated more than 400mm 
of rainfall in the red areas of the top map (TN, AL, GA) during May 4-9, 2003, from spring 
storms. 

(c) Left graph shows rain rates as high as 35 mm hr-1 over the 5-day period. Right graph shows 
that after 85 hours, rain totaled 472.7 mm (18.6 inches) within a 200 km (77 mile) radius 
surrounding Nashville, TN. 

 

(a)

(c)(b)
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Figure 2 A modular structured framework for global flood monitoring system: (1) precipitation 
input; (2) surface geospatial database; (3) hydrological models; and (4) an implementation 
interface.  
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Figure 3 (a) Climatological pentad antecedent precipitation index (API) averaged over 9 years 
(1998–2006). (b) Pentad antecedent rainfall accumulation (mm) ending on 25 August 2005. (c) 
Pentadnormalized API (NAPI) on 25 August 2005. (d) Hydrological condition, with _1, 0, 1, and 
2 corresponding to no data, dry, fair, and wet conditions, respectively, determined by NAPI as of 
25 August 2005. (e) Updated CN on 25 August 2005. [image source: Hong et al., 2007b] 
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Figure 4 Global Basins and River Networks 
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Figure 5. (a) Annual mean runoff (mm/yr) simulated using NRCS-CN methods from TRMM 
estimates for the period 1998–2006. (b) GRDC-observed runoff (mm/yr). (c) Runoff zonal mean 
profiles comparing TRMM precipitation (green) and simulated runoff (red) to GRDC runoff 
(blue) from the (left) observed, (middle) WBGS, and (right) composite data sets. Note the gray 
areas in Figures 3a and 3b indicate no data or water surface. [image source: Hong et al., 2007b] 
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Figure 6. TRMM-CN (a) runoff difference distribution and (b) root-mean-square difference 
(RMSD) as a function of basin area. [image source: Hong et al., 2007b] 
 
 

 
 
 
Figure 7 Comparison of TRMM-CN Annual Runoff with GRDC gage stations  
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Figure 8: Implementation of GHS-Flood: (a) Example of 7-day accumulation of real-time TMPA 

rainfall, and (b-d) examples of GHS-Flood detection/visualization results. 
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Popular Summary 
 Flooding driven by excessive rainfall is one of the most routine, yet devastating natural 
disasters to occur around the world, taking thousands of lives and damaging huge amounts of 
property every year.  Practically every nation around the world could benefit from improved flood 
information, whether dealing with very localized flash flooding or inundations by major rivers 
that take days or weeks to grow and then recede.  It has been hard to make progress in flood 
forecasting in many parts of the world because it is difficult to gather enough ordinary rainfall 
measurements, mainly raingauges and radars, quickly enough to quantify rainfall with the 
necessary detail in space and time.  However, modern satellite precipitation observations are now 
capable of providing the necessary detail quickly, although we have to accept a fair amount of 
uncertainty.  We use these relatively new data to develop an experimental flood alert system that 
starts with current rainfall data and results in alerts on a Web page for the possibility of flooding.  
The system is referred to as the Global Flood Monitor (GFM) 
 This new experimental system required us to draw on several different technical specialties: 
satellite precipitation estimates, land surface data, computer models of flooding, and Web site 
development.  First, we assemble a detailed analysis of land surface characteristics around the 
globe, showing for each location what is covering the land surface, what the soil is like, and 
where water will flow.  Second we bring in precipitation estimates that are created by the NASA 
Tropical Rainfall Measuring Mission (TRMM) about 9 hours after the data are observed using the 
TRMM Multi-satellite Precipitation Analysis.  Third, we use a simple computer model to show 
what happens to rain when it falls on that landscape.  In particular, we can track how much runoff 
occurs, and where it goes, allowing us to estimate flooding.  Fourth, we post these flood alerts on 
our public GFM Web site.  When we tested the GFM by running it with data observed during 
1998-2006 it was clear that the system performs consistently both at individual stations and 
averaged across river basins.   
 The GFM Web site is intended as an early example of a natural disaster early warning system 
for the data-sparse regions of the world.  The site is interactive, showing close-up maps of current 
flood risks drawn on top of land-surface and population maps.  It is also possible to display the 
flood information in Google Earth.  In the near future we plan to run the GFM with precipitation 
estimated by weather forecast models.  This will allow us to issue flood alerts further into the 
future than is possible with observed data alone. 
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