Lunar Commercialization Workshop

Gary Martin Ames Research Center

Lunar Commercialization Workshop Agenda

Overview and workshop description

20 minutes

Development of Business Plans

120 minutes

Presentation of business plans to panel

60 minutes - split evenly among the teams

Wrap-up and discussion

10 minutes

Lunar Commercialization Workshop Description

Goals

 Explore viability of using public-private partnerships to open space frontier

Rules

- Form 3 teams each team represents a space entrepreneurial company
- Create innovative business plans for commercialization of the Moon
 - Business concept description, market strategy
 - Return on investment, pricing, schedule
 - Competition and other impediments
 - Operations and management plan
- Present plan to panel scored against each of the four elements
- Best plan awarded prize

Lunar Commercialization Workshop - Scoring

Create an innovative business plan

- Business concept description, market strategy
 - Describe the product/service
 - Describe the customer profile
 - What is your marketing strategy?
 - What is your business model?
- Return on investment, pricing, schedule
 - What services would you provide and what are their cost to you
 - What do you charge for the services?
 - What is your return on investment over what time period?
- **Competition and other impediments**
 - Who is your competition?
 - What are your major risk areas?
- **Operations and management plan**
 - What facilities/infrastructure needs?
 - Who is your management team and what is their experience?

Public-Private Partnerships

Government procures what it needs from private industry instead of developing and operating the mission on its own

Benefits to Government

- Usually cheaper over the life cycle
- Government does not have to conduct operations and maintain infrastructure
- Ability to leverage resources with commercial sector

Benefits to Industry

- Gain expertise, helps develop new sector
- Develop infrastructure and retire risk
- Commercial success is critical to opening the space frontier

Open Architecture: Infrastructure Open for Potential External Cooperation

- Lander and ascent vehicle
- EVA system
 - CEV and Initial Surface capability
 - Long duration surface suit
 - Power
 - Basic power
 - Augmented
 - Habitation
 - Mobility
 - Basic rover
 - Pressurized rover
 - Other; mules, regolith moving, module unloading
- Navigation and Communication
 - Basic mission support
 - Augmented
 - High bandwidth
- __ISRU
 - Characterization
 - Demos
 - Production

- Robotic Missions
 - LRO- Remote sensing and map development
 - Basic environmental data
 - Flight system validation (Descent and landing)
 - Lander
 - Small sats
 - Rovers
 - Instrumentation
 - Materials identification and characterization for ISRU
 - ISRU demonstration
 - ISRU Production
 - Parallel missions
- Logistics Resupply
- Specific Capabilities
 - Drills, scoops, sample handling, arms

Inmontion H

- Logistics rover
- Instrumentation
- Components
- Sample return

** US/NASA Developed hardware

Lunar Commercialization

Lunar Commercialization complements national Lunar objectives

- Early, small scale Lunar transportation enabled by private sector
 - Commercial delivery system -- "FedEx Lunar"
- Near-term technology demonstrations on the Lunar surface
 - Constellation technology risk reduction
- Early start to Lunar science campaign
- Enable more commercial opportunities relative to the moon
 - Commercial Lunar communications, navigation

Possible Lunar Commercializat Elements

- Utilize emerging commercial capability to land payloads on the Moon
- Includes lunar data purchase and/or agency lunar instrument delivery
 - Cost to agency that is less than a dedicated NASA robotic mission (\$100M+ if conducted by Agency)
 - **Operations could begin in 2010** timeframe
 - Small payloads (\$100M or less)
 - Frequent, multiple flights
 - Commercially-leveraged: Open Competition for lunar transportation services
- Fixed price service
 - Industry provides the "Fed-Ex" to the surface

Lunar Commercialization

Exploration Demand

- The Constellation Program Office has identified lunar data needs, of which a subset would require in-situ measurement
 - Dust characterization & mitigation
 - Landing site reconnaissance
 - Lunar model validation (tie to ground truth)
 - Local radiation measurement
 - Spacecraft charging evaluation
 - Regolith handling/site preparation
 - ISRU characterization and demonstration
 - Hydrogen form and location characterization
 - Lighting perspective (permanent low incidence at poles)
- Technology demonstration
 - Communications (surface mobile comm)
 - Mechanisms (1/6G performance, dust impact on lifetime)
 - Materials (dust compatibility)
 - Thermal (surface influence, radiator dust exposure)
 - Navigation and guidance (Precision Landing)
 - Propulsion (system performance, plume interaction)
 - Mobility (traction, dust impact)
 - Power (Re-charging mobile robotic assets, fuel cell tech)
 - Avionics (Open architecture, Rad hard)
 - Cryo handling & storage (test demo)
 - ECLSS (water loop performance in 1/6g, dust filters)

Lunar Commercialization

Science Demand

- Exploration of the South Pole-Aitken Basin remains a priority
 - Diversity of lunar samples is required for major advances
- The Moon may provide a unique location for observation and study of Earth, near-Earth space, and the universe

Commercial Capability

Market <u>Supply</u> side - transportation

- Google Lunar X-Prize (GLXP): Astrobotic Tech, Odyssey Moon, others
- Individual instruments delivered near term at an estimated cost on order of \$1M to \$3M dollars per kilogram
- Launch is clearly a large expense, and a significant portion of the total mission costs
 - Falcon 9 / Minotaur V class
 - 🖙 \$25M \$35M
 - TLI: 465 kg (1025 lbm)
 - Possible to fly as secondaries
 - Secondary payload adapter (ESPA)

googlelunarxprize.org

- ⁻ 180kg
- ☞ ~\$2M

