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When humans return to the moon, Astronauts will be accompanied by robotic helpers.
Enabling robots to safely operate near astronauts on the lunar surface has the potential
to significantly improve the efficiency of crew surface operations. Safely operating robots
in close proximity to astronauts on the lunar surface requires reactive obstacle avoidance
capabilities not available on existing planetary robots. In this paper we present work
on safe, reactive navigation using a stereo based high-speed terrain analysis and obstacle
avoidance system. Advances in the design of the algorithms allow it to run terrain analysis
and obstacle avoidance algorithms at full frame rate (30Hz) on off the shelf hardware. The
results of this analysis are fed into a fast, reactive path selection module, enforcing the
safety of the chosen actions. The key components of the system are discussed and test
results are presented.

I. INTRODUCTION

Improving navigation capabilities is central for advancing robotic applications for future planetary and
lunar missions. Advanced, safe robot navigation systems open up mission operations scenarios that increase
efficiency and lower mission risk. When humans return to the moon, they will be accompanied by robotic aids,
helping them to cope with this harsh environment. Current research at NASA for lunar robot applications
encompasses a variety of robotic platforms, ranging from a robotic habitat, over a robotic successor of
the lunar roving vehicle (LRV) to small payload robots that can carry scientific instruments or perform
simple maintenance tasks. For lunar missions, enabling robots to safely operate near astronauts on the
lunar surface has the potential to significantly improve the efficiency of crew surface operations. Such an
operational scenario poses requirements to the navigation systems of these robotic vehicles, not met by
today’s planetary rovers.

Operating robots in the proximity of astronauts poses a new challenge for space robots, as this breaks the
assumption of a static world, where the robot is the sole actor and the position of obstacles can not change
over time. It also requires far higher operational speed from the robots to keep up with the speed of the
astronauts. Furthermore, the definition of safe robot motion is no longer restricted to ”safe for the robot”, but
includes safety of astronauts or other surface assets. Safely operating robots in an environment with moving
(dynamic) obstacles imposes two crucial changes with respect to current space-robotic navigation capabilities.
(1) Robots will have to update their world model and react on this new information at frequencies typically
above the capabilities of most deliberative planner-based systems. (2) Nevertheless, the adherence to safety
constraints needs to be easily verifyable, a feature that reactive systems often are blamed for missing.

In this paper we present a work on safe, reactive obstacle avoidance in unstructured, unvegetated terrain,
using a stereo based high-speed terrain analysis and obstacle detection system on the K10 robot platfrom.1

Stereo correlation is performed in hardware, using the Tyzx G2 sensor,2 which can provide depth images
at 30Hz. The system is capable of analyzing the terrain for traversability (and obstacles) at full frame rate
using standard COTS PCs. This ”High Frequency Terrain Analysis” (HFTA) information is evaluated in
a ”safe tele-operation” scenario. It is based on a reactive control scheme, that features a fast control loop,
while allowing to ensure safety constraints.

The remainder of this paper is organized as follows. In the following section an overview of the target
robotic system as well as the target scenario is given. In section III related work on terrain traversability is
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discussed, before our approach is presented in section IV. Afterwards related work on safe navigation as well
as our realization is discussed, before experimental results are presented in section VII. The paper closes
with conclusions and the identification of future work.

II. SYSTEM OVERVIEW

In this section the hardware platform and the target system capabilities are discussed. The Intelligent
Robotics Group (IRG) at NASA Ames is dedicated to improved understanding of extreme environments,
remote locations, and uncharted worlds. IRG conducts applied research in a wide range of areas with an
emphasis on robotics system science and field testing. Current applications include planetary exploration,
human-robot fieldwork, and remote science.

II.A. The K10 Rover

Figure 1: K10 on ”Drill Hill” at Haughton Crater
on Devon Island, Canada ( c©Matthew Deans,
Haughton Mars Project 2007).

Figure 2: K10 carrying the Tyzx G2 3D sensor on
Marscape.

The primary research platform of the IRG is the K10 rover platform. K10 is a 4-wheeled small payload
rover, with roughly 1m × 1m footprint. It is equipped with a 4-wheel-drive/4-wheel-steering locomotion
system for continuous driving with a maximum velocity of 0.85m

s (about human walking speed). The rover
is manufactured mostly from commercial off-the-shelf parts and its on-board computational resources consist
of a Dual-Core 2GHz Laptop with 2GB of RAM. Fig. 1 illustrates the K10 rover at a field test at Haughton
Crater in the Canadian High Arctic.

II.B. Tyzx DeepSea G2 3D Sensor

For obstacle detection in rough unstructured terrain, precise information about the environment is required.
In this work, a commercial Tyzx DeepSea G2 Vision System is used to acquire 3D information. This system
provides a complete solution for binocular stereo vision in a single, small size device. It includes two grayscale
cameras to acquire images of the scene in front of the robot from two slightly different points of view. An
integrated circuit, designed particularly for stereo image processing, recovers depth information based on
the arising differences in the recorded images. Depth images from stereo-vision were previously computed in
software on the K10 rover. It has already shown to work especially well in the highly textured environment of
Marsscape. In numerous experiments, it demonstrated to be a completely appropriate solution for day-light
environment perception. Because of the significant computational complexity of the depth reconstruction
process, only a limited frame-rate (≈ 2Hz) could be achieved on general purpose computing hardware.

This dedicated hardware implementation allows the retrieval of 500× 312 3D measurements at a frame-
rate of 30Hz. The G2 has a base-line of 6.00cm and features sub-pixel correlation. This results in a very good
accuracy of the depth image information, with respect to the target application. In this work, a maximum
look-ahead distance for obstacle avoidance of 5m was used, at which the sensor shows a standard deviation
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of 45mm. The horizontal field of view of 62.6◦ is quite narrow for the desired application, but did not restrict
the algorithmic solutions in the application scenario.

Fig. 2 shows K10 Black on ”Marscape”, a Mars-analog rover test facility at NASA Ames Research Center.
The cutout shows the Tyzx G2 sensor (black box) mounted on K10’s mast. The cameras mounted below
the G2 are part of the existing software stereo vision based obstacle detection system.

II.C. Target Scenario

The target scenario is a robot working in close proximity of humans, as demonstrated for instance in.3

For the test application a safe-guarded tele-operation system was chosen. This setup allows interactive
testing of the robot’s avoidance capabilities, allowing to process a large variance of test cases with little
additional effort. The modularity of the control loop was an important design goal though, as the the
obstacle avoidance capabilities are to be flexibly combined with other configurations, such as way-point or
task-oriented navigation. The targeted run-time of the safe navigation system was to fit the entire control
loop into the 33ms time-slot of one depth image frame, thus allowing the optimal reactivity to the sensory
source.

III. Terrain Traversability Analysis

In recent years, navigation in rough terrain gained increasing attention. Planetary rover projects, like
Path Finder of NASA JPL in 19974 or the still successful twin rover operation of the 2004 Mars Exploration
Rover5,6 mission gathered broad publicity. Another driving force in 2004 was the announcement of the
DARPA Grand Challenge. Mobile vehicles (mostly cars) were supposed to traverse about 240km of cluttered
dust-road path.

Terrain traversability analysis (TTA) in dust-road scenarios differs significantly from obstacle avoidance
in-doors or urban environments, which were studied in the beginnings. The lack of highly structured compo-
nents complicates the problem. This is especially highlighted by the 2004 Grand Challenge result, with all
of the competitors failing in the first 5% of the overall travel-distance. The specific geometry of the terrain
now has to be analyzed. Simple thresholding of input values is not sufficient anymore.

Remote, hazardous environments like planetary surfaces pose an additional challenge, as no roads exist,
that can aid in navigation decisions. Navigation under such conditions, requires knowledge about areas of
safely traversable terrain, to base path selection on. This information is typically organized in traversability-
maps, which hold locations of terrain, which potentially are hazardous to traverse for the robot. Usually,
traversability-maps may distinguish between terrain patches, which should be avoided at any costs to prevent
damage, and other areas, which could be passed safely by reducing translational velocity. This enables
navigation to make more efficient decisions. Trade-offs between long detours and traversal of slightly cluttered
areas at reduced speed are made possible (see7).

This work is focused on operation in dynamic environments, which introduces further requirements. For
safe navigation, fast reactions are crucial. Obstacle maps have to be kept up-to-date at high frequency.
They do not benefit very much from a-priori information like satellite imagery, which had been gathered at
a previous point in time. Thus, maps have to be computed from the available sensor data in real-time.

At the same time, traversability information of the terrain, which the vehicle is about to traverse, needs
to be available at a high resolution. A lack of resolution forces conservative estimates and decisions that
can result in unnecessary detours of the rover. A minimum of resolution also has to be provided to detect
even small obstacles and pits, which still might endanger the rover. This high resolution is reported by8

to be unlikely available in a-priori elevation maps, hence hazardous objects have to be inferred online from
on-board sensor data.

III.A. An Ideal Algorithm

As mentioned above, terrain analysis tries to predict dangers, which arise from specific terrain features. An
ideal algorithm could predict the vehicle’s behavior on the perceived terrain, based on an actual physics
simulation An ideal physics model could consider all effects and interactions of the rover with the underlying
terrain. For example tire slippage on sandy ground, tip-over as a result of driving a too steep slope, or holes
which could grab hold of a wheel. This way, every potential terrain hazard could be anticipated and thus
avoided by the navigation software.
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Unfortunately, on today’s computing hardware, such a simulation can not be performed in real-time,
considering the required precision. So instead statistical analyses are used to detect specific terrain features,
which are known to lead to unsafe configurations. Domain knowledge is applied to design more efficient
algorithms, which fulfill precision and speed requirements.

III.B. Baseline Algorithm MORPHIN

The baseline of this work was the MORPHIN9 algorithm, as currently used on the K10 rovers. MORPHIN
processes geometrical terrain information, gathered by any 3D sensor. The measurements are collected in a
Digital Elevation Map (DEM). This map is segmented into overlapping, square patches of 2.1m side length.
The patches feature a relative displacement of 0.3m in both ground dimensions. This configuration creates
a grid layout of cells with 0.3m side length (illustrated in Fig. 3). Due to the overlapping alignment, each
cell contributes to the area of 49 patches. The complete grid layout is defined statically against the world
coordinate frame.

Figure 3: Overlapping rover sized terrain patches in the digital elevation map.

For efficient processing, each 3D measurement is assigned to one of these cells according to its position
(x, y)T in the world frame. MORPHIN thus performs a back-projection and transformation of the complete
input data, from the sensor to the world coordinate system. For each patch the traversability is assessed,
using two measures, that are based on the statistical properties of all measurements from the depth image,
whose (x, y)T world-coordinates lie with the patch: (1) The slope, which is the angle of the plane fitted
through the input point-cloud. (2) The roughness, which determines the quality of the plane-fit, using the
mean square error. The two measures are combined in a weighted sum and stored in the traversability map.
Thresholding is used to mark unsafe terrain.

In numerous field-tests, MORPHIN evaluated for off-road terrain traversability analysis. It had been
ported to a broad range of mobile vehicles (K9, K10, ATRV2, Hyperion) and thereby contributed to the suc-
cess of various projects.7,10,11 Although delivering qualitatively remarkable and reliable obstacle detections,
the profiling results on the K10 hardware showed up one major disadvantage – 105ms of computation time.
By exceeding the envisioned maximum cycle time of 33ms (update frequency of 30Hz), an application in the
targeted highly dynamic scenario using a behavior based control-loop is not directly possible.

IV. HIGH FREQUENCY TERRAIN ANALYSIS

In this section we present a short overview on the main algorithmic advances of HFTA over the base-
line algorithm. Given the envisioned run-time of the HFTA, it was obvious, that such a reduction in
computational demands was not possible by merely engineering a faster implementation.

IV.A. Performance Analysis

A theoretical analysis of MORPHIN revealed several hot-spots in the algorithm, that were responsible for
the majority of run-time of the algorithm.

1. The initial coordinate transform, even though implemented very efficiently, is extremely computation-
ally expensive.
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2. The whole input data set (the point-cloud), is carried through almost all of the analysis process.

3. The implementation of the cell-values per patch summation features a quadratic complexity O(n2)
with respect to the patch-side length.

IV.B. HFTA Improvements

In order to reduce the run-time of the terrain traversability analysis for use at the full frame rate of the
depth image stream, all of the above bottlenecks were addressed.

Cell assignment: HFTA avoids the costly initial coordinate transform to the world-coordinate frame,
by doing the cell-assignment and patch analysis in the image coordinate system. Only the slope measure for
each patch needs to be transformed into the world-coordinate frame. The fixed mounting of the sensor, as
well as it’s axis-parallel view result in a less complex, fixed transformation, which can be precomputed and
efficiently implemented with the use of look-up tables.

Early data set reduction: Instead of using the whole input point cloud for slope and roughness, HFTA
calculates a single representative for each cell and calculates the plane-fit as well as the plane-fit-error for
each patch, only based on the representatives of the contributing cells. To compensate for the reduced sample
number, the cell-size is reduced to 0.1m.

Cell fusion: The highly efficient plane fitting algorithm of MORPHIN calculates various parameters per
cell, that are combined for the plane-fit of a terrain patch. Combining the individual measurements of the cell
is implemented using a simple summation over the patch square. This features a computational complexity
of O(n2) with respect to the square width. As HFTA works on a smaller cell size and therefore combines
more cells per patch, this bottleneck was replaced by an efficient box-filter based implementation, which
computes the summation with linear complexity (O(n)).

IV.C. Performance comparison

The algorithmic improvements of HFTA led to a computation time reduction of 88%, when compared to the
baseline system MORPHIN. The processing time per depth image, have been confined to 12ms on the same
hardware platform. The results of the traversability evaluation though are of comparable quality, as verified
in a set of qualitative evaluations.

Figure 4: Computation time comparison between MORPHIN (top) and HFTA (bottom). The upper 33ms
boundary, which has to complied with in order to enable the envisioned update frequency of 30Hz, is
illustrated by a red line.

V. SAFE NAVIGATION

In order to navigate safely the obstacle information stored in the goodness map needs to be translated
into a series of locomotion commands for the robot. In a static environment a global motion planner can
be deployed for obtaining an optimal solution. In the absences of complete a-priori information, such as
the targeted dynamic uncontrolled environment, the motion plan would need to be updated frequently.
The time-constraints of the target scenario prohibit the run-time associated with global optimization on
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this detail level. In such scenarios, reactive, behavior-based approaches or one-shot planners are generally
favored. They can not guarantee global optimality anymore. Instead a greedy algorithm with limited look-
ahead is applied, that only ensures the adherence to local constraints, such as collision safety. In this work,
the modularity of the reactive control loop was also of central concern. The goal was, to be able to combine
the obstacle avoidance module with different control schemes, such as waypoint navigation or task-oriented
motion, without having to re-verify the safety of the resulting combined control loop.

In the following section, local and global strategies for obstacle avoidance will be compared according to
the target scenario of this work, before the design of the reactive control scheme is developed. Exemplary
realizations will be the D* algorithm, which is part of K10’s current setup,12 and the GESTALT local
avoidance planner.5

V.A. K10’s current Obstacle Avoidance

The current obstacle avoidance on-board the K10 rovers is conducted by the global navigation module. In
this setup, no separate obstacle avoidance module exists. Instead, avoidance is performed implicitly by global
navigation. In this process, a set of short, predetermined arcs is evaluated concerning local and global cost.11

Local cost is given by the terrain traversability along each arc while global cost is a measure of path length
between the end of the arc and the goal. This path is determined by the D* algorithm as described in.12

This configuration promises the most efficient, goal directed paths since obstacle avoidance thereby makes
globally optimal decisions. On the other hand, global path planing is computationally complex and thus
unlikely to be executable at the desired cycle frequency of 30Hz. An application in the targeted dynamic
scenario is thus not directly possible.

V.B. GESTALT

In 2002, the NASA Jet Propulsion Laboratory presented a new local obstacle avoidance planner.5 It was
developed previous to the Mars Exploration Rover missions in order to be used on a variety of robotic
platforms. GESTALT combines both major navigation tasks, terrain traversability analysis and obstacle
avoidance and is targeted towards application in a static environment. It’s TTA module, is based on the
MORPHIN algorithm and also utilizes input from passive stereo vision. In the following, the latter obstacle
avoidance part will be focused on.

GESTALT receives navigation goals as static way-points in the world coordinate frame. It selects move-
ment commands based on these way-points and the current state of the world. The local traversability map
is described to be a configuration space. The goodness value of each cell denotes, whether a rover-sized
object centered at that cell would be endangered by an obstacle anywhere underneath its base area. This
implicates, that the cell goodness is also influenced by obstacles, which are located outside the cell. Obstacles
are thus represented by half the rover-size larger than their real world dimensions.

Based on this configuration space, safe movements get selected. The action space for that selection
consists of a discrete subset of all circular arcs (0.35m in length), which can be executed by the robotic
vehicle. Since no continuous motion is intended, the current state of the rover does not limit this action
space. The finite number of executable arcs is evaluated concerning hazardousness and goal progress. The
hazardousness of an arc is based on the cells, which are traversed on the way up to the look-ahead distance.
In addition to the safety of the arc, the progress towards the goal is taken into account for scoring the utility
of an arc. Both ratings are then fused for each arc. The arc with the maximum voting score is finally selected
and executed. During the 0.35m traversal, no further observation is conducted.

V.C. Selected Approach

Due to the strict requirements concerning computation time and reaction delays, a local, behavior based
obstacle avoidance approach had been chosen for this work. Since map maintenance over time is not directly
possible in a dynamic scenario, locally optimal motion-decisions will be made exclusively on the basis of
currently available sensor data and its analyzed traversability. The selected reactive control scheme gen-
eralizes the evaluation models that D* and GESTALT provide, taking a behavior oriented point of view.
The process can be split into three fairly isolated stages, command generation, command evaluation and
command selection.
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Initially a set of possible actions (motion-commands) is generated for further evaluation by the system,
based on the task at hand and the action constraints of the robot. Classical behavior based approaches like
potential fields of fuzzy-sets try to optimize over the whole action space. The dynamic window approach
reduced this working set to the action space actually accessible given the dynamic constraints of the robot
and the time-horizon, given by the evaluation frequency of the control loop. Pre-selecting an arbitrary set of
actions allows to further reduce the size of the input data, especially for robots with more degrees of freedom.

During command evaluation, a set of modules rates the commands along different metrics, such as goal-
directedness or safety. Apart from rating, each module can also veto an action, excluding it from further
consideration. In a final step the arbitration module combines the individual ratings and selects from the
non-vetoed actions the one with the best score.

VI. EXPERIMENTAL SETUP

As a test application, a safeguarded tele-operation scenario was chosen, using a joystick as input device.
The robot was controlled by an operator from the command trailer with a joystick driving up to 0.40m

s ,
but autonomously avoiding any obstacles, when they reached into the commanded path. The Tyzx G2
3D sensor was mounted on-board the K10 rover and the HFTA module has been fully integrated with the
Service Oriented Robotics Architecture,13 which is operating the K10 rovers. The measurement stream from
the sensor was delivered by the Miro14 middleware infrastructure. The joystick scenario was chosen, as it
most easily allows to stress test the system with lots of potentially hazardous maneuvers. Another application
would be to combine the avoidance module with path planning modules, for autonomous navigation.

Command Generation: The generated commands depend on the input, which was requested by a higher-
level control module (e.g. navigation, user interface). This request should be executed whenever possible.
In case a hazardous obstacle prohibits the resulting path, alternative motions have to be available. These
alternatives, should resemble the requested command as close as safely possible. To achieve this behavior,
a preference indicator is assigned to each motion. The indicator is highest for the requested command and
declines as alternatives deviate more from the input.

The command alternatives are generated with increasing absolute deviations from the requested rotation
velocity up to a certain threshold. This is repeated several times with decreasing translation velocities until
the robot is rotating in place.

Command Evaluation & Selection: For each suggested command, the resulting trajectory of the robot
is predicted for evaluation. A simple arc-base motion model was assumed, ignoring the limited steering speed
of the rover. This obviously is just a rough approximation of the actual physical rover movement, and higher
safety distances had to be selected to accommodate for the lack of precision of the motion model.

Using this arc-model, the resulting path of all possible commands gets predicted. The length of each arc
is determined by the rover’s stopping distance at the corresponding translation velocity plus a safety margin
of 1.00m. The path is then sampled onto the configuration space to evaluate its goodness on the basis of the
traversed cells. Similar to traversability, the command/path goodness is given by an interval measurement
([0, 1]). Again a goodness of 1 denotes safely traversable terrain while 0 vetoes the execution of a command.

The goodness evaluation function is kept fairly simple to ensure short computation times. This enables
the examination of a large number of potential paths and thereby enables precise navigation. Goodness is
simply calculated by the minimum traversability of all configuration space cells, which are passed by the
path.

If a path’s goodness is less than a traversability threshold this implies that the path crosses an impassable
cell. Since its length is given by the rover’s stopping distance, having a severely dangerous obstacle on the
predicted configuration space path would cause the rover to hit upon it with some part of its chassis.
The executed command thus has to be selected among those which produce a path featuring a goodness
greater than the selected threshold. The winning command is finally determined by the maximum preference
indicator over this set of non-hazardous alternatives. This behavior ensures the execution of a command,
which is as similar as possible to the requested input.

The actual goodness of the winner could be used to adjust the translation velocity, which is used to
traverse the path. Thereby, rough areas could be approached more cautiously. This behavior is not yet
implemented.
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Figure 5: Screenshot from the HFTA-Console. Left to right, bottom to top it is displaying the Grey image,
the color coded depth image, the analysis of a pencil of suggested actions (arcs) performed by the obstacle
avoidance module in top-down view, and the terrain analysis projected back into the gray image.

Figure 5 shows a screenshot from the HFTA-Console. While the operator is commanding a straight
motion, the selected action is a left arc (marked blue), avoiding the rock in front of the robot.

VII. SAFEGUARDED TELEOPERATION EXPERIMENT

The system was tested and evaluated in the robotic outdoor test facilities at NASA Ames Research
Center. The experiments were conducted on a flat lawn surface with artificial rock style obstacles, as well
as in the Marscape test area. The former provides a relatively controlled environment for testing specific
situations. The later features rocks in various sizes and slopes of differing steepness, exposing the system
to a great variety of inputs ranging from safe to hazardous. Rocks of up to 10cm size and slopes up to 20
degrees are considered traversable by the K10 rover. Test runs were documented on video. The complete
sensor input was recorded by Miro’s logging facilities.15 The logs were then replayed offline and reevaluated
by the HFTA and avoidance module to generate debug visualization with full verbosity.

The robot successfully avoided obstacles (rocks and slopes) while distinguishing traversable small rocks
(less the 10cm height) and shallow slopes (less than 20 degrees) from unsafe, untraversable ones. In the
remainder of this section, we discuss two experiments from our test-series in more detail.

VII.A. Dynamic Obstacles

Scenario: Initial experiments verified the base-line obstacle avoidance capabilities with a parcours of static
obstacles on the flat lawn. This experiment introduces a dynamic environment. The rover is constantly
commanded to drive straight at walking speed. Meanwhile, it is repeatedly interrupted by a human in its
path at various distances (see Fig. 6-8 for exemplary imagery).

Target: Safely operating the rover in close proximity to humans was the major goal of this work. This
experiment is intended to examine the robot’s behavior in proximity of human partners. Even though the
obstacle is moving unpredictably, safe avoidance has to be guarantied at any time.
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(a) Obstacle view (b) Sensor view (c) Top view

Figure 6: Human obstacle at a distance of 3100mm.

(a) Obstacle view (b) Sensor view (c) Top view

Figure 7: Human obstacle at a distance of 1600mm.

(a) Obstacle view (b) Sensor view (c) Top view

Figure 8: Human obstacle at a distance of 1300mm.

Result: Even though the obstacle was moving, the robot exclusively executed safe motion commands. It
always maintained a safety margin to the human and also stopped its movement if no detour was possible. It
became apparent though, that the low steering speed does not allow highly dynamic avoidance movements.
Interaction could definitely be improved by increasing the robot’s steering capabilities.

VII.B. Examples from the Marscape test facility

Scenario: The rover is initially approaching an obstacle field on the Mars-analog testing area Marsscape.
It features all characteristics of the targeted environment. The non-vegetated and well textured surface is
especially well-suited for a stereo vision based, geometrical terrain traversability analysis system. It contains
the expected range of hazardous terrain properties, like rough rocks and steep slopes, in a dense distribution.
The user’s steering input again had been kept straight.

Target: This experiment investigates the overall obstacle avoidance performance of the presented system
in a cluttered off-road environment. The dense obstacle distribution presents an advanced challenge. Fea-
turing the full range of obstacle types and sizes, it is intended to confirm the fulfillment of the this work’s
initial requirements.

Result: Fig. 9-11 show the major challenges of the experiment, which lasted about 20min. During this
time, the rover successfully traversed the obstacle field several times and avoided numerous objects. It
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(a) External view (b) Sensor view (c) Top view

Figure 9: Passing the dense obstacle field.

(a) External view (b) Sensor view (c) Top view

Figure 10: Passage into the obstacle field.

(a) External view (b) Sensor view (c) Top view

Figure 11: Robot is facing a steep slope, which poses the danger of tip-over.

successfully distinguished traversable small rocks (less the 100mm height) and shallow slopes (less than 20◦)
from unsafe, untraversable ones. The avoidance optimality sometimes suffered from the camera’s narrow field
of view. In rare occasions, the rover got stuck in a dead end because an exit was not in view. An additional
behavior, which would have rotated the rover in place to examine the complete surrounding, could have
resolved this issue.

VIII. CONCLUSIONS AND FUTURE WORKS

The test scenarios for the full control-loop on-board the K10 rover have been a great success, as the
concept’s applicability could be confirmed experimentally. The rover had been safeguarded by the avoidance
system at all times. The high update frequency of the control loop make the system applicable for robots
moving at walking speed in the proximity of human crew.

A shortcoming of the tested setup was the low steering speed of the K10 rover. Its actions appeared slug-
gish when it came to close interaction. Many stopping maneuvers occurred in situations where uninterrupted
avoidance by quick steering might have been possible. This behavior was intensified by the narrow field of
view of the stereo camera. The obstacle map was often completely occluded by objects which were especially
close to the rover. Potential escape routes were not visible to the avoidance system. Also, based on our
tests, some improvements need to be made to improve stereo performance in high-contrast environments. In
particular, avoiding imager saturation under bright lighting is a priority for use in outdoor applications.
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Apart from that, the Tyzx G2 showed to be an ideal sensor solution for that purpose. Off-loading stereo
reconstruction from the robot’s CPU and providing range images at 30Hz was an important improvement
over the previous configuration. The reasonable noise characteristics in the target distance of approximately
1000-5500mm eased measurement analysis.

Future work will try to overcome the limitations documented under testing. The steering speed will
be improved and we will evaluate the possibilities of mounting a second 3D sensor, to double the field of
view. Additionally, we are investigating implementing parts of the terrain analysis algorithms on the stereo-
processing hardware, further reducing computational requirements on the host system. For an extensive
evaluation, we plan to field-test the system in one of the upcoming lunar-analog robotic tests of NASA’s
Human Robotic Systems project.
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