
NASA Tech Briefs, September 2009 35

Integrated Modeling of Spacecraft Touch-And-Go Sampling
NASA’s Jet Propulsion Laboratory, Pasadena, California

An integrated modeling tool has been
developed to include multi-body dynam-
ics, orbital dynamics, and touch-and-go
dynamics for spacecraft covering three
types of end-effectors: a sticky pad, a
brush-wheel sampler, and a pellet gun.

Several multi-body models of a free-fly-
ing spacecraft with a multi-link manipula-
tor driving these end-effectors have been
tested with typical contact conditions aris-
ing when the manipulator arm is to sam-
ple the surface of an asteroidal body. The
test data have been infused directly into
the dynamics formulation including such
information as the mass collected as a

function of end-effector longitudinal
speed for the brush-wheel and sticky-pad
samplers, and the mass collected as a
function of projectile speed for the pellet
gun sampler. These data represent the re-
alistic behavior of the end effector while
in contact with a surface, and represent a
low-order model of more complex con-
tact conditions that otherwise would have
to be simulated. Numerical results
demonstrate the adequacy of these multi-
body models for spacecraft and manipu-
lator-arm control design.

The work contributes to the develop-
ment of a touch-and-go testbed for small-

body exploration, denoted as the GREX
Testbed (GN&C for Rendezvous-based
EXploration). The GREX testbed ad-
dresses the key issues involved in landing
on an asteroidal body or comet; namely, a
complex, low-gravity field; partially
known terrain properties; possible comet
outgassing; dust ejection; and navigating
to a safe and scientifically desirable zone.

This program was written by Marco Quadrelli
of Caltech for NASA’s Jet Propulsion Laboratory. 

This software is available for commercial li-
censing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-44371.

Simulation of Attitude and Trajectory Dynamics and Control of
Multiple Spacecraft
Goddard Space Flight Center, Greenbelt, Maryland

Agora software is a simulation of space-
craft attitude and orbit dynamics. It sup-
ports spacecraft models composed of mul-
tiple rigid bodies or flexible structural
models. Agora simulates multiple space-
craft simultaneously, supporting ren-
dezvous, proximity operations, and preci-
sion formation flying studies. The Agora
environment includes ephemerides for all
planets and major moons in the solar sys-
tem, supporting design studies for deep
space as well as geocentric missions. The
environment also contains standard mod-
els for gravity, atmospheric density, and
magnetic fields. Disturbance force and
torque models include aerodynamic,
gravity-gradient, solar radiation pressure,
and “third-body” gravitation. In addition

to the dynamic and environmental mod-
els, Agora supports geometrical visualiza-
tion through an OpenGL interface.

Prototype models are provided for
common sensors, actuators, and control
laws. A clean interface accommodates
linking in actual flight code in place of
the prototype control laws. The same
simulation may be used for rapid feasibil-
ity studies, and then used for flight soft-
ware validation as the design matures.

Agora is open-source and portable
across computing platforms, making it
customizable and extensible. It is written
to support the entire GNC (guidance,
navigation, and control) design cycle,
from rapid prototyping and design analy-
sis, to high-fidelity flight code verification.

As a top-down design, Agora is in-
tended to accommodate a large range
of missions, anywhere in the solar sys-
tem. Both “two-body” and “three-body”
flight regimes are supported, as well as
seamless transition between them. Mul-
tiple spacecraft may be simultaneously
simulated, enabling simulation of ren-
dezvous scenarios, as well as formation
flying. Built-in reference frames and
orbit perturbation dynamics provide ac-
curate modeling of precision formation
control.

This work was done by Eric T. Stoneking of
Goddard Space Flight Center. For further in-
formation, contact the Goddard Innovative
Partnerships Office at (301) 286-5810. GSC-
15737-1

Spacecraft Station-Keeping Trajectory and Mission Design Tools
NASA’s Jet Propulsion Laboratory, Pasadena, California

Two tools were developed for designing
station-keeping trajectories and estimat-
ing delta-v requirements for designing
missions to a small body such as a comet
or asteroid. This innovation uses NPOPT,
a non-sparse, general-purpose sequential

quadratic programming (SQP) optimizer
and the Two-Level Differential Corrector
(T-LDC) in LTool (Libration point mis-
sion design Tool) to design three kinds of
station-keeping scripts: vertical hovering,
horizontal hovering, and orbiting.

The T-LDC is used to differentially cor-
rect several trajectory legs that join hover-
ing points. In a vertical hovering, the
maximum and minimum range points
must be connected smoothly while main-
taining the spacecraft’s range from a

Software



36 NASA Tech Briefs, September 2009

Efficient Model-Based Diagnosis Engine 
A system as large as several thousand components can be diagnosed efficiently. 
NASA’s Jet Propulsion Laboratory, Pasadena, California

An efficient diagnosis engine — a
combination of mathematical models
and algorithms — has been developed
for identifying faulty components in a
possibly complex engineering system.
This model-based diagnosis engine em-
bodies a twofold approach to reducing,
relative to prior model-based diagnosis
engines, the amount of computation
needed to perform a thorough, accurate
diagnosis. The first part of the approach
involves a reconstruction of the general
diagnostic engine to reduce the com-
plexity of the mathematical-model calcu-
lations and of the software needed to
perform them. The second part of the
approach involves algorithms for com-
puting a minimal diagnosis (the term
“minimal diagnosis” is defined below). 

A somewhat lengthy background dis-
cussion is prerequisite to a meaningful
summary of the innovative aspects of the
present efficient model-based diagnosis
engine. In model-based diagnosis, the
function of each component and the re-
lationships among all the components
of the engineering system to be diag-
nosed are represented as a logical system
denoted the system description (SD).
Hence, the expected normal behavior of
the engineering system is the set of logi-
cal consequences of the SD. Faulty com-
ponents lead to inconsistencies between
the observed behaviors of the system
and the SD (see figure). Diagnosis —
the task of finding faulty components —
is reduced to finding those components,
the abnormalities of which could ex-
plain all the inconsistencies. The solu-
tion of the diagnosis problem should be

a minimal diagnosis, which is a minimal
set of faulty components. A minimal di-
agnosis stands in contradistinction to
the trivial solution, in which all compo-
nents are deemed to be faulty, and
which, therefore, always explains all in-
consistencies. 

The general diagnosis engine (GDE)
is widely used in the discipline of auto-
mated diagnosis. The GDE combines a
model of each component of an engi-
neering system with observations of the
actual behavior of the component to
detect discrepancies and diagnose root
causes. The GDE uses an inference en-
gine to compute the consequences of
observations and uses an assumption-
based truth maintenance system
(ATMS) to manage the assumptions
underlying each computation. One of
the side effects of managing the as-
sumptions is the detection of inconsis-
tent sets of assumptions, which leads to
conflict sets used in calculating mini-
mal diagnoses. Unfortunately the GDE
has two major limitations: 
• The combination of the inference en-

gine and ATMS must be represented
by software that is so complex that the
use of the GDE is too difficult and im-
practical for many complex engineer-
ing systems. 

• The calculation of a minimal diagnosis
is inherently a hard problem. Using
typical prior algorithms, the conver-
sion from conflict sets to a minimal di-
agnosis requires amounts of computa-
tion time and memory that increase
exponentially with the number of com-
ponents of the engineering system.

This concludes the background discussion. 
In the present efficient model-based

diagnosis engine, the first-mentioned
limitation of the GDE is overcome by the
reconstructed general diagnostic engine
(RGDE). Like the GDE, the RGDE com-
bines a model of each component of an
engineering system (represented graph-
ically as a network) with observations of
the actual behavior of the component to
detect discrepancies and diagnose root
causes. Also like the GDE, the RGDE
performs a causal simulation by taking
variable observations and using rules to
compute the values of other variables in
the network. 

Although assumptions underly the
computations in the RGDE as in the
GDE, the RGDE does not include an
ATMS. Instead, taking advantage of the
discovery that the ATMS and the infer-
ence engine have many similarities, the
RGDE combines the ATMS with the in-
ference engine to simplify the diagnosis-
engine algorithm and the software that
implements it. In this approach, the value
of each variable is tagged with the set of
assumptions that contribute to its compu-
tation. This set of tags comprises the col-
lective union of the tags of values that
feed into the computation with a tag rep-
resenting the computation itself. A dis-
crepancy arises when two incompatible
values are assigned to the same variable.
In general, whenever the RGDE com-
putes two incompatible values for the
same variable, the union of the two sup-
porting assumption sets is incompatible;
that is, it is a conflict set. Typically in the
course of causal simulation, no discrep-

small body, all within the law of gravity
and the solar radiation pressure. The
same is true for a horizontal hover. A
PatchPoint is an LTool class that denotes
a space-time event with some extra infor-
mation for differential correction, includ-
ing a set of constraints to be satisfied by T-
LDC. Given a set of PatchPoints, each
with its own constraint, the T-LDC differ-
entially corrects the entire trajectory by
connecting each trajectory leg joined by
PatchPoints while satisfying all specified
constraints at the same time.

Vertical and horizontal hover both
are needed to minimize delta-v spent

for station keeping. A Python I/F to
NPOPT has been written to be used
from an LTool script. In vertical hover-
ing, the spacecraft stays along the line
joining the Sun and a small body. An
instantaneous delta-v toward the anti-
Sun direction is applied at the closest
approach to the small body for station
keeping. For example, the spacecraft
hovers between the minimum range (2
km) point and the maximum range
(2.5 km) point from the asteroid
1989ML. Horizontal hovering buys
more time for a spacecraft to recover if,
for any reason, a planned thrust fails,

by returning almost to the initial posi-
tion after some time later via a near el-
liptical orbit around the small body.
The mapping or staging orbit may be
similarly generated using T-LDC with a
set of constraints. Some delta-v tables
are generated for several different as-
teroid masses.

This work was done by Min-Kun J.
Chung of Caltech for NASA’s Jet Propulsion
Laboratory. 

This software is available for commercial li-
censing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-44452. 




