Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System

M.T. Ghasr¹, D. Pommerenke², J.T. Case¹, A.D. McClanahan¹, A. Aflaki-Beni², M. Abou-Khousa¹, K. Guinn¹, F. De Paulis², S. Kharkovsky¹ and R. Zoughi¹

Electrical and Computer Engineering Department ¹Applied Microwave Nondestructive Testing Laboratory (*amntl*) ²Electromagnetic Compatibility Laboratory (EMC) Missouri University of Science and Technology (S&T) Rolla, MO 65409

ABSTRACT

In recent years, millimeter wave imaging techniques, using synthetic aperture focusing and holographical approaches, have shown tremendous potential for nondestructive testing applications, involving materials and structures used in space vehicles, including the space shuttle external fuel tank spray on foam insulation and its acreage heat tiles. The ability of signals at millimeter wave frequencies (30 - 300 GHz) to easily penetrate inside of low loss dielectric materials, their relatively small wavelengths, and the possibility of detecting coherent (magnitude and phase) reflections make them suitable for high resolution synthetic aperture focused imaging the interior of such materials and structures. To accommodate imaging requirements, commonly a scanning system is employed that provides for a raster scan of the desired structure. However, most such scanners, although simple in design and construction, are inherently slow primarily due to the need to stop and start at the beginning and end of each scan line. To this end, a millimeter wave synthetic aperture focusing system including a custom-designed transceiver operating at 35 - 45 GHz (Q-band) and unique and complex rotary scanner was designed and developed. The rotary scanner is capable of scanning an area with approximately 80 cm in diameter in less than 10 minutes at step sizes of 3 mm and The transceiver is capable of producing accurate magnitude and phase of smaller. reflected signal from the structure under test. Finally, a synthetic aperture focusing algorithm was developed that translates this rotary-obtained magnitude and phase into a synthetic aperture focusing image of inspected structures. This paper presents the design of the transceiver and the rotary scanning system along with showing several images obtained with this system from various complicated structures.

Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System

M.T. Ghasr, J.T. Case, A.D. McClanahan, M. Abou-Khousa, K. Guinn, S. Kharkovsky and R. Zoughi

Applied Microwave Nondestructive Testing Lab. (amntl) Electrical and Computer Engineering Department Missouri University of Science and Technology (S&T) Rolla, MO 65409 <u>zoughi@mst.edu</u> (573) 341-4656

A. Aflaki-Beni, F. De Paulis and D. Pommerenke

Electromagnetic Compatibility (EMC) Laboratory Electrical and Computer Engineering Department Missouri University of Science and Technology (S&T) Rolla, MO 65409

Acknowledgment

The funding for this work was provided through a grant from NASA Marshall Space Flight Center, Huntsville, AL. POC: Mr. F.L. Hepburn

BACKGROUND

IMAGING and COMPOSITE INSPECTION

Foundation

Robust imaging capabilities since: Wavelength in mm range ✓ Probes are small Different "focusing techniques" Different "image reconstruction" techniques No need for a separate transmitter and receiver (i.e., mono-static systems). No need for pulsed systems.

POD Panel

POD Panel - 150 GHz

Perpendicular

Focused at Substrate

Synthetic Aperture Focusing

Synthetic Aperture Focusing

Justification - Rotary Scanner

Conventional raster scanning a 2' by 2' area may take upwards of several hours.

Scanning speed constraint becomes more significant as the scan area increases.

Rotational scanning format eliminates stop-go action all together.

Critical design issues to consider:

Linear signal polarization

 Control and synchronization vs. spatial data acquisition

amntl

Variable speed vs. changing scan radius

Justification – Transceiver (Q-Band)

Wideband system requirements:

- ✓ Q-band (33-50 GHz): 35-45 GHz transceiver
- High-resolution images
- Coherent reflection measurement SAFT
- Previous results obtained at NASA MSFC at Q-band
- SAFT image production.

Maín Components

Mechanical components:

- Linear dual-action positioning arm
- ✓ Direct-drive motor
- Q-band coherent transceiver.
- Control and communications interface software.

Polarization transforming and polar SAFT software.

Scanner Schematic

Rotary Axis Specifications

Rotary axis specs								
Speed	rpm	up to 50	Comments					
Bidirectional Repeatability	arc.sec	< 35						
Accuracy	arc.sec	< 150						
wobble	arc.sec	< 60						
Vertical runout	mm	< 0.2						
Radial runout	mm	< 0.2						
Weight	lb (Kg)	< 66 (30)	Total weight including the motor					
Bore diameter	in	> 1.5"	For cable routing from the front (linear stage) to the back (slip-ring)					
Payload	The linear stage + The payload of the linear stage							

Línear Axis Specifications

Linear axis									
Dual carriage system moving in opposite directions from the center									
Ball screw half right-hand/half left-hand thread									
Travel distance	in (mm)	24 (600)	on each side/carriage.						
Speed	in/sec	< 1							
Payload	lb (Kg)	22 (10)	for each carriage						
Bidirectional Accuracy	mils (mm)	< 4 (0.1)							
Deflection (any direction)	mm	< 0.2 mm	Due to load, table weight etc.						
			Weight of the linear stage (not						
Weight	lb (Kg)	< 45 (20)	critical)						
Driver	Servo motor + Driver								
Home and EOT switches with Repeatability < 0.05 mm									

Electrical Power & Comm. Diagram

Final Rotary Scanner

Transceiver Schematic

I/Q Detector Test Setup

Transceiver Test Results

	AD8354 IQ	MIXER	VNA Referenced to	
Load	Referenced	to VNA	Theory	
	$\sigma_{{}_{phase}}$ (deg.)	σ_{mag} (dB)	$\sigma_{_{phase}}(\deg)$	$\sigma_{_{mag}}(\mathrm{dB})$
50 MIL OFFSET-SHORT	0.71	0.1358	0.43	0.0656
100 MIL OFFSET-SHORT	0.86	0.1345	0.5119	0.0886
Q- OPEN ENDED WG.	0.62	0.1318		

SAFT Algorithm Flow Chart

Polarization Transformation

Two Thin Wires

Images of Thin Wires - 45 GHz

MISSOURI

Images of Thin Wires - 45 GHz

MISSOURI

Flat Bottom Holes

Flat Bottom Holes – 40 GHz

Standoff Dístance 70 mm OEW

POD Panel - 45 GHz

Standoff Dístance 20 mm Horn

POD Panel - 45 GHz

Standoff Dístance = 5 mm OEW

POD Panel – 45 GHz

Standoff Dístance = 5 mm OEW

Summary

Designed and developed a novel and rapid rotary scanner.

Designed and developed a coherent Qband transceiver with 10 GHz of BW.

Capable of producing SAFT images or areas as large as 120 cm in diameter in as short as 15 minutes.

- Dual polarization capable.
- Suitable for large area scans.

Thank you.

