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21	 Abstract:

22	 The mean squared error (MSE) and the related normalization, the Nash-Sutcliffe efficiency (NSE),

23	 are the two criteria most widely used for calibration and evaluation of hydrological models with

24	 observed data. Here, we present a diagnostically interesting decomposition of NSE (and hence

25	 MSE), which facilitates analysis of the relative importance of its different components in the

26	 context of hydrological modelling, and show how model calibration problems can arise due to

27	 interactions among these components. The analysis is illustrated by calibrating a simple conceptual

28	 precipitation-runoff model to daily data for a number of Austrian basins having a broad range of

29	 hydro-meteorological characteristics. Evaluation of the results clearly demonstrates the problems

30	 that can be associated with any calibration based on the NSE (or MSE) criterion. While we propose

31	 and test an alternative criterion that can help to reduce model calibration problems, the primary

32	 purpose of this study is not to present an improved measure of model performance. Instead, we seek

33	 to show that there are systematic problems inherent with any optimization based on formulations

34	 related to the MSE. The analysis and results have implications to the manner in which we calibrate

35	 and evaluate environmental models; we discuss these and suggest possible ways forward that may

36	 move us towards an improved and diagnostically meaningful approach to model performance

37	 evaluation and identification.

38 Keywords:

39	 mean squared error; Nash-Sutcliffe efficiency; model performance evaluation; calibration; multiple

40	 criteria; hydrologic modelling; criteria decomposition; diagnostic analysis

41
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42	 1 Introduction

43	 The mean squared error (MSE) criterion and its related normalization, the Nash-Sutcliffe efficiency

44	 (NSE, defined by Nash and Sutcliffe 1970) are the two criteria most widely used for calibration and

45	 evaluation of hydrological models with observed data. The value of MSE depends on the units of

46	 the predicted variable and varies on the interval [0.0 to int], whereas NSE is dimensionless, being

47	 scaled onto the interval [-inf to 1.0]. As a consequence, the NSE value - obtained by dividing MSE

48	 by the variance of the observations and subtracting that ratio from 1.0 (Eq. 1 and Eq. 2) - is

49	 commonly the measure of choice for reporting (and comparing) model performance. Further, NSE

50	 can be interpreted as a classic skill score (Murphy 1988), where `skill' is interpreted as the

51	 comparative ability of a model with regards to a baseline `model', which in the case of NSE is taken

52	 to be the `mean of the observations' (i.e., if NSE < 0, the model is no better than using the observed

53	 mean as a predictor). The equations are:

MSE = 1 • I 
(X", 

_ xo 
t 2 Eq. 1

n ,_,

2I (xs,t — xo.r	
MSE

NSE =1	 —=I-- Eq.2
1 

(xo,t Po )
t=1

54	 where n is the total number of time-steps, xs,t is the simulated value at time-step t, xo,t is the observed

55	 value at time-step t, and ,uo and 6o are the mean and standard deviation of the observed values. In

56	 optimization MSE is subject to minimization and NSE is subject to maximization.
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57	 While the NSE criterion may be a convenient and popular (albeit gross) indicator of model skill,

58	 there has been a long and vivid discussion about the suitability of NSE (McCuen and Snyder 1975,

59	 Martinec and Rango 1989, Legates and McCabe 1999, Krause et al. 2005, McCuen et al. 2006,

60	 Schaefli and Gupta 2007) and several authors have proposed modifications - e.g. Mathevet et al.

61	 (2006) proposed a bounded version of NSE and Criss and Winston (2008) proposed a volumetric

62	 efficiency to be used instead of NSE. One of the main concerns about NSE is its use of the observed

63	 mean as baseline, which can lead to overestimation of model skill for highly seasonal variables such

64	 as runoff in snowmelt dominated basins. A comparison of NSE across basins with different

65	 seasonality (as is often reported in the literature) should therefore be interpreted with caution. For

66	 such situations, various authors have recommended the use of the seasonal or climatological mean

67	 as a baseline model (Garrick et al. 1978, Murphy 1988, Martinec and Rango 1989, Legates and

68	 McCabe 1999, Schaefli and Gupta 2007).

69	 It is now generally accepted that the calibration of hydrological models should be approached as a

70	 multi-objective problem (Gupta et al. 1998). Within a multiple-criteria framework, the MSE and

71	 NSE criteria continue to be commonly used, because they can be computed separately for (1)

72	 different types of observations (e.g. runoff and snow observations; Bergstrom et al. 2002), (2)

73	 different locations (e.g. runoff at multiple gauges; Madsen 2003), or (3) different subsets of the

74	 same observation (e.g. rising and falling limb of the hydrograph; Boyle et al. 2000). More generally,

75	 however, different types of model perfonnance criteria - such as NSE, coefficient of correlation,

76	 bias, etc. - can be computed from multiple variables and/or at multiple sites (see Anderton et al.

77	 2002, Beldring 2002, Rojanschi et al. 2005, Cao et al. 2006, and others).

78	 When handled in this manner, the model calibration problem can be treated as a full 11-lultiple-

79	 criteria optimization problem resulting in a `Pareto set' of non-dominated solutions (Gupta et al

80	 1998), or reduced to a related single-criterion optimization problem by combining the different

4



Gupta, Kling, Yilniaz, Martinez-Baquero 2009, submitted to Journal of Hydrology, version 1.0

81	 (weighted) criteria into one overall objective function. Numerous examples of the latter approach

82	 exist in the literature where NSE or MSE appear in an overall objective function (e.g. Lindstr6m

83	 1997, Bergstrom et al. 2002, Madsen 2003, van Griensven and Bauwens 2003, Parajka et al. 2005,

84	 Young 2006, Rode et al. 2007, Marce et al. 2008, Wang et al. 2009), because it conveniently

85	 enables the application of efficient single-criterion automated search algorithins, such as SCE

86	 (Shuffled Complex Evolution, Duan et al. 1992) or DDS (Dynamically Dimensioned Search,

87	 Tolson and Shoemaker 2007).

88	 When using multiple criteria in evaluation, it has to be considered that some of these criteria are

89	 mathematically related, which is not always recognized (Weglarczyk 1998). For example, it is

90	 possible to decompose the NSE criterion into separate components, as shown by Murphy (1988)

91	 and Weglarczyk (1998), which facilitates a better understanding of how different criteria are

92	 interrelated and thereby enable more insight into what is causing a particular model performance to

93	 be `good' or `bad'. Equally n77portant, the decomposition can provide insight into possible trade-

94	 offs between the different components.

95	 In this paper we present a diagnostically interesting decomposition of NSE (and hence MSE), which

96	 facilitates analysis of the relative importance of different components in the context of hydrological

97	 modelling, and show how model calibration problems can arise due to interactions among these

98	 components. Based on this analysis, we propose and test alternative criteria that can help to avoid

99	 these problems. The analysis is illustrated by calibrating a simple precipitation-runoff model to

100	 daily data for a number of Austrian basins having a broad range of hydro-meteorological

101	 characteristics, and evaluating the results on both the calibration and an independent `evaluation'

102	 period. The results clearly demonstrate the problems that can be associated with any calibration

103	 based on the NSE (or MSE) criterion. The analysis and results have interesting implications to the
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104	 manner in which we calibrate and evaluate environmental models; we discuss these and some

105	 possible ways forward in the discussion and conclusions sections.

106	 2 Decomposition of model performance criteria

107	 2.1 Decomposition of NSE

108	 A decomposition of criteria based on mean squared errors reveals that there are three distinctive

109	 components, represented by the correlation, the conditional bias, and the unconditional bias, as

110 1 evident in Eq. 3 which shows a decomposition of NSE (Murphy 1988, Weglarczyk 1998).

NSE =A—B—C Eq.3

111	 with: A = r 2

112	 B = [/_ (6s l 60 )]2

113	 C= KA'., — f10)/60]2

114	 where r is the linear correlation coefficient between x $ and x0 , and (us , 6s) and (ft0 , (T0) represent the

115	 first two statistical moments (means and standard deviations) of xs and x0 respectively. The quantity

116	 A measures the strength of the linear relationship between the simulated and observed values, B

117	 measures the conditional bias, and C measures the unconditional bias (Murphy 1988).

118	 However, an alternative way in which to reformulate Eq. 3 is given below as Eq. 4.

NSE= 2•a•i--a2—,3,,	 Eq.4

119	 with: a = 6s l 60
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120	 8, =(X1, — 110)/6o

121	 where the quantity a is a measure of relative variability in the simulated and observed values, and

122	 6,, is the bias normalized by the standard deviation in the observed values (note that P„ = sgrt(0).

123	 Eq. 4 shows that NSE is composed of three components, two of which relate to the ability of the

124	 model to reproduce the first and second moments of the distribution of the observations ( i.e. mean

125	 and standard deviation), while the third relates to the ability of the model to reproduce timing and

126	 shape as measured by the correlation coefficient. The ideal values for the three components are

127	 r = 1, a= 1, and 8, = 0. From a hydrological perspective, `good' values for each of these three

128	 components are highly desirable, since in general we aim at matching the overall volume of flow,

129	 the spread of flows (e.g. flow duration curve), and the timing and shape of (for example) the

130	 hydrograph (Yihnaz et al. 2008). It is clear, therefore, that optimizing NSE is essentially a search

131	 for a balanced solution among the three components, which is similar to the multiple-criteria

132	 approach of computing an overall (weighted) objective function from several different criteria as

133	 discussed in the introduction.

134	 However, in using NSE we must be concerned with two facts. First, the bias (us - y,) component

135	 appears in a normalized form, scaled by the standard deviation in the observed flows. This means

136	 that in basins with high runoff variability the bias component will tend to have a smaller

137	 contribution (and therefore impact) in the computation and optimization of NSE, possibly leading to

138	 model simulations having large volume balance errors. In a multiple-criteria sense, this is

139	 equivalent to using a weighted objective function with a low weight applied to the bias component.

140	 Second, and equally serious, the quantity a appears twice in Eq. 4, exhibiting an interesting (and

141	 problematic) interplay with the linear correlation coefficient r. It is easy to show, by taking the first

142	 derivative of NSE (in Eq. 4) with respect to a, that the maximum value of NSE is obtained when
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143	 a = r. And, since r will always be smaller than unity, this means that in maximizing NSE we will

144	 tend to select a value for a that rinderestimates the variability in the flows (more precisely, we will

145	 favour models/parameter sets that generate simulated flows that underestimate the variability).

146	 Taking these two facts together, we note that when 8, = 0 and a = r, then the NSE is equivalent to

147	 r2, which is the well-known coefficient of determination. Therefore, r' can be interpreted as a

148	 maximum (potential) value for NSE if the other two components are able to achieve their `optimal'

149	 values.

150	 Fig. 1 illustrates the relationship of NSE with r and a, while assuming that A, is zero (/3„ is only an

151	 additive tern, anyway). For a given r the `optimal' a for maximizing NSE lies on the 1:1 line,

152	 although the ideal value of a is on a horizontal line at 1.0. This theoretical relationship is illustrated

153	 in Fig. la. Of course, not all combinations of r and a may be possible with a hydrological model

154	 due to restrictions imposed by the model structure, feasible parameter values and input-output data.

155	 However, Fig. lb shows a real example in which random sampling of the parameter space actually

156	 seems to cover a large portion of the theoretical criteria space. Since the model used here (HyMod

157	 model, Boyle 2000) is a simple, but representative, example of watershed models in common use,

158	 the problematic interplay between a and r is likely to be of importance for any type of hydrological

159	 model that is optimized with NSE.

160	 Fig. 1 near here

161	 Further, the same exact problems will arise when using MSE as a model calibration criterion. We

162	 can substitute Eq. 4 into Eq. 2, and thereby obtain Eq. 5 which shows the related decomposition of

163	 the MSE criterion, consisting (again) of three error teens, but here all three of them are additive.

MSE = 2 . 6s - 6o - (1— r)+ (6s _U,)2  + (fps — PJ2	 Eq. 5
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164	 From Eq. 3, Eq. 4 and Eq. 5 it should be immediately obvious that many different combinations of

165	 the three components can result in the same overall value for MSE or NSE, respectively, potentially

166	 leading to considerable ambiguity in the comparative evaluation of alternative model hypotheses.

167	 The relative contribution of each of these components to the overall MSE can be computed as:

f. = Fr	Fj	 Eq. 6
j=1

168	 with: F1 = 2 . 6s - 60 - (1— r)

169	 F, _ (a, — C. )'

170	 F3 = (,us. — ,ua )'

171	 2.2 Alternative model Performance criteria

172	 As discussed above, a peculiar feature of the NSE criterion is the problematic interplay between a

173	 and r, which is likely to result in an underestimation of the variability in the flows. One way to

174 I overcome this is by inflating the observed variability as indicated by Eq. 7, while at the same time

175	 preserving the mean of the observations and their linear correlation with the simulations. Using Eq.

176	 7 with Eq. 4 results in Eq. 8, which represents a `corrected' version of NSE:

xo.r = c xo.r — fro +,ua	 Eq. 7

NSEco,. = 1 -2-a-r— z a 2 — z -
'
8n Eq. 8

C	 c	 c

9
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177	 where c is correction factor to inflate the variability in the observed flows. It can be easily shown

178	 that if c is set equal to 1h°, it will assure that a value of a = 1 will now maximize NSE,,, (as opposed

179 to a = r maximizing NSE).

180	 Alternatively, instead of trying to come up with a `corrected' NSE criterion, since MSE and NSE

181	 can be decomposed into three components, the whole calibration problem can instead be viewed

182	 from the multi-objective perspective, by focusing on the correlation, variability error and bias error

183	 as separate criteria to be optimized. In doing this, it makes sense to enable a better hydrological

184	 interpretation of the bias component by using the ratio of the means of the simulated and observed

185	 flows (,8) for this further analysis - as opposed to using 13,,. With this formulation, using 13 instead of

186	 6,,, all three of the components now have their ideal value at unity.

187	 Fig. 2 shows an example for the trade-off between the three components for a simple hydrological

188	 model using random parameter sampling. The plot shows a distinctive Pareto front in the three-

189	 dimensional criteria space. If it is desired to select a compromise solution from the Pareto front, one

190	 possible approach is to compute for all points the Euclidian distance from the ideal point and then to

191	 subsequently select the point having the shortest distance (Eq. 9). Since all three of the components

192	 are dimensionless numbers, we are able to obtain a reasonable solution for the Euclidian distance in

193	 the un-transformed criteria space. Alternatively, a re-scaling of the axes in the criteria space is

194	 easily obtained via Eq. 10. In this paper, we will only explore the use of the KGE criterion (Eq. 9),

195	 which is equivalent to setting all three scaling factors of Eq. 10 to unity.

196	 Fig. 2 near here

KGE =1— ED Eq. 9

KGES =1— EDS Eq. 10

10
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197	 with: ED= (T-- 1)2+(a-1)2+O3-1)2

198	 ED, = [s,. • (r , _ 1)]
2
 + [sa • (a _ 1)] 2 + [sp (^3 —1)]'

199	 13 = ,us. l,ua

200	 where ED is the Euclidian distance from the ideal point, ED, is the Euclidian distance from the ideal

201	 point in the scaled space, 8 is the ratio between the mean simulated and mean observed flows, i.e. 6

202	 represents the bias; s,-, su and sp are scaling factors that can be used to re-scale the criteria space

203	 before computing the Euclidian distance from the ideal point, i.e. s„ sa and sp can be used for

204	 adjusting the emphasis on different components.

205	 Analogous to Eq. 6 we can compute the relative contribution of the three components with Eq. 11.

3

g; = G; l GI	 Eq. 11
I=1

206	 with: G, =(T, — 1) 2

207	 G2 = (a — 1)2

208	 G3 = (,3 —1)2

209	 2.3 Notes on regression lines

210	 As is well known, the slope of the regression lines and the coefficient of correlation are related (Eq.

211	 12 to Eq. 14). Since different `optimal' values for a are obtained by the NSE and KGE criteria, this

212	 also leads to implications for the regression lines.

11
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r' 2 = ks • ko 	 Eq. 12

k _ CovS.o =y'
2	 E.13s 6	 a	 q
S

ko = 
Covso _ r a	

Eq. 14
60

213	 with:	 r° _ Col",

6s-6o

214	 where Covso is the covariance between the simulated and observed values, k, is the slope of the

215	 regression line when regressing the observed against the simulated values, and ko is the slope of the

216	 regression line when regressing the simulated against the observed values.

217	 Murphy (1988) has already noted that for NSE the conditional bias term B in Eq. 3 will vanish only

218	 if the slope of the regression line ks is equal to unity (i.e. regressing the observed against the

219	 simulated values), which is desirable in the context of the `verification' of forecasts. This means

220	 that for a given forecast (simulated value), the expected value of the observed value lies on the 1:1

221	 line (assuming a Gaussian distribution). As discussed before, the optimal value of a that maximizes

222	 NSE is given by a model simulation for which a is equal to r. As evident in Eq. 13 this results in

223	 ks = 1, but at the same time this also implies that k-,,= r2 (Eq. 14). Because r2 will always be smaller

224	 than unity, this means that we will, in general, tend to underestimate the slope of the regression line

225	 when regressing the simulated against the observed values. The tendency will be for high values

226	 (peak flows) to be underestimated and for low values (recessions) to be overestimated in the

227	 simulation.

12
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228	 In brief, for maximizing NSE the optimal values for k, and ko are unity and rz , respectively. In the

229	 case of KGE, the optimal value for a is at unity, which means that for maximizing KGE the optimal

230	 values for both k$ and ko are equal to r. Again, since r is smaller than unity we will tend to

231	 underestimate high values and overestimate low values.

232	 In considering this, it should be noted that both approaches for computing the regression lines

233	 (regressing observed against simulated values, or vice versa) are valid, but have different

234	 interpretations. In the context of runoff simulations, when using 1c, we are basing the evaluation on

235	 the expected error in simulation of the observed runoff being zero for a given simulated runoff,

236	 which is a sensible approach when making runoff forecasts under `normal' conditions. However, if

237	 we are interested in the `unusual' runoff conditions - such as runoff peaks - then a more sensible

238	 approach would be to use ko, where we are interested in the question, "If a flood occurs, can we

239	 forecast (simulate) it?", whereas in the case of k, such a runoff peak is `averaged out'. Fig. 3

240	 illustrates this with typical scatter plots for runoff simulation. In this example, k, is close to unity,

241	 suggesting unbiased forecasts (Fig. 3a), and at the highest simulated flows of around 10 m3/s the

242	 small number of observed flows (runoff peaks) that are well above the regression line are `averaged

243	 out' by the larger number of observed flows that occur slightly below the regression line. However,

244	 it is clear that whenever a runoff peak above 10 m 3/s occurs, there is a clear tendency for

245	 underestimation in the simulation (Fig. 3b).

246	 These problems arise because the distribution of runoff is usually highly skewed. If ko is of higher

247	 interest, then the use of NSE may cause problems, since the simulated runoff will tend to

248	 underestimate the peak flows. In the case of the KGE criterion, we will also have a tendency

249	 towards underestimation, but not as severe as with the NSE. Note that for extreme low-flows,

250	 similar considerations as for the runoff peaks apply (but here we will tend to overestimate the low-

251	 flow).

13
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252	 Fig. 3 near here

253	 3 Case Study

254	 To examine and illustrate the implications of the theoretical considerations presented above we

255	 applied a simple conceptual precipitation-runoff model to several basins. Using NSE (Eq. 2) and

256	 KGE (Eq. 9) as model performance criteria, two different sets of parameters were obtained for each

257	 basin by calibration against observed runoff data. For each parameter set we compare the overall

258	 model performance as evaluated by the NSE and KGE criteria and, in addition, conduct a detailed

259	 analysis of the criterion components. Further, we also examine the model performance on an

260	 independent `evaluation' period.

261	 3.1 Study area

262	 For this study we used the forty-nine mesoscale Austrian basins (Fig. 4) used in the regionalization

263	 study reported by Kling and Gupta (2009). All are pre-alpine or lowland basins where snowmelt

264	 does not dominate runoff generation. They vary in size from 112.9 km2 to 689.4 lcn 2, with a median

265	 size of 287.3 km', and a mean elevation range from 232 to to 952 in above sea level. The basins

266	 represent a wide range of physiographic and meteorological properties, with the most important

267	 land-use types being forest, grassland and agriculture. According to the Hydrological Atlas of

268	 Austria (BMLFUW 2007), the long-term mean annual precipitation in the basins ranges from 507 to

269	 1929 mm, and the corresponding runoff ranges from 44 to 1387 mm, resulting in a large range of

270	 runoff coefficients (from 9 to 72 percent). Thus, both wet and dry basins are included. Fig. 5 shows

271	 a diagnostic plot where normalized actual evapotranspiration is plotted against normalized

272	 precipitation (both variables are scaled by potential evapotranspiration); it indicates that most of the

273	 basins are energy limited and only a few of the basins are water limited.

14
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274	 Fig. 4 near here

275	 Fig. 5 near here

276	 3.2 Data basis

277	 We used observed daily data for the period September 1990 to August 2000; the first two years

278	 were used as a warin-up period, the next five years for calibration, and the final three years for

279	 independent evaluation. Observed catchment outlet runoff data were used for parameter calibration

280	 in each of the basins. Precipitation inputs were based on daily data from 222 stations, regionalized

281	 using the method of Thiessen-Polygons. Air temperature inputs were based on data from 98

282	 stations, regionalized via linear regression with elevation. Potential evapotranspiration inputs were

283	 based on monthly fields of potential evapotranspiration (Kling et al. 2007) with a spatial resolution

284	 of 1x1 km. The monthly potential evapotranspiration data were disaggregated to daily time-steps by

285	 using daily data from 21 indicator stations, where the daily potential evapotranspiration was

286	 computed using the Thornthwaite-method (Thornthwaite and Mather 1957).

287	 3.3 Hydrolo gical model

288	 A simple, conceptual, spatially distributed daily precipitation-runoff model similar to the HBV

289	 model (Bergstrom 1995) was used; the model was previously applied to these same basins by Kling

290	 and Gupta (2009). The model uses a 1x1 km 2 raster grid for spatial discretization of the basins.

291	 However, for simplicity, the current study assumes uniform parameter fields. Inputs to the model

292	 are precipitation, air temperature, and potential evapotranspiration. The model consists of a snow

293	 module, soil moisture accounting, runoff separation into different components, and a routing

294	 module. Snowfall is determined from precipitation data using a threshold temperature, and

295	 snowmelt is computed with the temperature-index method (see e.g. Hock 2003). Rainfall and

15
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296	 snowmelt are input to the soil module, where runoff generation is computed via an exponential

297	 formulation that accounts for current soil moisture conditions (see e.g. Bergstrom and Graham

298	 1998). Actual evapotranspiration depletes the soil moisture store; the rate of actual

299	 evapotranspiration depends on current soil moisture conditions and potential evapotranspiration.

300	 Runoff is separated into fast (surface flow) and slow (base flow) components by two linear

301	 reservoirs having different recession coefficients. A further linear reservoir is used to simulate

302	 channel routing of the runoff. Fig. 6 shows the conceptual structure of the model (the snow module

303	 is not shown). The model equations are presented in Kling and Gupta (2009). Table 1 lists the most

304	 important parameters of the model.

305	 To reduce dimensionality of the parameter calibration problem, some of the model parameters are

306	 set to plausible values and are not further calibrated. This applies to snow parameters, because snow

307	 is of limited importance in the basins of this study, and to the channel routing parameters, which are

308	 of limited importance at the daily time-step (the values of Kling and Gupta (2009) are used). In

309	 addition, the critical soil moisture for reducing actual evapotranspiration is set to a constant value.

310	 The six remaining parameters were calibrated using the Shuffled Complex Evolution optimization

311	 algorithm (SCE, Duan et al. 1992), using six complexes.

312	 Fig. 6 near here

313	 Table 1 near here

314	 3.4 Results

315	 The optimization runs resulted in two parameter sets for each basin. Optimization using the

316	 `optNSE' method results in parameter sets `0 optNsE ' that yield optimal runoff simulations

317	 maximizing NSE (Eq. 4), while optimization using the `optKGE' method results in parameter sets

318	 `0optKGE' that yield optimal runoff simulations maximizing KGE (Eq. 9). A standard method for
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319	 reporting model performance in precipitation-runoff modelling studies is to present scatter plots of

320	 NSE between calibration and evaluation periods (see e.g. Merz and Bloschl 2004). Fig. 7 displays

321	 such a scatter plot; as expected, for many basins the NSE deteriorates when going from the

322	 calibration to the evaluation period (Fig. 7a). Similar results are obtained for KGE (Fig. 7b).

323	 Now, there can be different reasons for deterioration of model performance on the evaluation

324	 period. These include over-fitting of the parameters to the calibration period, non-stationarity

325	 between the calibration and evaluation periods, lack of `power' in the objective function, etc.

326	 Instead of falsification and model rejection, which would be a logical conclusion from such a result,

327	 it is common practice to simply report the deterioration in the model performance and then to move

328	 on. In our case, we can report that when moving from calibration to evaluation period the median

329	 NSE has decreased from 0.76 to 0.59 and the median KGE has decreased from 0.86 to 0.72, but

330	 what hydrological meaning do these numbers have? Here, an analysis of the different components

331	 that constitute the overall model performance enables us to learn much more about the model

332	 behaviour, differences between the calibration and evaluation periods, and also differences between

333	 basins.

334	 Before analysing the criterion components it is interesting to note the relationship between NSE and

335	 KGE. Fig. 7 shows that when optimizing on KGE (optKGE) there is a strong correlation between

336	 the values obtained for the KGE and NSE criteria (Fig. 7d). However, when optimizing on NSE

337	 (optNSE), the correlation between the values obtained for NSE and KGE is lower (Fig. 7c). The

338	 reasons for this will become much clearer later in this section, but briefly it is usefizl to keep in mind

339	 that optimization on KGE strongly controls the values that the a and 13 components can achieve,

340	 whereas optimization on NSE constrains these components only weakly.

341	 Fig. 7 near here
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342	 The relative contributions of the criterion components to the overall model performance obtained

343	 via optimization are shown in Fig. 8 (see Eq. 6 for optNSE and Eq. 11 for optKGE). The obtained

344	 (optimized) model performance is dominated by the component representing r (dark grey), whereas

345	 the other components representing the bias (light grey) and the variability (medium grey) of flows

346	 have only small relative contributions. This applies for all 49 basins and for both optimization on

347	 NSE (Fig. 8a) and KGE (Fig. 8b). However, a low relative contribution of a component to the final

348	 value of the (optimized) model performance does not necessarily imply that the model performance

349	 criterion is, in general, insensitive to this component. Instead, the relative contribution of a

350	 component can be small because of (1) low `weight' of the component in the equation for

351	 calculating the overall model performance, and/or (2) the value of the component is close to its

352	 optimal value. As a consequence of (2), the relative contribution of the components representing the

353	 bias and the variability of flows can become large for non-optimal parameter sets.

354	 To illustrate these considerations, Fig. 8c and Fig. 8d show the relative contribution of the criterion

355	 components using random parameter sampling for a selected basin (Glan River). The sampled

356	 points are arranged from left to right in order of decreasing performance for the selected criterion.

357	 With decreasing overall model performance (either NSE or KGE) there is a general tendency for the

358	 relative contribution of r to decrease and for the other two components to become much more

359	 important. In some cases only the component representing the bias is dominant, whereas in other

360	 cases only the component representing the variability of flows is dominant. This clearly indicates

361	 that both NSE and KGE are sensitive to all three of the components. From a multi-objective point of

362	 view this is definitely desirable, because it means that by calibrating on the overall model

363	 performance we can substantially improve the components representing the bias and the variability

364	 of flows. Here of course we should remember that in NSE the bias is normalized by the standard
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365	 deviation of the observed flows and that the `optimal' a is equal to r. Hence, with NSE it is not

366	 necessarily assured that from a hydrological point of view good values for a and )6 are obtained.

367	 Fig. 8 near here

368	 The cumulative distribution functions for the NSE, r, a, and 8 measures as obtained with optNSE

369	 and optKGE in the calibration and evaluation periods are shown in Fig. 9. Looking first at the

370	 results for the NSE criterion (Fig. 9a), we see that while the NSE obtained by optNSE is larger than

371	 with optKGE, the difference is rather small. This indicates that by calibrating on KGE, we have

372	 obtained only a slight deterioration in overall performance as measured by NSE. Further, although

373	 there is a pronounced reduction in NSE from calibration to evaluation period, the reduction is

374	 similar for both optNSE and optKGE.

375	 However, the change in NSE tells us little that is diagnostically useful about the causes of this

376	 `deterioration' in overall model performance. Of more interest, are the values obtained for the three

377	 criterion components. The results for the calibration period are discussed first. Note that the

378	 distribution of r is almost identical with either optNSE or optKGE (Fig. 9b, filled symbols),

379	 indicating that both of the criteria have achieved similar hydrograph match in terms of shape and

380	 timing. However, for the other two components, optKGE has achieved considerably better results.

381	 Fig. 9c shows that there is a strong tendency for underestimation of a by optNSE (filled circle

382	 symbols), due to which only 18 percent of the basins are within 10 percent of the ideal value at

383	 unity, whereas for optKGE (filled triangle symbols) all of the basins are within 10 percent of the

384	 ideal value. Similarly optKGE yields good results for 6 (Fig. 9d), with all of the basins having a

385	 bias of less than 10 percent, while for optNSE 16 percent of the basins have a bias of greater than

386	 10 percent. In general, optKGE results in a 8 value that is much closer to the ideal value at unity

387	 than with optNSE. Thus, the use of optKGE has resulted in all of the basins having a and 13 close to

19



Gupta, Kling, Yiluiaz, Martinez-Baquero 2009, submitted to Journal of Hydrology, version 1.0

388	 their ideal values of unity during calibration. This now explains why we get such a high correlation

389	 between NSE and KGE in Fig. 7d; because both a and 6 are now almost constant across the basins

390	 (here close to unity), the equations for KGE and NSE both become approximately linear functions

391	 of r, and in fact we tend towards the relationship NSE(O,,pt,,S) = 2*KGE(O,,pt,,,)-1.

392	 Next we examine what happens for the evaluation period. In general, we see that the statistical

393	 distributions of the three components have changed. The cumulative distribution function of r has

394	 shifted to lower values in a consistent manner for both optNSE and optKGE (Fig. 9b), so that both

395	 methods yield again very similar results for timing and shape. However, the optKGE calibrations

396	 have retained a median value of a close to unity (the same as during calibration) while the overall

397	 variability in the distribution has increased around the median value (Fig. 9c). This indicates that

398	 the statistical tendency to provide good reproduction of flow variability persists into the evaluation

399	 period, but there is an increase in the noise so that the distribution has become much wider. In

400	 contrast, the optNSE results continue to show a systematic tendency to underestimate a (variability

401	 of flows) during the evaluation period along with a considerable increase in random noise.

402	 Similarly, the cumulative distribution function of 6 obtained by both methods remains centred close

403	 to its calibration value while showing an increase in the variability (Fig. 9d). The small shift in the

404	 median value may be caused by the fact that there is approximately 5 % less precipitation during the

405	 evaluation period. Clearly, the KGE criterion has provided model calibrations that are statistically

406	 more desirable during calibration while providing results that remain statistically more consistent on

407	 the independent evaluation period.

408	 Fig. 9 near here

409	 An interesting observation is that in a few basins the paradoxical case occurs where all three of the

410 criterion components improve with optKGE, but the value of NSE decreases when compared to the

411	 NSE obtained with optNSE (Table 2). The reason for this is the interplay between the tertns a and r
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412	 in the NSE equation (illustrated nicely in Fig. 1). It is therefore actually (counter intuitively)

413	 possible for both a and r to get closer to unity while NSE gets smaller. This is, of course, because

414	 optimization on NSE seeks to make a = r, and therefore `punishes' solutions for which a is close to

415	 the ideal value of unity, while r will always be smaller than unity.

416	 Table 2 near here

417	 As discussed earlier, it is likely that optimization with NSE will yield results where a is close to r.

418	 Fig. 10a shows a comparison between r and a obtained by the two optimization cases for all of the

419	 basins. In general, when optimizing with NSE, the value of a is indeed very similar to r, which

420	 means that the variability of flows is systematically underestimated (as shown above), and a

421	 approaches the ideal value of unity in only one of the 49 basins. In contrast, when optimizing with

422	 KGE, the value of a is close to the ideal value of unity for most of the basins.

423	 Consequently, as expected from the theoretical discussion, systematically different results are

424	 obtained by optNSE and optKGE for the slopes of the regression lines (Fig. 10b), where the cases

425	 of regressing the simulated against the observed values (ko, Eq. 14) and regressing the observed

426	 against the simulated values (ks, Eq. 13) are distinguished. In general, when using optNSE the value

427	 of k, is close to the ideal value at unity, but ko is significantly smaller than one. In the case of

428	 optKGE both kS and ko are smaller than one, but the underestimation is not as large as for k o with

429	 optNSE. Note (from Eq. 12) that the only way that we can have both k, and t o equal to one is for r

430	 to be equal to unity, which would only happen if the model and data were perfect.

431	 Fig. 10 near here

432	 Finally, we report briefly on the optimal parameter values obtained using optNSE and optKGE.

433	 Interestingly, even though the statistical properties of the streamflow hydrographs (as measured by

434	 a and 6) did change significantly (Fig. 9), for many basins the parameter values did not change by
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435	 large amounts (compared to the feasible parameter range) when moving from optNSE to optKGE

436	 (Fig. 11). The correlation between the parameter values of optNSE and optKGE is at least 0.80 for

437	 all six of the parameters, and for three of the parameters the correlation is larger than 0.90. For the

438	 parameter KI the values are slightly smaller with optKGE, which has the effect of higher peaks and

439	 quicker recession of surface flow. Also the parameter K3 decreases with optKGE, which has the

440	 effect of a less dampened base flow response. Given the function of these two parameters in the

441	 model structure, a reduction in the parameter values has the effect of increasing the value of the a

442	 measure. In addition, we see an increase in the percolation parameter K2, which results in more

443	 surface flow and less base flow, with the overall effect of increasing the value of a.

444	 The function of the parameters Sl,,,, and Beta in the model is mainly to control the partitioning of

445	 precipitation into runoff and evapotranspiration (thereby controlling the water balance), and as a

446	 consequence these parameters mainly affect the 6 measure. However, these parameters also affect

447	 the a measure and parameter interaction between Sl,,,, and Beta complicates the analysis. Given

448	 the function of these parameters in the model, the 6 measure should increase with a decrease in

449	 either Sl,,,Q, and/or Beta, but this is not obvious from Fig. 11, because a decrease in Sl,,,, can be

450	 compensated by an increase in Beta, and vice versa.

451	 For the parameter S2C1 zf no clear tendency of change is visible. Here it should be mentioned that

452	 there was no change in the parameter values in sixteen of the basins for which the parameter values

453	 were at their lower bounds (4 basins) and upper bounds (12 basins), respectively. Note that these 16

454	 points also contribute to the rather high correlation observed.

455	 Fig. 11 near here

456	 On a visual, albeit subjective, basis a comparison of the parameter sets obtained by optNSE and

457	 optKGE reveals that in many of the basins the two parameter sets are almost indistinguishable, but
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458	 nevertheless the criterion components have changed. As an example, Fig. 12a displays a

459	 comparison of the parameters obtained by optNSE and optKGE for the Glan River. Apparently the

460	 parameter values are quite similar, although the a measure and to a lesser extent the ,8 measure have

461	 both improved when using optKGE (see Table 2). For many basins, the difference in each of the

462	 parameters was found to be only a small percentage of the overall feasible range (Fig. 12b); in 14 of

463	 the 49 basins, all of the six parameters have changed by less than 10%, and in only a few of the

464	 basins did two or more parameters change by a significant amount. For the latter, the changes may

465	 also (at least in part) be a consequence of parameter interactions; for example, there is a clear

466	 tendency for K2 and S2,,;t to increase/decrease simultaneously, and this fact must, of course, also be

467	 considered when interpreting the scatter plots in Fig. 11.

468	 Fig. 12 near here

469	 4 Discussion

470	 A decomposition of the NSE criterion shows that this measure of overall model performance can be

471	 represented in terms of three components, which measure the linear correlation, the bias and the

472	 variability of flow. By simple theoretical considerations, we can show that problems can arise in

473	 model calibrations that seek to optimize the value of NSE (or its related MSE). First, because the

474	 bias is normalized by the standard deviation of the observed flows, the relative importance of the

475	 bias term will vary across basins (and also across years), and for cases where the variability in the

476	 observed flows is high, the bias will have a low `weight' in the computation of NSE. Second, there

477	 will be a tendency for the variability in the flows to be systematically underestimated, so that the

478	 ratio of the simulated and observed standard deviations of flows will tend to be equal to the

479	 correlation coefficient. As a consequence, the slope of the regression line (when regressing

480	 simulated against observed values) will be smaller than one, so that runoff peaks will tend to be
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481	 systematically underestimated. This finding may seem to contradict the general notion that

482	 optimization on NSE will improve simulation of runoff peaks. In fact NSE is generally found to be

483	 highly sensitive to the large runoff values, because of the (typically) larger model and data errors

484	 involved in the matching of such events, and this fact is separate from the general (theoretical and

485	 practical) tendency to underestimate the runoff peaks. Of course, when it is of interest to regress the

486	 observed against the simulated values then an optimization on NSE can yield desirable results, since

487	 in such a case the optimal slope of the regression line for maximizing NSE is equal to unity.

488	 These theoretical considerations were all supported by the results of the modelling experiment. Of

489	 course, in such an experiment, not all solutions within the theoretical criteria space are possible

490	 because of constraints regarding the model structure, parameter ranges, and available data.

491	 However, it was found that the simple model was capable of achieving good solutions for the bias

492	 and the variability of flows with only slight decreases in the correlation coefficient. The

493	 optimization task therefore becomes one of specifying the objective function in such a way that it is

494	 capable of achieving such a solution as an optimal solution (i.e. simultaneously good solutions for

495	 bias, flow variability and correlation). Apparently, this was not the case with NSE, and we therefore

496	 formulated an alternative criterion (KGE) that is based on an equal weighting of the three

497	 components (correlation, bias, and variability measures). Of course the correlation will not, in

498	 general, reach its ideal value of unity, but an optimization on KGE resulted in the other two

499	 components being indeed close to their ideal values. Thus, the use of KGE instead of NSE for

500	 model calibration improved the bias and the variability measure considerably while only slightly

501	 decreasing the correlation.

502	 The simulation results were also examined for an independent evaluation period. In general, the

503	 overall model performance and the individual components deteriorated in a statistical sense. It is at

504	 least partially likely that this is due to the rather short lengths of the calibration and evaluation
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505	 periods used in this study (five and three years, respectively). Further, it should be noted that this

506	 study has not accounted for either the uncertainty in the parameter values or the uncertainty in the

507	 computed statistics, which would require a more rigorous Bayesian approach. Nevertheless, the

508	 results clearly show that optimization using NSE tends to underestimate the variability of flows on

509	 the calibration period, and that this behaviour tends to persist into the evaluation period. Further, the

510	 bias in the calibration period is well constrained with KGE, but not with NSE, whereas in the

511	 evaluation period (with overall poorer bias) the results with NSE are only slightly inferior to KGE.

512	 An interesting result is that for many basins the optimal parameter values changed by only small

513	 amounts (relative to the feasible range) when using KGE instead of NSE. In the KGE optimization

514	 there was a tendency to decrease the recession parameters of surface flow and base flow to simulate

515	 a flashier hydrograph, and thereby improve the value of the variability measure. Because of

516	 parameter interactions there was no clear tendency of a change in the parameters for the bias

517	 measure. In general, this suggests that the values of multiple criteria can be improved by making

518	 only small changes in the parameter values. This emphasizes the importance of the relative

519	 sensitivity of the criterion components to changes in the parameter values. On the one hand, this is a

520	 desirable effect during calibration, because we want to have measures that are actually sensitive to

521	 the parameter values, thereby theoretically increasing parameter identifiability. On the other hand,

522	 this raises important questions for parameter regionalization, because even a small `error' in a

523	 parameter value could result in poor values of individual measures, thereby causing poor overall

524	 model performance.

525	 The attempt to explain the relationships between changes in the parameters and values of the

526	 criterion components relates to the idea of diagnostic model evaluation, as proposed by Gupta et al.

527	 (2008) and tested by Yilmaz et al. (2008) and Herbst et al. (2009). The idea behind diagnostic

528	 model evaluation is to move beyond aggregate measures of model performance that are primarily
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529	 statistical in meaning, towards the use of (multiple) measures and signature plots that are selected

530	 for their ability to provide hydrological interpretation. Such an approach should improve our ability

531	 to diagnose the causes of a problem and to make corrections at the appropriate level (i.e. model

532	 structure or parameters). The theoretical development presented in this paper, shows one shnple,

533	 statistically founded approach to the development of a strategy for diagnostic evaluation and

534	 calibration of a model. Clearly, the measures used in this study have some diagnostic value. The

535	 bias and variability measures represent differences in matching of the means and the standard

536	 deviations (the first two moments) of the probability distributions of the quantities being compared.

537	 Their appearance in NSE and MSE indicates that these performance criteria give importance to

538	 matching these two long-term statistics of the data. From a hydrological perspective, these statistics

539	 relate to the properties of the flow duration curve, in which issues of timing and shape of the

540	 dynamical characteristics of flow are largely ignored. These statistics will therefore be mainly

541	 controlled by aspects of model structure and values of the parameters that determine the general

542	 partitioning of precipitation into runoff, evapotranspiration and storage (i.e. overall water balance)

543	 and, further, the general partitioning of runoff into fast and slow flow components (e.g. see Yihnaz

544	 et al 2008). Meanwhile, all other differences between the statistical properties of the observed and

545	 simulated flows such as timing of the peaks, and shapes of the rising limbs and the recessions of the

546	 hydrograph (i.e. autocorrelation structures), are lumped into the (linear) cor relation coefficient as an

547	 aggregate measure. A logical next step would be to further decompose the correlation coefficient

548	 into diagnostic components that represent different aspects of flow timing and shape (e.g.

549	 autocorrelation structure). Further, a distinction between different states (modes) of the hydrological

550	 response - such as driven and non-driven (see e.g. Boyle et al. 2000) — may also prove to be

551	 sensible. Such considerations are left for future work.
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552	 Before entering into our concluding remarks, we should point out that the primary purpose of this

553	 study was not to design an improved measure of model performance, but to show clearly that there

554	 are systematic problems inherent with any optimization that is based on mean squared errors (such

555	 as NSE). The alternative criterion KGE was simply used for illustration purposes. An optimization

556	 on KGE is equivalent to selecting a point from the three-dimensional Pareto front with the minimal

557	 distance from the ideal point. Many different alternative criteria would also be sensible, but

558	 ultimately it has to be understood that each single measure of model performance has its own

559	 peculiarities and trade-offs between components. In the case of KGE probably the most problematic

560	 characteristic is that the slope of the regression lines will tend to be smaller than one, albeit not as

561	 strongly as with NSE (when regressing simulated against observed values). Because of the simple

562	 design of the KGE criterion it is straightforward to understand the trade-offs between the

563	 correlation, the bias and the variability measure. These trade-offs are more complex in the case of

564 NSE.

565	 If single measures of model performance are used we deem it to be imperative to clearly know the

566	 limitations of the selected criterion. It then will depend upon the type of application whether these

567	 limitations are of concern or not. The decomposition presented here highlights the fact that identical

568	 values of the NSE criterion are not necessarily indistinguishable - as is commonly (and erroneously)

569	 assumed in the literature in arguments relating to equifinality (Beven and Binley 1992, Beven and

570	 Freer 2001) - since the criterion components may be quite different. Thus, when evaluating or

571	 reporting results based on calibration with NSE, information about the correlation, bias, and

572	 variability of flows should also be given (interestingly, this was already proposed by Legates and

573	 McCabe (1999), althou gh they did not discuss the interrelation between NSE and its three

574	 components). Ultimately the decision to accept or reject a model must be made by an expert

575	 hydrologist, where such a decision is best based in a multiple-criteria framework. To this end, an
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576	 analysis of the components that constitute the overall model performance can significantly enhance

577	 our understanding of model behaviour and provide insights helpful for diagnosing differences

578	 between models, basins and time periods within a hydrological context.

579	 5 Summary and conclusions

580	 In this study a decomposition of the widely used Nash-Sutcliffe efficiency (NSE) was applied to

581	 analyse the different components that constitute NSE (and hence MSE). We present theoretical

582	 considerations that serve to highlight problems associated with the NSE criterion. The results of a

583	 case study, where a simple precipitation-runoff model was applied in several basins, support the

584	 theoretical findings. For comparison we show how an alternative measure of model perfornance

585	 (KGE) can overcome the problems associated with NSE.

586	 In summary, the main conclusions of this study are:

587	 • The mean squared error and its related NSE criterion consists of three components,

588	 representing the correlation, the bias and a measure of variability. The decomposition

589	 shows that in order to maximize NSE the variability has to be underestimated. Further, the

590	 bias is scaled by the standard deviation in the observed values, which complicates a

591	 comparison between basins.

592	 • Given that NSE consists of three components, an alternative model performance criterion

593	 KGE is easily formulated by computing the Euclidian distance of the three components

594	 from the ideal point, which is equivalent to selecting a point from the three-dimensional

595	 Pareto front. Such an alternative criterion avoids the problems associated with NSE (but

596	 also introduces new problems).
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597	 • The slopes of the regression lines are directly related with the three components. NSE is

598	 suitable if the interest is in regressing the observed against the simulated values, but less

599	 suitable for regressing the simulated against the observed values. This means that if NSE is

600	 used in optimization, then runoff peaks will tend to be underestimated. The same applies for

601	 KGE, but the underestimation will not be as severe.

602	 • After optimization, the component representing the linear correlation dominates the model

603	 performance criterion for both NSE and KGE. For non-optimal parameters sets any of the

604	 three components can be dominant in NSE or KGE.

605	 • Even with a simple precipitation-runoff model it is possible to obtain runoff simulations

606	 where the mean and variability of flows are matched well, and the linear correlation is still

607	 high. However, this applies only for optimization with KGE, since NSE does not consider

608	 such a solution as `good'.

609	 • The optimal parameter values may, in practice, only change by small amounts when using

610	 KGE instead of NSE as the objective function for optimization (as in our example). This

611	 emphasizes the importance of considering the sensitivity of the three components to

612	 perturbations in the parameter values.

613	 This study reinforces the argument that model calibration is a multi-objective problem (Gupta et al

614	 1998), and shows that a decomposition of the calibration criterion into components can help to

615	 greatly enhance our understanding of the overall model performance (and, by extension, the

616	 differences in model performance between model structures, basins and time periods). To compute

617	 these components is a straightforward task and should be included in any evaluation of model

618	 simulations. Ultimately, such an approach may help in the design of diagnostically powerful

619	 evaluation strategies that properly support the identification of hydrologically consistent models.
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726	 Table 1: Parameters of the model. Parameters in brackets were not calibrated.

parameter units feasible range description

Sl,,,,, nun 50-700 soil storage capacity

Beta 0.1 -25 exponent for computing runoff generation

(SI C,n) i (0.6) critical soil inoisture for actual evapotranspiration

KI h 10-500 recession coefficient for surface flow

K2 h 10- 1000 recession coefficient for percolation

S2,,t 111111 0- 15 outlet height for surface flow

K3 h 500- 10000 recession coefficient for base flow

(K4) h (0- 10) recession coefficient for distributed routing

727

728	 Table 2: `Paradoxical' examples for NSE and components in three basins (results for the calibration
729	 period). All three components (r, a, 6) improve but the overall model performance measured by
730	 NSE decreases with the parameter set obtained by optKGE.

basin method NSE [/] KGE [/] 1 -1/1 a 11/1 16111

Zaya River optNSE 0.484 0.685 0.714 0.871 1.019

optKGE 0.452 0.732 0.733 1.026 1.001

Pitten River optNSE 0.742 0.828 0.863 0.899 1.028

optKGE 0.730 0.865 0.866 1.004 1.016

Glan River optNSE 0.786 0.855 0.888 0.912 1.028

optKGE 0.776 0.888 0.889 1.002 1.007

731

732
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733	 Figure captions:

734	 Fig. 1: Relationship of NSE with a and r ( )Q„ is assumed to be zero): (a) theoretical relationship, (b)

735	 illustrative example obtained by random parameter sampling with a hydrological model (Leaf

736	 River, Mississippi, USA, 1924 kin', 11 years daily data, HyMod model; only those points where

737	 8„2 < 0.01 are displayed). Contour lines indicate values for NSE. See colour version of this figure

738	 online.

739	 Fig. 2: Example for three-dimensional Pareto front of r, a and 6. ED is the Euclidian distance

740	 between the `optimal' point and the ideal point, where all three measures are 1.0. Glan River,

741	 Austria, 432 km', 5 years daily data, HBV model variant, random parameter sampling.

742	 Fig. 3: Typical scatter plots depicting simulated and observed runoff (r = 0.86 and a = 0.90) and

743	 fitted regression lines: (a) regression against simulated runoff (ks = 0.96) and (b) regression against

744	 observed runoff (ko = 0.77). Pitten River, Austria, 277 km'-, 5 years daily data, HBV model variant,

745	 parameters optimized on NSE. Note, that in (a) and (b) the identical data points are plotted, but the

746	 axes are flipped.

747	 Fig. 4: Map showing locations of the 49 Austrian basins used in this study. Also depicted are the 49

748	 gauges and 222 precipitation stations.

749	 Fig. 5: Relationship between index of evaporation and index of wetness for the 49 Austrian basins.

750	 The index of wetness is computed as the ratio between precipitation (P) and potential

751	 evapotranspiration (ETp). The index of evaporation is computed as the ratio between actual

752	 evapotranspiration (ETa) and ETp. Data represent long-tens means from the period 1961 to 1990

753	 and are taken from Hydrological Atlas of Austria (BMLFUW 2007).

754	 Fig. 6: Conceptual model structure (the snow module is not shown). Parameters in brackets are not

755	 calibrated.
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756	 Fig. 7: Scatter plots of overall model performance: cal = calibration period, eval = evaluation

757	 period. Note that in (a) two points are located outside the plotting range because of negative NSE

758	 values in the evaluation period.

759	 Fig. 8: Stacked area plots showing the relative contribution of the components for NSE and KGE in

760	 the calibration period: (a) optNSE in 49 basins, (b) optKGE in 49 basins, (c) and (d) random

761	 parameter sampling in the Glan River basin.

762	 Fig. 9: Cumulative distribution functions for NSE, r, a, and ,Q as obtained with optNSE and optKGE

763	 in the calibration and evaluation periods.

764	 Fig. 10: Relationship between (a) r and a and (b) the slope of the regression lines ks and k-o.

765	 Fig. 11: Scatter plots of optimal parameters obtained by optNSE and optKGE. Parameter values are

766	 normalized by the feasible parameter range (Table 1); the parameters Beta, KI, K2 and K3 are log-

767	 transformed before normalization.

768	 Fig. 12: Comparison of the parameter sets obtained by optNSE and optKGE: (a) nonnalized

769	 parameter values of eoptNSE and eoptKGE in the G1an River basin, (b) difference in the normalized

770	 parameter values (computed as eoptKGE-eoptNSE), displayed for all basins.
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Figure 3

(a) regression against simulated runoff 	 (b) regression against observed runoff
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SUMMARY

The mean squared error (MSE) and the related normalization, the Nash-Sutcliffe efficiency (NSE),
are the two criteria most widely used for calibration and evaluation of hydrological models with
observed data. Here, we present a diagnostically interesting decomposition of NSE (and hence
MSE), which facilitates analysis of the relative importance of its different components in the
context of hydrological modelling, and show how model calibration problems can arise due to
interactions among these components. The analysis is illustrated by calibrating a simple conceptual
precipitation-runoff model to daily data for a number of Austrian basins having a broad range of
hydro-meteorological characteristics. Evaluation of the results clearly demonstrates the problems
that can be associated with any calibration based on the NSE (or MSE). criterion. While we propose
and test an alternative criterion that can help to reduce model calibration problems, the primary
purpose of this study is not to present an improved measure of model performance. Instead, we seek
to show that there are systematic problems inherent with any optimization based on formulations
related to the MSE. The analysis and results have implications to the manner in which we calibrate
and evaluate environmental models; we discuss these and suggest possible ways forward that may
move us towards an improved and diagnostically meaningful approach to model performance
evaluation and identification.


