MSFC-2204

Marshall Space Flight Center

Ceramics for Molten Materials Transfer

Evan Standish¹, Doru M. Stefanescu¹, and Peter A. Curreri²

¹Dept. of Materials Science and Engineering, The Ohio State University, Columbus OH ² NASA - Marshall Space Flight Center, Huntsville Al

AIAA Aerospace Sciences Meeting 2009 January 5 – 8, Orlando, FL

The authors wish to acknowledge discussions and collaborations with Prof. Donald Sadoway, MIT, Dr. Laurent Sibille, ASRC, and Orlando Melendez, KSC, Prof. Jonathan Whitlow, FIT, on lunar applications of the electrowinning process.

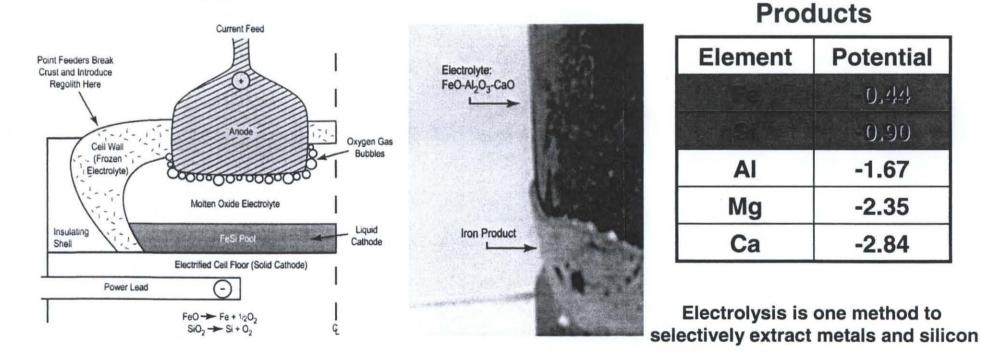
Concepts for this paper were developed under the Lunar Oxygen Production by Electrowinning project led by KSC under the Management of William Larson.

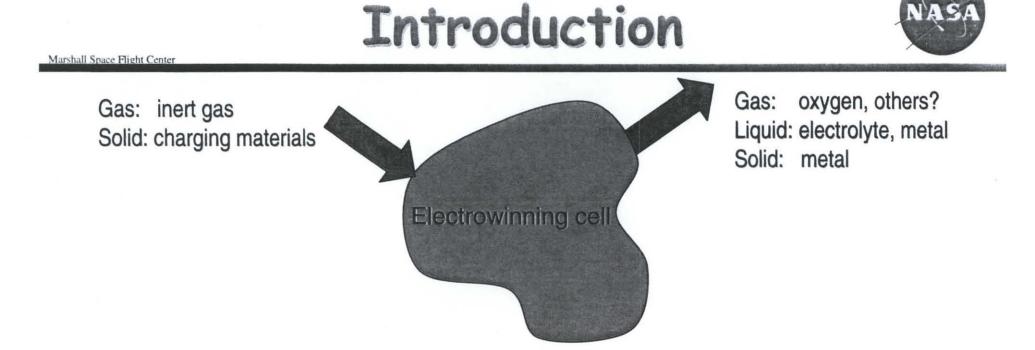
The support of many program management leaders was essential especially Joe Howell, Carole Mclemore, John Fikes and Chuck Owens who managed the MSFC In Situ Resource Utilization effort.

The efforts of Jerry Sanders, JSC, as the NASA In Situ Resource Utilization lead have been particularly essential for continued progress in the study of lunar resource utilization.

Outline

Introduction
Electrowinning cell feeding
Material removal from the electrowinning cell
o Removal of gasses
o Removal of solids
o Removal of liquids


Marshall Space Flight Center


- Liquid oxide bath from regolith
- Inert Anode

Marshall Space Flight Center

- Conductive Cathode in contact with liquid metal
- Selective extraction of elements
- Oxygen production

(Donald Sadoway, Massachusetts Institute of Technology, 2004)

Working hypothesis:

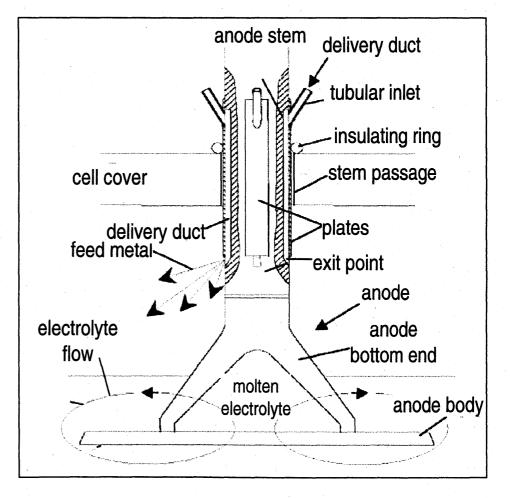
Anticipated processes and characteristics

Process	Products	Temperature	Process duration	
High temp. (HTEW)	Molten metal & alloys, molten oxides, gases	>1400°C	4 - 24hrs	
Low temp. (LTEW)	Solid metal & alloys, molten mix of fluorides, chlorides & oxides	~1000°C	?	

Outline

Marshall Space Flight Center

Introduction Electrowinning cell feeding Material removal from the electrowinning cell o Removal of gasses o Removal of solids o Removal of liquids



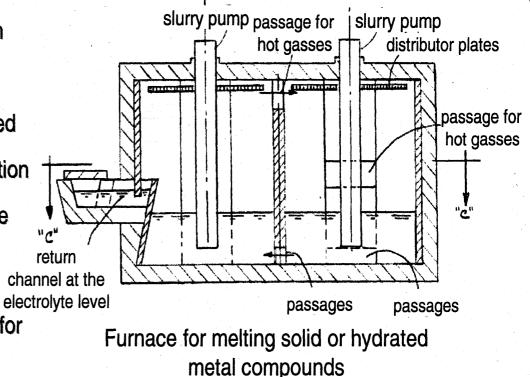
Electrowinning Cell Feeding

Marshall Space Flight Center

Feed device for metal compound

- Description of technology
 - o delivery duct delivers metal compound to circulating electrolyte, enhancing dissolution
 - o metal compound can be delivered above or under the surface of the electrolyte
- History 2006 patent
- Application of technology electrowinning processes with metalbased anodes below 940 °C
- Limitations for application to lunar missions – none apparent

Berclaz G., De Nora V., Electrolytic cell with improved feed device, World Intellectual Property Org. Patent, WO 2006/129267 A2 (2006)


Electrowinning Cell Feeding

Marshall Space Flight Center

Feed device for hygroscopic metal compounds

- Description of technology
 - o allows the use of hydrated or oxygen containing feed-stock for cells that require freedom from oxygen containing compounds
 - o furnace adjacent to cell (see fig.) used to melt and chlorinate feed-stock
 - o pumps used to maintain melt circulation in furnace
 - o melt pumped through channels to the electrolytic cell; excess electrolyte returned to furnace
- History 2001 patent
- Application of technology described for production of Li and Mg
- Limitations for application to lunar missions – irrelevant unless the lunar environment contains free water or oxygen

Siviloti O., Method and apparatus for feeding electrolytic cells, Canadian Patent, CA 2,340,528 (2001)

Outline

Marshall Space Flight Center

Introduction
 Electrowinning cell feeding
 Material removal from the electrowinning cell
 o Removal of gasses
 o Removal of solids
 o Removal of liquids

Removal of Gasses

Oxygen removal from containers

Description of technology

Marshall Space Flight Center

- o flooding of the environment with nitrogen or argon gas
- o oxygen residual ~ 1%
- History described in patent by Maget et al.
- Application of technology used in the pharmaceutical industry
- Limitations for application to lunar missions
 - o large capital expenditure
 - o requires large quantities of nitrogen or argon

- Description of technology
 - o limitation of free volume in the cell
 - o evolved oxygen pressure use for self-removal
- History to design
- Application of technology none known
- Limitations for application to lunar missions – none apparent

Removal of Gasses

Marshall Space Flight Center

Gas Extraction from Closed Cells

Description of technology

o removal of gasses particularly oxygen from closed containers

o apparatus senses the oxvoen

FIG. 1 is a schematic side elevation view, partially in section, showing the principal components of the electrotic chemical oxygen extractor.

FIG. 2a illustrates the configuration for a prior art zine-air battery operated with oxygen from air, where the air is supplied simultaneously to the battery and the electrochemical cell.

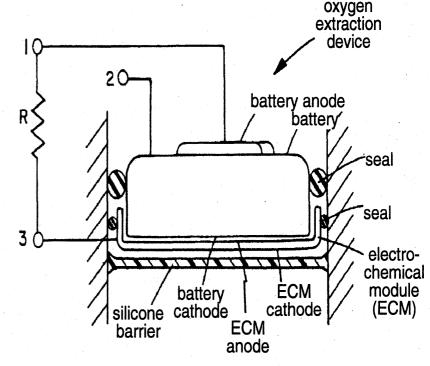

FIG. 2b illustrates the configuration of the present invention for a zinc-air battery extracting oxygen from a container, wherein the oxygen flows solely toward the air intake port of the zinc-air battery.

FIG. 3a is a schematic diagram showing the electrochemiis call oxygen extractor in a closed system configuration.

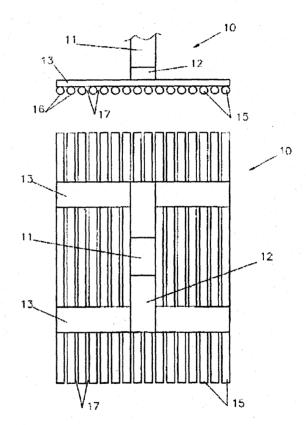
FIG. 3b is an equivalent diagram showing the electrochemical oxygen extractor in an open system configuration.

missions

- some infrequent maintenance may be required
- need appropriate sensors for high temperature processes

Electrochemical oxygen extractor

Maget H.J.R, Rosati R.J., Gas extraction from closed containers, U.S. Patent 6,171,368 B1 (2001)



Description of technology

Marshall Space Flight Center

- Metal based anode with electrically conductive structure parallel to the cathode
- Parallel electrically active anode members (see fig.) on which oxygen is evolved during electrolysis
- Electrolyte is circulated through the gaps driven by the escape of the oxygen
- History 2003 patent
- Application of technology described for aluminum electrowinning cell
- Limitations for application to lunar missions – none apparent

Oxygen Extracting Anodes

De Nora, V., Moltech, S.A., Aluminum Electrowinning Cells with Oxygen-Evolving Anodes, U.S. Patent 6,540,887 B2 (2003)

Material Removal from the Electrowinning Cell

Removal methods for solids and liquids

removal of solids

Marshall Space Flight Cente

o freezing of the electrolytic cell and removal of solids
 o removal of solid metal sheet from the liquid electrolyte
 Temoval of liquids

- o molten liquid pumping systems
- o gravity separation systems
- o pressurized removal systems

Freezing of the Electrolytic Cell and Removal of Solids

Description of technology

Marshall Space Flight Cente

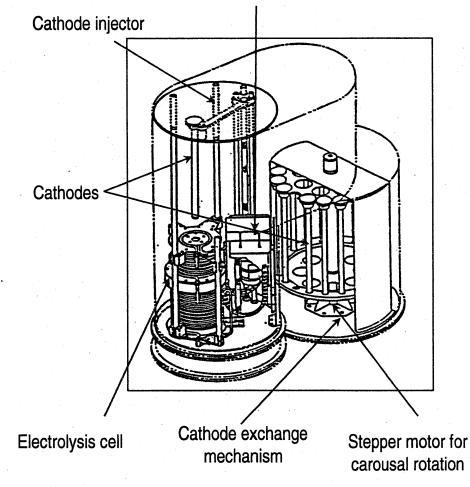
- o used in experiments of electrowinning of molten titanium from titanium dioxide
- at the end of each run the cell temperature was reduced below 1600°C, the anode was lifted above the electrolyte surface and the system cooled to room temperature
- o once cooled, the contents of the cell were removed
- o internal dimensions of the cell: diameter-80 mm, height -120 mm.
- Application of technology High and low temperature electrowinning
- Limitations for application to lunar missions
 - Potential use for an initial lander mission to return sample to earth and analyze them

Removal of Solid Metal Sheet from the Liquid Electrolyte

Description of technology – 2 steps:

Marshall Space Flight Center

- o remove cathode from electrolysis cell after specified time (thickness of metal deposit)
- o remove solid metal sheet from cathode
- ✤ Limitations for application to lunar missions cathode removal
 - o for an initial lander mission cathode returned to earth for analysis of metal deposit
 - o for a pilot plant where metal deposit is used on lunar surface
 - to minimize crew intervention use an automated cathode exchange mechanism (see next slide)
 - metal deposit stripped from cathode using a patented stripping mechanism (see subsequent slide)
 - cathode exchange mechanism and the cathode stripping mechanism needs to be coupled
 - o may require some crew intervention working with hot electrode to exchange electrodes and moving electrodes from the electrolysis cell to a stripping chamber unless they are coupled



Marshall Space Flight Center

Cathode Exchange Mechanism

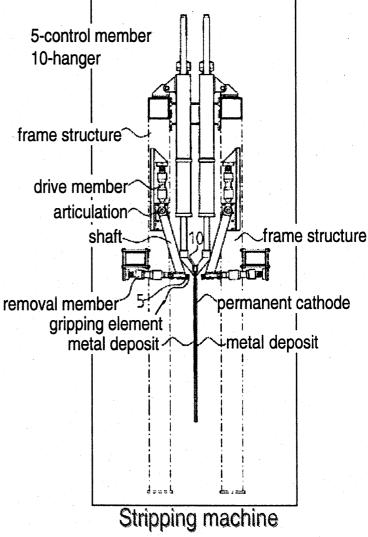
- Description of technology
 - cathode carousel is computer driven and can be commanded to place a specific cathode at the engagement position
 - o cathode injection arm can rotate about vertical axis and translate in vertical direction
 - o injector arm rotates to cathode engagement position and translates down to engage an electrode
 - o after engagement it translates up with electrode and rotates to electrode insertion position
 - o it then translates down to insert electrode into electrolysis cell
 - reverse motions are applicable to eject the electrode from the cell and place it back on the carousel
 - electrical connections for electrolysis is on injector arm - each electrode does not need a separate electrical connection

Stepper motor for sample injector translation

Marshall Space Flight Center

Cathode Exchange Mechanism

- ✤ History
 - The sample exchange mechanism has been successfully flown on the shuttle as part of the Crystal Growth Furnace (CGF) and Advanced Automated Directional Solidification Furnace (AADSF)
 - CGF could accommodate 6 samples and AADSF could accommodate 3 samples
 - Total weight of sample exchange mechanism was approximately 15 lbs
 - o Weight of each sample assembly is approximately 4 lbs

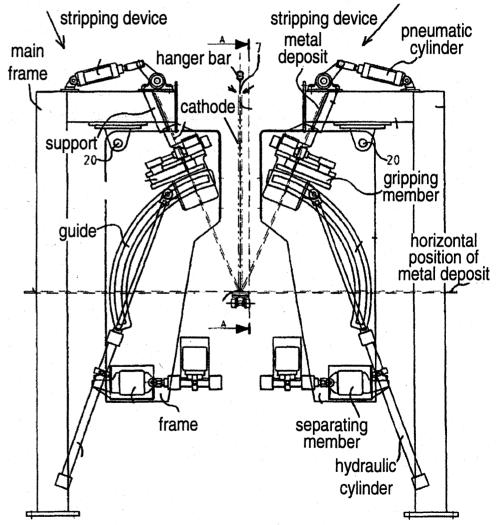


Stripping Mechanism 1

Description of technology

Marshall Space Flight Center

- in modern production plants for Cu, Ni or Zn the cathode is usually made of a different metal than the metal to be produce
- metal to be produced is removed in plate-like sheets (typically over 5 mm thick) from surface of permanent cathodes
- permanent cathodes are continuously circulated between the electrolytic tanks and removal station
- o interval between removals is typically from one to seven days.
- History 2003 patent

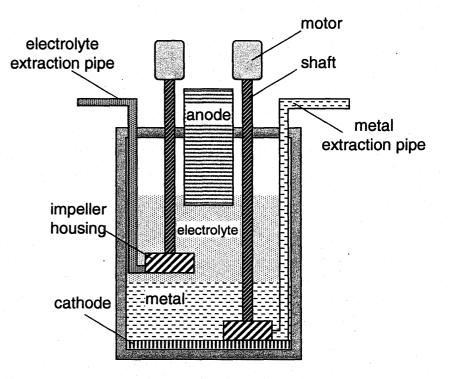


Stripping Mechanism 2

Description of technology

Marshall Space Flight Center

- metal to be produced is removed in plate-like sheets (typically over 5 mm thick) from surface of permanent cathodes
- o grooves are produced in the metal plates to facilitate breaking and removal
- History 2003 patent

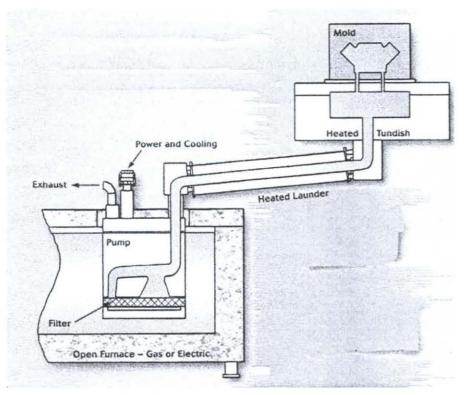


Molten Liquid Pumping Systems

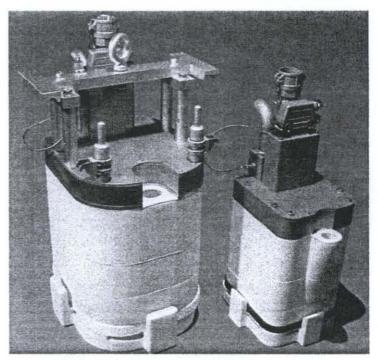
Description of technology

Marshall Space Flight Center

- o pump pushes liquid reactants upward and out of the cell
- submerged intake allows separation of two different fluids by adjusting device height
- o advantages: large volume transfer per unit time, less superheat required
- o types of pumping systems
 - positive-displacement pressure pump
 - > centrifugal pump
 - ➤ electromagnetic pump


Arrangement for two centrifugal pumps for transfer of electrolyte and molten metal

Neff D.V., in ASM Handbook Vol. 15 Casting, D.M. Stefanescu ed., ASM International (1992) p486



Marshall Space Flight Center

Molten Liquid Pumping Systems -electromagnetic pumps-

Arrangement for electromagnetic pump used in casting

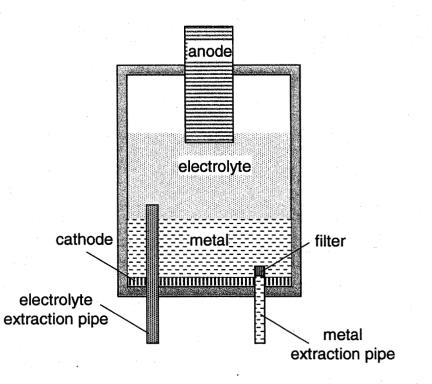
(CMI Novacast Inc.)

Molten Liquid Pumping Systems

Technology application, scale and results

Marshall Snace Flight Center

- o commonly used with Al, Mg, Zn and Pb molten alloys
- size scaling is not a problem; *e.g*, one foundry has poured a 9,000 kg casting using a transfer pump
- o temperature scaling: centrifugal pump used to pump 72,600 kg molten Cu for 55 min
- Application of technology high temperature electrowinning
- E Limitations for application to lunar missions
 - o for mechanical pumps spare parts to be procured from earth
 - o electromagnetic pumps have no moving parts but only good for metals

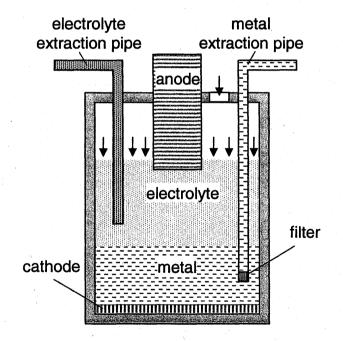


Marshall Space Flight Center

Gravity Separation Systems

Description of technology

- o pipes submerged in the reactants at levels appropriate for the two products
- removal of materials controlled by plugging the extraction pipes, or by translating the pipes vertically above the surface of the electrolyte
- o acts as a level control mechanism
- o filters could be used on metal extraction pipe to insure complete separation from electrolyte or oxide inclusions
- History technology will be specially design for the current project
- Limitations for application to lunar missions
 - o high viscosity of materials and low lunar gravity

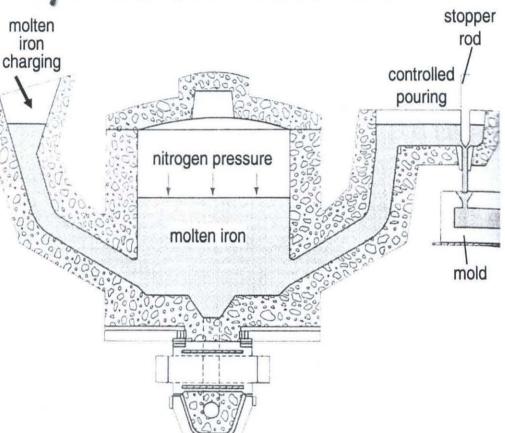


Pressurized Removal Systems

Description of technology

Marshall Space Flight Center

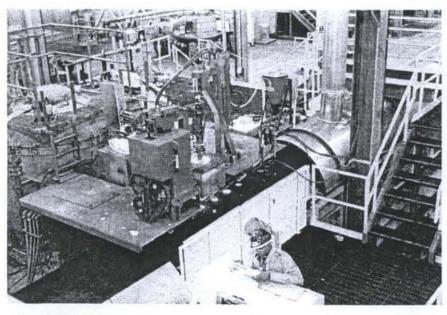
- o pressure is applied on top of the liquids in the cell to remove electrolyte and molten metal
- o pressure can be exercised either by the residual oxygen that is produced in the electrolytic cell, or by an inert gas to be pumped form outside
- History used for medium and large scale (tons/hr) molten metal transfer in foundries (see next slide)
- Limitations for application to lunar missions
 - availability of a pressurizing gas (residual oxygen for production cells or external inert gas for small demonstration cells)

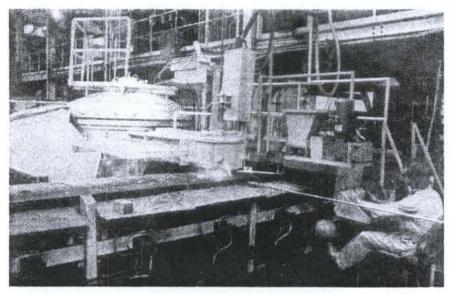


Marshall Space Flight Center

Pressurized Removal System for Cast Iron

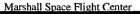
- ✤ operating temp. ~1450°C
- can operate for 24 hrs before stopping for stopper rod maintenance
- industrial records show operation times before relining of 10 to 24 months
- no technical size limitation
- pressure above molten iron establishes level of iron in furnace and discharge rate

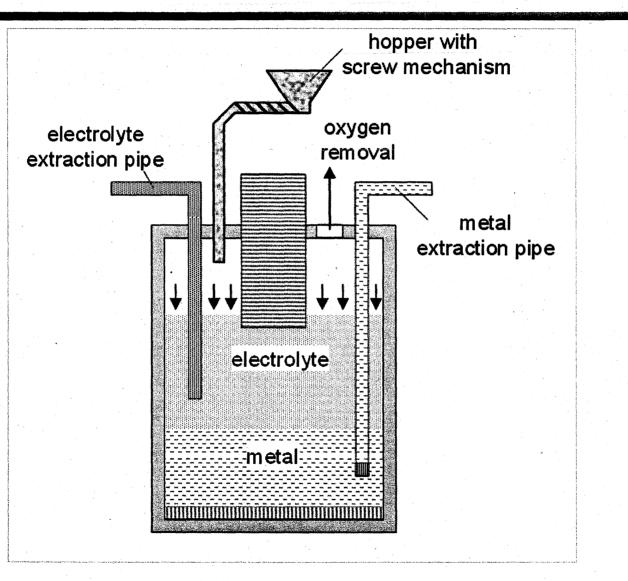




Marshall Space Flight Center

Pressurized Removal Systems for Cast Iron




25,000 lb pressure-pour furnace for cast iron

7,500 lb pressure-pour furnace for cast iron (Waupaca foundry, WI)

Schematic Representation of the Demonstration Unit for Molten Materials Transfer and Handling from an Electrowinning cell.

CONCLUSIONS

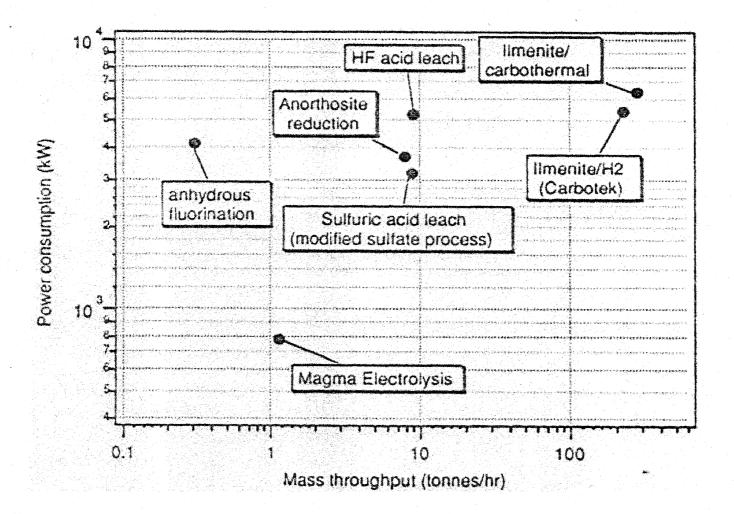
Marshall Space Flight Center

The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a high temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts.

A combination of existing technologies and purposely designed technologies show promise for lunar exploitation.

An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of molten metal containment and transfer in the lunar environment associated with electrolytic cells.

The principles of a laboratory scale unit at a scale equivalent to the production of 1 metric ton of oxygen per year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolith/hr processed.



Marshall Space Flight Center

Back Up Slides

Production of O_2 from Lunar Regolith (1 kT O_2 /yr basis) NASA

Marshall Space Flight Center

(From L.W. Mason, in Space 92, p.1139, ASCE (1992))

Engineering with Lunar Elements

Marshall Space Flight Center

	Lunar Elements Only					Material Class	Lunar Elements Plus ~ 5% or Less Earth Imports					
High	High Capacity		Limited Capacity			High Capacity				Limited Capacity		
A	Mg	Fe	Ti	Cr	Ni	Structural Metak	Al	Mg	Fe	Ti	C r	and the state of t
Wrat EC 1060 1100 3003 5005 5050 5050 5052 5056 5083 5086	AM10 O M1A A3A	1020 1095 1340 5140 A24 2 X70 9260 501	99.2 99 Ti- 8Mn 4.4 Al/M n	S Steel 410 430 Nichrom e	Z-Ni Permalloy Permendu x 200 201 211 212 Inconel 600 702		7075 7178 MA67 MA87	ZK60 AZ80A	404 2 434 0 864 0 6B	6-4 AJV S-2.5 AJ/Sn 7-4 AJ/Mo 6-2-4-2 AJ/Sn/ Zr/Mo	SS 440C 446	ang mananaka, yana a sana ang sana sana sana sana sana
5154 5357 6063 6101 6151 Cast					721 722							
A13 43 214												a fragmander i belefte de la state de la seconda de la
220 356 360 Al Mag 35												State () Marriel 1 and an a significant state of the

Waldin and Crisswell

Engineering with Lunar Elements 2

Marshall Space Flight Center

Al2O3 in Al, Mg Fe, Glass in Mg,	Al203 in Ni	Reinforced	· · · · · · · · · · · · · · · · · · ·	1
TiSSi3 in Ti	SiO2 in Ni	metals		
Cast Basalt		Structural		
Dark Glass		non metals		
Foamed Glass				
Al2O3, <u>CaO</u> , <u>MgO</u> , TiO2, SiO2,	Cr2O3, K2TiO3	Thermal		
Spinels, Mixed ceramics, "S"		materials,		
fiber, TiSSi3		refractorys,		
		insulation,		
		fibers		
		Electric /		
		magnetic		
		Materials		
Fe, Al, Mg	Ni-Cr	Conductors		
Kanthal A-1		Restistance		
		albys		
Si	AlP, FeS2, NiO, CoO	Semicondu		
		ctors		
Same as thermal except TiSSi3) +		Dieletrics /		1
titnates		ins.		
Fe, Si—steels (M15, MS-8)	Permalloy	Magnetics		
Fe3O4, MgFe2O4, <u>sendust</u>	Permendur			
	Cr)3			
Fe304, TiO	•	Electrodes		
Same as <u>refractorys</u> except <u>CaO</u> +		Abrasives		<u>SiC(30%)</u>
gamets			l	<u>TiC(20%)</u>
02,03	SO2, SO#, CrO3	Fhuid /	H2O (11%), H2O2 (6%), H2SO4,	H2S(6%),
		Volatiles,	H2SO3, H3PO4	H3P(9%)
		Cryogenic		NaOH
		ambient mp		
		< 500		
	L	<u>CNaH</u>	L	<u> </u>

Waldin and Crisswell