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using the attitude/position instrumen-
tation. This resulted in  providing test
and validation of an imaging lidar, and
has the capability to test other types of
surface terrain imaging sensors during
aerial field tests.  This task thus pro-
vides data and truth measurements to

algorithms for a variety of applications
including precision Lunar landing al-
gorithm development.

This work was done by James Alexander,
Hannah Goldberg, James Montgomery, Gary
Spiers, Carl Liebe, Andrew Johnson, Kon-
stantin Gromov, Edward Konefat, Raymond

Lam, and Patrick Meras of Caltech for
NASA’s Jet Propulsion Laboratory.

The software used in this innovation is
available for commercial licensing. Please
contact Karina   of the California Institute of
Technology at (626) 395-2322. Refer to
NPO-44581.

An optimized geometry has been pro-
posed for superconducting sensing coils
that are used in conjunction with super-
conducting quantum interference devices
(SQUIDs) in magnetic resonance imag-
ing (MRI), magnetoencephalography
(MEG), and related applications in which
magnetic fields of small dipoles are de-
tected. In designing a coil of this type, as
in designing other sensing coils, one seeks

to maximize the sensitivity of the detector
of which the coil is a part, subject to geo-
metric constraints arising from the prox-
imity of other required equipment. In
MRI or MEG, the main benefit of maxi-
mizing the sensitivity would be to enable
minimization of measurement time.

In general, to maximize the sensitivity
of a detector based on a sensing coil cou-
pled with a SQUID sensor, it is necessary

to maximize the magnetic flux enclosed
by the sensing coil while minimizing the
self-inductance of this coil. Simply making
the coil larger may increase its self-induc-
tance and does not necessarily increase
sensitivity because it also effectively in-
creases the distance from the sample that
contains the source of the signal that one
seeks to detect. Additional constraints on
the size and shape of the coil and on the
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An electronics architecture has been
developed to enable the rapid construc-
tion and testing of prototypes of robotic
systems. This architecture is designed to
be a research vehicle of great stability, re-
liability, and versatility. A system accord-
ing to this architecture can easily be re-
configured (including expanded or
contracted) to satisfy a variety of needs
with respect to input, output, processing
of data, sensing, actuation, and power.

The architecture affords a variety of
expandable input/output options that
enable ready integration of instruments,
actuators, sensors, and other devices as
independent modular units. The separa-
tion of different electrical functions onto
independent circuit boards facilitates the
development of corresponding simple
and modular software interfaces. As a re-
sult, both hardware and software can be
made to expand or contract in modular
fashion while expending a minimum of
time and effort.

To ensure modularity and reconfigura-
bility, the architecture incorporates the
PC/104 standard [an industry standard for
compact, stackable modules that are fully
compatible (in architecture, hardware,
and software) with personal-computer

data- and power-bus circuitry]. This feature
also enables minimization of development
costs through selection of off-the-shelf
PC/104 components whenever possible.

Particularly notable is a capability for
modular expansion to enable a single
central processing unit (CPU) to super-
vise the simultaneous operation of a
practically unlimited number of actua-
tors. For this purpose, the architecture
provides for each actuator a modular
real-time control subsystem, independ-
ent of other such subsystems. The subsys-
tem contains dedicated electronic hard-
ware that drives the actuator to execute
continuously updated arbitrary motions.
The architecture includes a provision for
control feedback in the form of outputs
from any or all of a variety of sensors. Any
or all actuators can be run independ-
ently and motions updated instantly,
without reference to any prior motion
profile.

A custom actuator-driver circuit board
has been developed for this architecture
to satisfy some power and mass con-
straints pertaining to a specific applica-
tion. This board is capable of driving 12
motors simultaneously under computer
control and is built on a standard

PC/104 footprint.
The architecture includes several user-

and system-friendly features: Two inde-
pendent inputs for panic buttons or
watchdog functions enable manual, com-
puter, or watchdog disablement of any or
all boards, without affecting the computer.
An independent circuit holds all actuators
inactive until the computer sends an en-
abling signal. A single switch overrides all
functions to enable manual control.
Lights, test points, and outputs enable
both the user and the computer to inde-
pendently monitor the state of the board
and internal circuit functions.

This work was done by Michael Garrett,
Lee Magnone, Hrand Aghazarian, Eric
Baumgartner, and Brett Kennedy of Caltech
for NASA’s Jet Propulsion Laboratory. 
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