
36 NASA Tech Briefs, September 2009

Efficient Model-Based Diagnosis Engine
A system as large as several thousand components can be diagnosed efficiently.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An efficient diagnosis engine — a
combination of mathematical models
and algorithms — has been developed
for identifying faulty components in a
possibly complex engineering system.
This model-based diagnosis engine em-
bodies a twofold approach to reducing,
relative to prior model-based diagnosis
engines, the amount of computation
needed to perform a thorough, accurate
diagnosis. The first part of the approach
involves a reconstruction of the general
diagnostic engine to reduce the com-
plexity of the mathematical-model calcu-
lations and of the software needed to
perform them. The second part of the
approach involves algorithms for com-
puting a minimal diagnosis (the term
“minimal diagnosis” is defined below).

A somewhat lengthy background dis-
cussion is prerequisite to a meaningful
summary of the innovative aspects of the
present efficient model-based diagnosis
engine. In model-based diagnosis, the
function of each component and the re-
lationships among all the components
of the engineering system to be diag-
nosed are represented as a logical system
denoted the system description (SD).
Hence, the expected normal behavior of
the engineering system is the set of logi-
cal consequences of the SD. Faulty com-
ponents lead to inconsistencies between
the observed behaviors of the system
and the SD (see figure). Diagnosis —
the task of finding faulty components —
is reduced to finding those components,
the abnormalities of which could ex-
plain all the inconsistencies. The solu-
tion of the diagnosis problem should be

a minimal diagnosis, which is a minimal
set of faulty components. A minimal di-
agnosis stands in contradistinction to
the trivial solution, in which all compo-
nents are deemed to be faulty, and
which, therefore, always explains all in-
consistencies.

The general diagnosis engine (GDE)
is widely used in the discipline of auto-
mated diagnosis. The GDE combines a
model of each component of an engi-
neering system with observations of the
actual behavior of the component to
detect discrepancies and diagnose root
causes. The GDE uses an inference en-
gine to compute the consequences of
observations and uses an assumption-
based truth maintenance system
(ATMS) to manage the assumptions
underlying each computation. One of
the side effects of managing the as-
sumptions is the detection of inconsis-
tent sets of assumptions, which leads to
conflict sets used in calculating mini-
mal diagnoses. Unfortunately the GDE
has two major limitations:
• The combination of the inference en-

gine and ATMS must be represented
by software that is so complex that the
use of the GDE is too difficult and im-
practical for many complex engineer-
ing systems.

• The calculation of a minimal diagnosis
is inherently a hard problem. Using
typical prior algorithms, the conver-
sion from conflict sets to a minimal di-
agnosis requires amounts of computa-
tion time and memory that increase
exponentially with the number of com-
ponents of the engineering system.

This concludes the background discussion.
In the present efficient model-based

diagnosis engine, the first-mentioned
limitation of the GDE is overcome by the
reconstructed general diagnostic engine
(RGDE). Like the GDE, the RGDE com-
bines a model of each component of an
engineering system (represented graph-
ically as a network) with observations of
the actual behavior of the component to
detect discrepancies and diagnose root
causes. Also like the GDE, the RGDE
performs a causal simulation by taking
variable observations and using rules to
compute the values of other variables in
the network.

Although assumptions underly the
computations in the RGDE as in the
GDE, the RGDE does not include an
ATMS. Instead, taking advantage of the
discovery that the ATMS and the infer-
ence engine have many similarities, the
RGDE combines the ATMS with the in-
ference engine to simplify the diagnosis-
engine algorithm and the software that
implements it. In this approach, the value
of each variable is tagged with the set of
assumptions that contribute to its compu-
tation. This set of tags comprises the col-
lective union of the tags of values that
feed into the computation with a tag rep-
resenting the computation itself. A dis-
crepancy arises when two incompatible
values are assigned to the same variable.
In general, whenever the RGDE com-
putes two incompatible values for the
same variable, the union of the two sup-
porting assumption sets is incompatible;
that is, it is a conflict set. Typically in the
course of causal simulation, no discrep-

small body, all within the law of gravity
and the solar radiation pressure. The
same is true for a horizontal hover. A
PatchPoint is an LTool class that denotes
a space-time event with some extra infor-
mation for differential correction, includ-
ing a set of constraints to be satisfied by T-
LDC. Given a set of PatchPoints, each
with its own constraint, the T-LDC differ-
entially corrects the entire trajectory by
connecting each trajectory leg joined by
PatchPoints while satisfying all specified
constraints at the same time.

Vertical and horizontal hover both
are needed to minimize delta-v spent

for station keeping. A Python I/F to
NPOPT has been written to be used
from an LTool script. In vertical hover-
ing, the spacecraft stays along the line
joining the Sun and a small body. An
instantaneous delta-v toward the anti-
Sun direction is applied at the closest
approach to the small body for station
keeping. For example, the spacecraft
hovers between the minimum range (2
km) point and the maximum range
(2.5 km) point from the asteroid
1989ML. Horizontal hovering buys
more time for a spacecraft to recover if,
for any reason, a planned thrust fails,

by returning almost to the initial posi-
tion after some time later via a near el-
liptical orbit around the small body.
The mapping or staging orbit may be
similarly generated using T-LDC with a
set of constraints. Some delta-v tables
are generated for several different as-
teroid masses.

This work was done by Min-Kun J.
Chung of Caltech for NASA’s Jet Propulsion
Laboratory.

This software is available for commercial li-
censing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-44452.

NASA Tech Briefs, September 2009 37

DSN Simulator
NASA’s Jet Propulsion Laboratory, Pasadena, California

The DSN Simulator (wherein “DSN”
signifies NASA’s Deep Space Network) is
an updated version of the software de-
scribed in “DSN Array Simulator” (NPO-
44506), Software Tech Briefs (Special sup-
plement to NASA Tech Briefs), Vol. 32, No.
9 (September 2008), page 26. To recapit-
ulate: This software is used for computa-
tional modeling of proposed DSN facili-
ties comprising arrays of antennas and
transmitting and receiving equipment
for microwave communication with
spacecraft on interplanetary missions.
Such modeling is performed to estimate
facility performance, evaluate require-

ments that govern facility design, and
evaluate proposed improvements in
hardware and/or software. The software
includes a Monte Carlo simulation com-
ponent that enables rapid generation of
key mission-set metrics (e.g., numbers of
links, data rates, and data volumes), and
statistical distributions thereof as func-
tions of time.

The prior version of the software
could model only one DSN facility at a
time and included hard-coded, uncon-
figurable metrics. The present updated
version is capable of modeling the entire
DSN and provides for configurable met-

rics, making it possible to perform load-
ing analyses for alternative future DSN
architectures and mission-set scenarios.
The present version also features an im-
proved user interface and interfaces for
exchange of data with other DSN soft-
ware and with a DSN mission model
database.

This program was written by Ryan M.
Mackey and Raffi P. Tikidjian of Caltech for
NASA’s Jet Propulsion Laboratory.

This software is available for commercial li-
censing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-45513.

ancies are found, but when failures occur,
multiple incompatible assumption sets
appear. This process continues to deter-
mine new incompatible sets until the
causal simulation is completed.

The second-mentioned limitation of
the GDE is overcome by a combina-
tion of two methods, embodied in al-
gorithms that, relative to prior algo-
rithms used for the same purpose,
require less computation to arrive at a
minimal diagnosis. These methods
and algorithms were described in
“Fast Algorithms for Model-Based Di-
agnosis” (NPO-30582) and “Two
Methods of Efficient Solution of the
Hitting-Set Problem” (NPO-30584),
both published in NASA Tech Briefs,
Vol. 29, No. 3, March 2005, pages 69
and 74, respectively. To recapitulate:
One of the two improved methods is
based on mapping of the diagnosis
problem onto the Boolean satisfiabil-
ity problem. This mapping makes it
possible to utilize Boolean function
theory to reduce the diagnosis prob-
lem to the prime-implicant problem
(one of the problems in the theory).
This, in turn, makes it possible to uti-
lize very efficient algorithms, devel-
oped previously for the satisfiability
problem, to compute the minimal di-
agnosis. The algorithm thus devel-
oped to solve the diagnosis problem
requires an amount of computation
proportional to a superpolynomial
function of n (meaning that the com-
putation time is proportional to
nln(n)), where n is the number of com-
ponents of the engineering system.

The other improved method is based
on the mapping of the diagnosis prob-

lem onto the integer-programming
problem. This mapping makes it possi-
ble to utilize a variety of algorithms de-
veloped previously for integer program-
ming to solve the diagnosis problem. In
the integer-programming approach, the
diagnosis problem can be formulated as
a linear integer optimization problem,
which can be solved by use of well-devel-
oped integer-programming algorithms.
Some of these algorithms, modified to
make them suitable for solving the diag-
nosis problem, can efficiently diagnose a
system that contains as many as several
thousand components.

The development of this efficient
model-based diagnosis engine has been
accompanied by the derivation of a deep
matrix analysis of the integer program-
ming problem that makes it possible to
extract bounds for the sizes of the solu-
tions of the optimization problem, with-
out solving the problem explicitly. This

analysis could be helpful in the develop-
ment of algorithms that would be
much more efficient for solving spe-
cific problems.

This work was done by Amir Fijany, Far-
rokh Vatan, Anthony Barrett, Mark James,
Ryan Mackey, and Colin Williams of Cal-
tech for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1).

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:

Innovative Technology Assets Management
JPL
Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
E-mail: iaoffice@jpl.nasa.gov
Refer to NPO-40544, volume and number

of this NASA Tech Briefs issue, and the
page number.

Control Valve

Check Valves

Thruster

Pressure Regulator

Pressure Sensor

Tank

A Relatively Simple Engineering System of tanks, valves, pipes, and pressure sensors serves to illus-
trate the basic diagnostic principle. This system would be diagnosed by comparing actual and ex-
pected values of pressure-sensor readings as correlated with commanded openings and closings of the
valves.

