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belt is integral with the rest of the rod and
acts as a circumferential waveguide. If the
depth and width of the belt are made ap-
propriately small, then the belt acts as
though it were the core of a single-mode
optical fiber: the belt and the rod material
adjacent to it support a single, circumfer-
entially propagating mode or family of
modes.
To recapitulate from the second cited

prior article: A major step in the fabrica-
tion of a WGM resonator of this special
type is diamond turning or computer nu-
merically controlled machining of a rod of
a suitable transparent crystalline material
on an ultrahigh-precision lathe. During
the rotation of a spindle in which the rod
is mounted, a diamond tool is used to cut
the rod. A computer program is used to
control stepping motors that move the di-

amond tool, thereby controlling the shape
cut by the tool. Because the shape can be
controlled via software, it is possible to
choose a shape designed to optimize a res-
onator spectrum, including, if desired, to
limit the resonator to supporting a single
mode. After diamond turning, a resonator
can be polished to increase its Q.
By virtue of its largely automated,

computer-controlled nature, the process
is suitable for mass production of nomi-
nally identical single-mode WGM res-
onators. In a demonstration of the capa-
bilities afforded by this development, a
number of WGM resonators of various
designs were fabricated side by side on
the surface of a single CaF2 rod (see fig-
ure).
This work was done by Ivan Grudinin,

Lute Maleki, Anatoliy Savchenkov, Andrey

Matsko, Dmitry Strekalov, and Vladimir
Iltchenko of Caltech for NASA’s Jet Propulsion
Laboratory. Further information is contained
in a TSP (see page 1).
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A theoretical analysis of photon-ar-
rival jitter in an optical pulse-position-
modulation (PPM) communication
channel has been performed, and now
constitutes the basis of a methodology

for designing receivers to compensate so
that errors attributable to photon-arrival
jitter would be minimized or nearly min-
imized. Photon-arrival jitter is an uncer-
tainty in the estimated time of arrival of

a photon relative to the boundaries of a
PPM time slot. Photon-arrival jitter is at-
tributable to two main causes: (1) re-
ceiver synchronization error [error in
the receiver operation of partitioning
time into PPM slots] and (2) random
delay between the time of arrival of a
photon at a detector and the genera-
tion, by the detector circuitry, of a pulse
in response to the photon. For channels
with sufficiently long time slots, photon-
arrival jitter is negligible. However, as
durations of PPM time slots are reduced
in efforts to increase throughputs of op-
tical PPM communication channels,
photon-arrival jitter becomes a signifi-
cant source of error, leading to signifi-
cant degradation of performance if not
taken into account in design.
For the purpose of the analysis, a re-

ceiver was assumed to operate in a pho-
ton-starved regime, in which photon
counts follow a Poisson distribution. The
analysis included derivation of exact
equations for symbol likelihoods in the
presence of photon-arrival jitter. These
equations describe what is well known in
the art as a matched filter for a channel
containing Gaussian noise. These equa-
tions would yield an optimum receiver if
they could be implemented in practice.
Because the exact equations may be

too complex to implement in practice,
approximations that would yield subop-
timal receivers were also derived. One

Mitigating Photon Jitter in Optical PPM Communication
Compensation based partly on photon-arrival statistics would yield gain.
NASA’s Jet Propulsion Laboratory, Pasadena, California

Symbol-Error Rates were computed for a PPM receiver not subject to jitter and for PPM receivers sub-
ject to photon-arrival-jitter-induced inter-time-slot interference (neglecting inter-symbol interfer-
ence), all for the case of 16-time-slot PPM words with an average of 0.2 noise photons per time slot
and α = 0.2 in a jitter-offset exponential distribution f(δ) = [1/(2α)]e–|δ|/α, where δ is the jitter offset in
units of one slot duration.
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Version 3.31 of Modeling and Analysis
for Controlled Optical Systems
(MACOS) has been released. MACOS is
an easy-to-use computer program for
modeling and analyzing the behaviors of
a variety of optical systems, including sys-
tems that have large, segmented aper-
tures and are aligned with the technol-
ogy of wavefront sensing and control.
Two previous versions were described in
“Improved Software for Modeling Con-
trolled Optical Systems” (NPO-19841)
NASA Tech Briefs, Vol. 21, No. 12 (Decem-
ber 1997), page 42 and “Optics Program
Modified for Multithreaded Parallel
Computing” (NPO-40572) NASA Tech
Briefs, Vol. 30, No. 1 (January 2006) page

13a. The present version incorporates
the following enhancements over prior
versions: 
• A powerful system-optimization facility
includes algorithms for linear, nonlin-
ear, unconstrained, and constrained
optimization of optical systems under a
variety of settings. 

• There is now enhanced capability to
perturb optical components individu-
ally and on subsystem levels, and to op-
timize system performance by adjust-
ing selected individual components as
well as subsystems. 

• Capabilities for modeling a variety of
new optical aperture types have been
added. 

• Effects of multilayer thin-film coats on
optical surfaces can now be taken into
account when tracing polarized rays. 

• Major software-engineering work was
performed to make MACOS more reli-
able, flexible, and manageable for pur-
poses of maintenance and further de-
velopment. 
This program was written by David Red-

ding, John Lou, Scott Basinger and Norbert
Sigrist of Caltech for NASA’s Jet Propulsion
Laboratory.
This software is available for commercial li-

censing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-45030. 

MACOS Version 3.31
NASA’s Jet Propulsion Laboratory, Pasadena, California

approximation is based on the assump-
tion that the jitter in the arrival of each
photon is independent. Another ap-
proximation is based on the assumption
that only photon counts over finite time
bins are available. Yet another approxi-
mation is based on the counts-over-fi-
nite-time-bins assumption with the addi-

tional assumption that the counts follow
a Poisson distribution. For jitter with a
standard deviation of 0.28 of a slot, com-
putational-simulation tests have shown
that receivers designed to compensate
using the exact or approximate equa-
tions would exhibit error-rate reduc-
tions, relative to receiver designs based

on neglect of photon-arrival jitter, equiv-
alent to power increases of the order of
1 dB (see figure).
This work was done by Bruce Moision of Cal-

tech for NASA’s Jet Propulsion Laboratory. For
more information, contact iaof-
fice@jpl.nasa.gov. 
NPO-45163

Fiber-Optic Determination of N2, O2, and Fuel Vapor in the
Ullage of Liquid-Fuel Tanks
A fiber-optic sensor provides feedback control of onboard inert gas generation systems
(OBIGGS) and reduces aircraft operational costs. 
John H. Glenn Research Center, Cleveland, Ohio

A fiber-optic sensor system has been
developed that can remotely measure
the concentration of molecular oxy-
gen (O2), nitrogen (N2), hydrocarbon
vapor, and other gases (CO2, CO, H2O,
chlorofluorocarbons, etc.) in the ul-
lage of a liquid-fuel tank. The system
provides an accurate and quantitative
identification of the above gases with
an accuracy of better than 1 percent by
volume (for O2 or N2) in real-time (5
seconds). In an effort to prevent air-
craft fuel tank fires or explosions simi-
lar to the tragic TWA Flight 800 explo-
sion in 1996, OBIGGS are currently
being developed for large commercial
aircraft to prevent dangerous condi-
tions from forming inside fuel tanks by
providing an “inerting” gas blanket
that is low in oxygen, thus preventing

the ignition of the fuel/air mixture in
the ullage.
OBIGGS have been used in military

aircraft for many years and are now stan-
dard equipment on some newer large
commercial aircraft (such as the Boeing
787). Currently, OBIGGS are being de-
veloped for retrofitting to existing com-
mercial aircraft fleets in response to
pending mandates from the FAA. Most
OBIGGS use an air separation module
(ASM) that separates O2 from N2 to
make nitrogen-enriched air from com-
pressed air flow diverted from the engine
(bleed air). Current OBIGGS systems do
not have a closed-loop feedback control,
in part, due to the lack of suitable
process sensors that can reliably measure
N2 or O2 and at the same time, do not
constitute an inherent source of ignition.

Thus, current OBIGGS operate with a
high factor-of-safety dictated by process
protocol to ensure adequate fuel-tank in-
erting. This approach is inherently ineffi-
cient as it consumes more engine bleed
air than is necessary compared to a
closed-loop controlled approach. The re-
duction of bleed air usage is important as
it reduces fuel consumption, which
translates to both increased flight range
and lower operational costs.
Numerous approaches to develop-

ing OBIGGS feedback-control sensors
have been under development by
many research groups and companies.
However, the direct measurement of
nitrogen (N2) is a challenge to most
OBIGGS ullage sensors (such as tun-
able diode laser absorption) as they
cannot measure N2 directly but de-


