NASA/TM-2009-215641

Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

Joseph P. Veres Glenn Research Center, Cleveland, Ohio

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to *help@* sti.nasa.gov
- Fax your question to the NASA STI Help Desk at 443–757–5803
- Telephone the NASA STI Help Desk at 443–757–5802
- Write to: NASA Center for AeroSpace Information (CASI) 7115 Standard Drive Hanover, MD 21076–1320

NASA/TM-2009-215641

Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

Joseph P. Veres Glenn Research Center, Cleveland, Ohio

Prepared for the 65th Annual Forum and Technology Display sponsored by the American Helicopter Society Grapevine, Texas, May 27–29, 2009

National Aeronautics and Space Administration

Glenn Research Center Cleveland, Ohio 44135

This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

This report contains preliminary findings, subject to revision as analysis proceeds.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA Center for Aerospace Information 7115 Standard Drive Hanover, MD 21076–1320 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

Joseph P. Veres National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

Summary

A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors' conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

Introduction

A notional study of the Large Civil Tilt Rotorcraft (LCTR) vehicle mission has been done in Reference 1. To meet the LCTR vehicle thrust requirements at the takeoff and cruise conditions, a thermodynamic cycle study of a notional turboshaft engine was performed in Reference 2 with the Numerical Propulsion System Simulator (NPSS) thermodynamic cycle code. The results of the engine system model are illustrated by the schematic diagram in Figure 1. Utilizing the NPSS system model, the compressor flow and pressure ratio requirements to produce a pressure ratio of 31:1 at a corrected airflow rate of 28.4 lbm/sec were determined.

The focus of this study is to perform a conceptual sizing study of the compressor to meet the pressure ratio and flow requirements of the turbine engine for the LCTR vehicle. The conceptual design was done with a mean-line flow methodology and focuses on the compressor flow path and key aerodynamic parameters of the rotor and stage at the design point condition. Off-design performance is also estimated for the 100 percent speed line with the mean-line methodology. The purpose of the conceptual design is to have an initial estimate of the overall compressor that could meet the requirements, and to identify early on any potential technical barriers that will need to be considered during the preliminary and detailed design phases.

Compressor Conceptual Design

The purpose of the compressor conceptual design was to identify potential technical challenges towards meeting the goals. There are several options that can be considered for the shape of the flow path during the conceptual design process of multistage compressors. The constant-tip compressor flow path provides the most work capability in the fewest number of axial stages, but can result in excessively small blade spans in the rear stages. A tapered-tip axial-compressor flow path can generally produce less work per stage because of the reduction of rotor-tip diameter for each subsequent stage, and can result in blades with larger spans in the last stages than a constant-tip diameter flow path. A combination of a multistage axial compressor with a centrifugal compressor in the last stage can provide a more axially compact configuration in comparison to an all-axial compressor, but could have a larger outer diameter due to the impeller and radial diffuser. These conceptual design options for the 31:1 compressor were explored in this study with the use of a mean-line compressor design and analysis code. The mean-line compressor flow analysis and design code from Reference 3 was used in this study. The axial rotor-blade tip speed was limited to no higher than 1500 ft/sec because of anticipated structural limitations, based on historical compressor experience (Refs. 4 and 5), as well as concerns about having excessively high rotor-inlet tip relative Mach number. The diffusion factor as defined by Equation (1) was limited at the design point to be on the order of 0.53.

$$DF = 1 - \frac{W_2}{W_1} + \frac{(R_1 \ C_{U1} - R_2 C_{U2})}{(R_1 + R_2)W_1 \ \sigma}$$
(1)

The diffusion factor is determined from flow and geometric quantities at the rotor leading edge (subscript 1) and trailing edge (subscript 2). The R refers to root-mean-square radius, while C refers to absolute velocity, and W is the relative velocity. The symbol σ is the blade solidity.

As this mean-line code does not generate blade shapes, but only estimates leading and trailing blade angles, the values for the number of blades and blade solidity at the rotor tip were obtained from the energy-efficient engine high-pressure compressor of Reference 6. Each rotor was sized to have an

High-pressure turbine: adiabatic efficiency = 85%, 43% entrance bleed, 57% mid-exit bleed Power turbine: adiabatic efficiency = 85%, no cooling

Nozzle: pressure ratio = 1.05

Figure 1.—The notional turboshaft engine system model from Reference 2 as determined by the Numerical Propulsion System Simulator thermodynamic cycle code, showing the requirements for the compressor to deliver a 31:1 pressure ratio at a flow rate of 28.4 lbm/s.

inlet absolute Mach number on the order of 0.50; however, in the latter stages, this limit was reduced in an effort to keep the blade spans as large as possible. The adiabatic efficiency for all rotors was input into the mean-line flow code as follows: tip: 84, mid: 92, hub: 93. The loss coefficient for the stators of 0.05 as defined by Equation (2) was also an input parameter.

$$\omega = \frac{P_{t4} - P_{t2}}{P_{t2} - P_{S2}} \tag{2}$$

The ω is the pressure-loss parameter through the stator $P_{t4}-P_{t2}$ normalized with rotor-exit total pressure P_{t2} and rotorexit static pressure P_{S2} . The mean-line compressor design analysis method of Reference 3 was used to perform the conceptual designs and analyses. The first conceptual design iteration focused on an all-axial stage design to estimate the overall geometric parameters of the compressor and the aerodynamic parameters for each stage. The aerodynamic parameters for each individual blade row were calculated at the leading edge and trailing edge to determine number of stages that would be required to produce the required pressure ratio. The aerodynamic performance of each rotor blade row was determined, including geometric parameters such as tip and hub radii and blade angles. The absolute flow angle entering each rotor was 0° at the design point operating condition. The work per blade row and the inlet and exit radii were varied, and the required exit blade angles were calculated. The diffusion factor and relative velocity ratios to achieve the prescribed work per blade row were limited to a maximum value to reduce the likelihood of flow separation. An iterative process was used that required variation of key parameters to stay within the limits of maximum diffusion factor per stage. The work split between stages was determined on the basis of the maximum work that could be achieved in a given blade row within the maximum diffusion factor limit. Also monitored during the design process was work coefficient per rotor as defined by Equation (3), where

 ΔH is the enthalpy rise and U_{Tip} is the rotor-inlet tip speed in feet per second.

$$\varphi = \frac{\Delta H}{U_{\text{Tip}}^2} \tag{3}$$

For the off-design analysis a loss model correlated to rotor incidence was used (Ref. 3), as defined by Equation (4).

$$\Delta \eta = 0.0006 \ i^3 - 0.0185 \ i^2 + 0.1699 \ i \ + 0.5187 \tag{4}$$

The incidence *i* at the rotor leading edge is the difference between the relative flow angle and the blade angle at the mean radius. The efficiency reduction at off-design values of rotor incidence is defined by $\Delta \eta$. As the rotor incidence changes at off-design flow rates, the rotor efficiency is determined by applying the loss model to the input value of rotor efficiency.

All-Axial Compressor

The blade tip maximum speed limit was 1500 ft/sec and the rotor-tip diameters were tapered or reduced in each successive stage. The flow rate of 28.4 lbm/sec, the maximum tip speed criteria and the hub-to-tip ratio of 0.36 was used to size the first-stage axial compressor, resulting in a design speed of 27 289 rotations per minute. To meet the overall pressure ratio requirement of 31:1, the flow path and each blade row were designed concurrently in an iterative process using the meanline code. This process determined the pressure ratio that can be achieved in each stage. The number of stages that would be required to meet the overall pressure ratio was determined by an iterative process. The maximum tip speed of 1500 ft/sec was considered to be a structurally acceptable limit, as advanced blade and disk materials could support these speeds. The maximum tip speed limit was also imposed because of concerns about high rotor-inlet tip relative Mach number particularly in the first transonic stage. The taper of the tip flow path was kept at a rate such that the pressure ratio requirements could be met with eight stages without the addition of a ninth stage. Pressure ratios of this magnitude result in high gas temperatures at the compressor exit. The tapered-tip flow path axial-compressor configuration is favorable from a structural perspective, as the latter stages that experience the highest temperatures also operate at reduced tip speeds in comparison to the front-block compressor stages. The hub diameter was allowed to vary to keep the absolute Mach number near 0.50 at the rotor inlet, and within the limit of rotor diffusion factor at the design point. The flow path and the rotor designs were arrived at iteratively while keeping within limits of rotor diffusion factor and rotor-inlet Mach number.

The resulting flow path for the eight-stage axial compressor with tapered-tip diameter flow path is shown in Figure 2. The blade span of the last stage for this design is 0.281 in. at a tip diameter of 11.53 in. The rotor-tip clearance will be on the order of 0.011 in., resulting in the ratio of clearance to span in the first stage of 0.3 percent and the last stage having a clearance-to-span ratio of 4 percent.

Table I shows the results obtained with the mean-line compressor flow analysis and design code for the eight-stage axial compressor with tapered-tip flow path. The pressure ratio per stage tapers off in each subsequent stage, but the work split between the eight stages resulted in a relatively even distribution of power of near 1350 hp per stage, as shown in Table I.

Except for the tip speed and tip relative Mach number, all other rotor parameters in the table are calculated at the rootmean-square diameter. The rotor-inlet root-mean-square radius of each successive rotor increases from 4.72 in. in the first rotor inlet through the first five stages and then gradually becomes constant at 5.71 in. for the last three stages. The first five stages are transonic at the tip. The absolute Mach number at the inlet of each rotor was on the order of 0.50. The relative flow angle at each rotor inlet is on the order of 62° from the axial direction. The rotor exit blade angles are on the order of 40° to 46° for all rotors. The resulting peak overall adiabatic efficiency at 28.4 lbm/sec is 80.3 percent. The power required to drive this compressor is estimated to be 10 781 hp. The flow path coordinates of the rotor tip and hub radial and axial positions are listed in Appendix A. Note that the flow path is based on a mean-line conceptual flow analysis, and may change as the design and analysis progress to higher levels of fidelity. The design point performance for each stage is listed in Appendixes C and D. As a follow on to this study, it is planned to generate preliminary blade shapes with a turbomachinery design code that includes the losses due to tip leakages. Structural conceptual design, material selection, and analyses of the blades and disks is also planned, as the exit temperature of 1568 °R is high, and proper material selection will determine the viability of this compressor.

Figure 2.—Axial compressor conceptual design for an eight-stage compressor (units: inches).

		WITT IN		I LOW II	X I I I			
	1	2	3	4	5	6	7	8
Rotor inlet								
Flow rate, corrected,	28.40	15.65	9.61	6.52	4.59	3.38	2.57	1.99
lbm/sec								
Mach absolute	0.53	0.54	0.47	0.45	0.47	0.44	0.40	0.36
Relative Mach at tip	1.50	1.34	1.19	1.10	1.05	0.98	0.92	0.86
Tip speed (U) , ft/sec	1495	1475	1452	1434	1419	1407	1399	1392
Relative flow angle, deg	62.7	62.9	64.3	63.8	61.7	61.9	62.8	64.0
Blade angle, deg	57.6	56.7	58.4	57.5	55.6	55.4	56.2	57.6
Rotor exit								
Blade angle, deg	40.5	43.5	46.0	44.2	41.0	41.7	42.3	43.8
Absolute flow angle, deg	47.8	48.2	45.7	42.3	41.1	40.8	42.4	43.2
Flow deviation, deg	4.5	4.4	4.0	3.9	4.0	4.0	4.0	4.0
Diffusion factor	0.50	0.55	0.52	0.49	0.50	0.49	0.51	0.51
Relative velocity ratio	1.95	1.85	1.69	1.61	1.55	1.55	1.57	1.57
Exit temperature, °R	657.9	794.0	922.1	1054.0	1184.0	1313.0	1442.0	1568.0
Stage								
Pressure ratio	2.056	1.789	1.587	1.519	1.440	1.387	1.354	1.314
Temperature ratio	1.268	1.207	1.161	1.143	1.123	1.109	1.099	1.087
Efficiency, adiabatic	85.5	87.6	87.2	87.5	87.1	87.3	87.5	87.6
Work coefficient, φ	0.388	0.395	0.385	0.410	0.416	0.423	0.436	0.435
Horsepower	1391	1364	1290	1343	1336	1339	1367	1350

TABLE I.—SUMMARY OF THE EIGHT-STAGE ALL-AXIAL COMPRESSOR WITH TAPERED-TIP FLOW PATH

Figure 3.—Pressure ratio at 100 percent speed.

All-Axial Compressor Off-Design Operation

The mean-line methodology was used to perform an offdesign analysis of this all-axial compressor at the 100 percent speed line. The criteria that were used for predicting surge in the analysis are a maximum value of a diffusion factor of 0.60. The pressure ratio versus flow is shown in Figure 3, while the adiabatic efficiency versus flow rate is shown in Figure 4.

Figure 4.—Adiabatic efficiency at 100 percent speed.

Figure 3 illustrates the steep pressure rise characteristic as the flow is reduced from the design value of 28.4 lbm/sec. The off-design characteristics at a range of part speed operating conditions will be studied in more detail in the future, as it is important to understand the operability of this high-pressure compressor. In addition to the variable inlet guide vanes (IGV), there will likely be a need to have several stator vanes variable as well, to aerodynamically match the stages at part speed operating conditions with acceptable levels of rotor incidence. Since the last stage blade span of 0.281 in. is low in comparison to traditional designs, a steeper tip-taper rate will also be studied in the future in order to increase the span of the last stage, possibly requiring additional axial stages.

Axial-Centrifugal Compressor

The second configuration that was studied focused on an axial-centrifugal compressor, since traditionally, rotary winged aircraft engines typically feature axial-centrifugal compressors. This design utilized a first-stage axial compressor that is close to the first stage of the previous allaxial case shown in Figure 2, but the tip flow-path taper through the subsequent axial stages is even steeper. The design shaft speed is 27 289 rotations per minute. This conceptual design iteration focused on adding one centrifugal stage to the back end of the compressor to take the place of several axial stages. In addition, the taper of the tip flow path was increased to make the rotor blade spans as large as possible. This further reduced the tip clearance-to-span ratio of the axial rotors, as well as their hub-to-tip ratio. This reduction was considered to be particularly important for the centrifugal impeller, as its efficiency can be negatively influenced by a high inlet hub-to-tip ratio. The increased rate of tip flow-path taper through the axial stages accommodates the transition to the centrifugal impeller with a hub-to-tip ratio as low as possible.

As the tapered-tip flow path already provided this transition to the centrifugal impeller, there was no need to use a transition duct after the last axial stage to further reduce the inlet hub-to-tip ratio. This was done in an effort to reduce pressure losses normally experienced in the "goose neck" of traditional axial-centrifugal compressors. The centrifugal compressor can effectively produce enough pressure ratio to take the place of several rear-block axial stages. However, there are limitations on the impeller pressure ratio such as specific speed (Ref. 7), which is a normalized aerodynamic parameter that can be used to estimate the flow and pressure ratio where the centrifugal compressor will operate most efficiently. Specific speed N_S is defined by the following Equation (5).

$$N_{S} = \frac{N\left(Q^{\frac{1}{2}}\right)}{\Delta H^{\frac{3}{4}}} \tag{5}$$

Q is the volumetric flow rate in cubic feet per minute, while ΔH is the enthalpy rise through the rotor, and N is the shaft speed in rotations per minute. The range of centrifugal impeller specific speed that typically has the highest potential level of efficiency is 80 to 90. If the centrifugal is not designed to be in this range of specific speed, the maximum attainable efficiency will be limited. Another limitation of centrifugal compressors is the structural and material limitation of tip speed at high operating temperatures.

A mechanical design study for the LCTR engine has not yet been done, as it is currently only in the study phase. Rotordynamics analyses would be done on the engine system after the complete shaft assembly, including the turbines, bearings, and seals, has been sized. Likely, there will be mechanical and rotordynamics considerations that will influence the evolution of the final compressor flow path. The cross section for the compressor that resulted from this conceptual design is shown in Figure 5.

Figure 5.—Axial-centrifugal compressor conceptual design sizing featuring seven axial stages followed by a centrifugal.

The wall curvature of the flow path leading into the centrifugal stage has been sized to reduce curvature effects on local velocity, which has an effect on the pressure losses encountered in the duct. The flow path coordinates of the rotor tip and hub radial and axial positions are listed in Appendix A. Note that these coordinates are based on a mean-line conceptual flow analysis, and may change as the design and analysis progress to higher levels of fidelity. In addition, subsequent structural analyses may indicate that the limits on maximum tip speed may be different from 1500 ft/sec used in this conceptual design. The design point performance for each stage is listed in Appendixes C and D.

The work split among the seven axial stages was tailored to be as even as possible and within the limits on rotor diffusion factor. The specific speed of the centrifugal compressor stage is 56 and is lower than the level considered to be near the optimum value for maximum efficiency potential. To be closer to what is considered to be the optimum specific speed, more of the work would have to be done by the axial stages, or more stages would be required, and the centrifugal compressor pressure ratio would need to be reduced (lower impeller exit diameter, and/or more back swept blade angle). Another way to increase the specific speed of the centrifugal stage is to have a two-spool compressor, as suggested in Reference 2. The second spool would rotate at a faster speed, allowing more flexibility to optimize the specific speed of the centrifugal stage. The two-spool compressor will be studied in more detail in the future.

Since the tip flow path taper is steeper than the previous allaxial compressor case, the blade spans for the rear block axial stages are larger, culminating with a 0.61 in. blade span of the seventh (last axial) stage rotor. This significant increase in blade span from the previous all-axial case was caused by two factors (1) the reduced rotor-tip diameters resulted in reduced pressure ratio per stage from the previous case and (2) as the rotor-tip diameter was reduced, the annular area in the flow path required a larger span to accommodate the increased volume flow. Even with a 0.62-in. impeller inlet span that was the result of reduced tip flow path through the axial stages, this design produced a high impeller inlet hub-to-tip ratio of 0.85. The centrifugal impeller exit height is 0.280 in., and the exit blade angle has a 20° back sweep from the radial direction. The tip clearance of this impeller will likely vary from inlet to exit. Table II summarizes the key stage-by-stage mean-line performance parameters for the seven-stage axial compressor followed by the centrifugal stage.

A reasonable axial running clearance of this impeller at the exit tip is on the order of 0.005 in., or near 2 percent of the exit span. It will be necessary to maintain tight axial clearances to minimize tip leakages and prevent a reduction in impeller efficiency.

TABLE II.—THE AXIAL-CENTRIFUGAL COMPRESSOR DESIGN POINT STAGE-BY-STAGE

AEROD I NAMIL FERFORMANCE											
	1	2	3	4	5	6	7	8 Centrifugal			
Rotor inlet											
Flow rate, corrected,	28.4	15.81	9.86	6.82	5.05	3.92	3.18	2.65			
lbm/sec											
Mach absolute	0.53	0.50	0.49	0.44	0.41	0.40	0.37	0.29			
Relative Mach at tip	1.50	1.31	1.16	1.03	0.93	0.85	0.78	0.65			
Tip speed (U), ft/sec	1495	1452	1379	1319	1248	1169	1106	1595 (exit)			
Relative flow angle, deg	62.7	63.6	62.0	62.4	61.6	59.7	59.2	60.6			
Blade angle	57.6	57.4	55.7	56.2	55.2	53.2	53.0	54.5			
Rotor exit											
Blade angle, deg	40.1	41.5	42.0	40.5	38.0	36.0	34.0	20.0			
Absolute flow angle, deg	50.1	47.5	44.2	42.5	43.1	40.2	41.1	63.8			
Flow deviation, deg	4.8	4.5	4.2	4.2	4.4	4.2	4.4	18.2			
Diffusion factor	0.43	0.55	0.53	0.52	0.53	0.51	0.52	0.74			
Relative velocity ratio	2.00	1.88	1.77	1.69	1.70	1.65	1.67	1.54			
Exit temperature, °R	654.9	785.7	906.0	1017.	1119.	1212.	1298.	1577.			
			S	Stage							
Pressure ratio	2.031	1.755	1.553	1.431	1.351	1.284	1.241	1.818			
Temperature ratio	1.263	1.200	1.153	1.123	1.101	1.083	1.071	1.215			
Efficiency, adiabatic	85.8	87.5	87.4	87.2	87.3	87.1	86.8	82.8			
Work coefficient, φ	0.379	0.403	0.408	0.418	0.438	0.450	0.470	0.718			
Horsepower	1361	1296	1211	1126	1053	957	897	2935			

The reduced tip radii of each subsequent axial rotor are also good from a structural perspective, since the operating temperatures of each subsequent axial rotor are higher from the previous stage, and a reduced blade tip speed in the latter rotors can result in a more structurally acceptable design. The material selection and structural design of the centrifugal impeller needs careful consideration as its tip speed is 1595 ft/sec at an exit temperature of 1565 °R. The feasibility of this rotor needs to be verified with structural and thermal analyses.

The resulting overall compressor efficiency at 28.4 lb/sec is 79.6 percent adiabatic. The power required to drive it is estimated to be 10 850 hp. The results from Tables I and II are shown in Appendix B as plots comparing the values obtained from the all-axial compressor study and the axial-centrifugal compressor.

As shown in Table II, the diffusion factor of the axial rotors at the design point ranges between 0.43 and 0.55. These values indicate that there is a surge margin available. The centrifugal impeller design point relative velocity ratio from inlet to exit is 1.54. The value of diffusion factor for the centrifugal impeller is higher at the design point (0.74) than the axial rotor diffusion factors, but this is not unexpected as centrifugal impellers are typically more highly loaded than axial blades.

Structural conceptual design, material selection, and analyses of the blades and disks are planned to determine whether this design is feasible, as the exit temperature of 1577 °R and impeller tip speed of 1595 ft/sec may be challenging with current material capabilities. The development of a material that can support these high tip speeds at high temperatures will determine the viability of this compressor.

Axial-Centrifugal Off-Design

The mean-line methodology of Reference 3 was used to perform an off-design analysis of this axial-centrifugal compressor at the 100 percent speed line. The criteria that were used for modeling the onset of surge were a maximum value of rotor diffusion factor of 0.60 for the axial rotors and relative velocity ratio of 1.95. Figure 6 and 7 show the compressor performance along the 100 percent speed line. As the flow rate is reduced to 27.7 lbm/sec, the maximum relative velocity ratio that is experienced in the axial rotors is 1.9 and 1.77 in the centrifugal impeller. Based on the relative velocity criteria, it appears that at the 100 percent speed, stall will be initiated in the axial rotors and not in the centrifugal impeller. However, the diffusion factor limit for the centrifugal compressors at surge needs further validation.

Further analyses of this compressor are planned to determine the variable geometry schedule that will be necessary to operate it with an acceptable surge margin at part speed.

The pressure ratio versus flow rate of the axial-centrifugal compressor is illustrated in Figure 6.

As illustrated in Figure 6, the pressure rise characteristic of this compressor is shallow as the flow is reduced from the

Figure 6.—Pressure ratio on the 100 percent speed line.

Figure 7.—Adiabatic efficiency on 100 percent speed line.

design point value. The adiabatic efficiency versus flow rate is shown in Figure 7. The axial-centrifugal compressor pressure rise characteristic was compared to the all-axial compressor pressure rise characteristic in Figure 8. The axial-centrifugal compressor has less pressure rise as the flow is reduced, than does the all-axial compressor case. The axial-centrifugal compressor appears to have higher flow margin before surge is encountered, in comparison to the all-axial case. The reduced pressure rise to surge of the axial-centrifugal configuration and the additional flow margin are likely due to the centrifugal compressor. Figure 9 illustrates the efficiency characteristics of the all-axial versus the axial-centrifugal compressor. The peak efficiency of both compressors is at a flow rate of 28.3 lbm/sec.

Figure 8.—Comparison of the all-axial to the axialcentrifugal configuration pressure rise characteristics.

Conclusions

A conceptual design study was made on two potential compressors to meet the Large Civil Tilt Rotorcraft (LCTR) engine pressure ratio and flow requirements. An all-axial compressor was sized with a tapered-tip flow path, resulting in the last-stage rotor span of 0.281 in., and a tip-to-span clearance ratio of 4 percent. The hub-to-tip ratio of the last rotor is high at 0.95. Further study of the all-axial configuration is planned to increase the blade span of the last stage by increasing the tip taper and likely requiring additional axial stages. A second compressor was studied, featuring an axial-centrifugal compressor configuration with seven axial stages followed by a centrifugal stage. The centrifugal compressor has a specific speed of 56, which is low even for centrifugals. The impeller inlet also has a high hub-to-tip ratio of 0.85 and an exit height of 0.28 in. The high hub-to-tip ratio and low exit height will require tight control of eccentricity and axial clearance for this compressor configuration to keep rotor-tip leakages at acceptable levels. It is planned to do a conceptual design study of a two-spool compressor in the future that can provide additional flexibility to increase the

Figure 9.—Comparison of the all-axial to the axialcentrifugal configuration efficiency characteristics.

specific speed of the centrifugal stage. The result of this study shows that from an aerodynamic perspective, it may be feasible to meet the requirements of a 31:1 pressure ratio compressor for the LCTR engine with either the all-axial compressor with a tapered-tip flow path, or with an axialcentrifugal compressor featuring seven axial stages, followed by a centrifugal stage. The high rotor-tip speeds of the latter compressor stages operating at temperatures up to 1580 °R will require advanced alloy materials be selected that are typically used to make turbines. The selection of materials for these high-tip-speed rotors operating in a high-temperature environment is a technology that will enable the feasibility of these compressors. Further study is planned with higher fidelity turbomachinery design and flow analysis codes to estimate the compressor efficiencies with clearance effects. Preliminary structural and thermal analyses of the blades and vanes are needed to determine if the required tip speeds from this conceptual design study can be achieved with currently available advanced alloy rotor materials. The mechanical design of the compressor and turbine shafts will also influence the feasibility of the flow paths in this study.

Appendix A.—Compressor Coordinates

The coordinates listed below describe the hub and tip flow path contour for both the eight-stage all-axial compressor and the seven-stage axial-centrifugal compressor. LE is the blade or vane leading edge and TE is the blade or vane trailing edge.

Eight-stage all-axial compressor											
	T	ìip	Hu	ıb							
	Х	R	Х	R							
Rotor 1 LE	0.2218	6.2778	0.0000	2.2474							
Rotor 1 TE	1.7847	6.2778	1.9957	3.8000							
Stator 1 LE	2.1728	6.2634	2.1728	3.9049							
Stator 1 TE	3.4517	6.2120	3.4517	4.3956							
Rotor 2 LE	3.7025	6.2009	3.6033	4.4439							
Rotor 2 TE	4.4893	6.1646	4.5798	4.7246							
Stator 2 LE	4.7238	6.1534	4.7238	4.7615							
Stator 2 TE	5.4735	6.1162	5.4735	4.9363							
Rotor 3 LE	5.6755	6.1059	5.6149	4.9659							
Rotor 3 TE	6.2246	6.0770	6.2972	5.0945							
Stator 3 LE	6.3877	6.0682	6.3877	5.1098							
Stator 3 TE	6.9196	6.0390	6.9196	5.2288							
Rotor 4 LE	7.0800	6.0300	7.0314	5.2503							
Rotor 4 TE	7.5312	6.0080	7.5753	5.3435							
Stator 4 LE	7.6681	6.0001	7.6681	5.3576							
Stator 4 TE	8.0874	5.9756	8.0874	5.4143							
Rotor 5 LE	8.2775	5.9643	8.2373	5.4320							
Rotor 5 TE	8.6236	5.9434	8.6770	5.4674							
Stator 5 LE	8.7729	5.9343	8.7729	5.4744							
Stator 5 TE	9.0998	5.9140	9.0998	5.5051							
Rotor 6 LE	9.2801	5.9146	9.2282	5.5051							
Rotor 6 TE	9.5195	5.9041	9.5425	5.5234							
Stator 6 LE	9.6297	5.8993	9.6297	5.5280							
Stator 6 TE	9.8973	5.8875	9.8973	5.5411							
Rotor 7 LE	10.0574	5.8805	10.0159	5.5464							
Rotor 7 TE	10.2404	5.8725	10.2656	5.5564							
Stator 7 LE	10.3702	5.8668	10.3702	5.5601							
Stator 7 TE	10.6039	5.8565	10.6039	5.5675							
Rotor 8 LE	10.7352	5.8507	10.7071	5.5704							
Rotor 8 TE	10.8959	5.8437	10.9208	5.5755							
Stator 8 LE	11.0220	5.8381	11.0220	5.5776							
Stator 8 TE	11,1900	5.8308	11.1900	5.5804							

	Л	K	Л	К
Rotor 1 LE	0.2218	6.2778	0.0000	2.2474
Rotor 1 TE	1.7858	6.2647	2.0067	3.6718
Stator 1 LE	2.1728	6.2483	2.1728	3.7529
Stator 1 TE	3.4517	6.1508	3.4517	4.1597
Rotor 2 LE	3.7072	6.1313	3.6019	4.1848
Rotor 2 TE	4.4767	6.0112	4.5760	4.4313
Stator 2 LE	4.7146	5.9741	4.7146	4.4598
Stator 2 TE	5.4592	5.8578	5.4592	4.5707
Rotor 3 LE	5.6627	5.8261	5.5970	4.5902
Rotor 3 TE	6.1991	5.7423	6.2887	4.6127
Stator 3 LE	6.3668	5.7161	6.3788	4.6141
Stator 3 TE	6.8933	5.6171	6.8933	4.6103
Rotor 4 LE	7.0470	5.5695	6.9848	4.6075
Rotor 4 TE	7.4863	5.4694	7.5454	4.5781
Stator 4 LE	7.6303	5.4339	7.6303	4.5717
Stator 4 TE	8.0420	5.3223	8.0420	4.5016
Rotor 5 LE	8.2207	5.2718	8.1611	4.4815
Rotor 5 TE	8.5639	5.1714	8.6409	4.3913
Stator 5 LE	8.7134	5.1262	8.7134	4.3791
Stator 5 TE	9.1205	4.9985	9.1205	4.2940
Rotor 6 LE	9.2980	4.9408	9.2135	4.2734
Rotor 6 TE	9.5245	4.8652	9.5654	4.1882
Stator 6 LE	9.6303	4.8291	9.6303	4.1756
Stator 6 TE	9.9066	4.7329	9.9066	4.0952
Rotor 7 LE	10.0604	4.6780	9.9850	4.0714
Rotor 7 TE	10.2467	4.6101	10.2979	3.9663
Stator 7 LE	10.3712	4.5639	10.3712	3.9402
Stator 7 TE	10.6099	4.4735	10.6099	3.8536
Rotor 8 LE	12.0406	4.1509	11.9423	3.5313
Rotor 8 TE	13.3540	6.7000	13.6340	6.7000
Stator 8 LE	13.3722	7.2814	13.6340	7.2814
Stator 8 TE	13.3722	9.4314	13.6340	9.4314

Seven-sta	ge axial-1 centrifugal	l compressor
	Tip	Hub

Appendix B.—Plots of Compressor Parameters at the Design Point

Figures 10 to 23 present plots comparing the values obtained from the all-axial compressor study and the axial-centrifugal compressor (see Tables I and II in text).

Figure 10.—Radial tip clearance and span comparison for the rotor leading edge.

Figure 11.—Rotor peripheral tip speed versus stage.

Figure 12.—Compressor stage exit temperature versus tip speed, compared to estimated maximum allowable for forged Inconel 718.

Figure 13.—Rotor inlet tip relative Mach number versus stage.

Figure 14.—Rotor inlet blade angle versus stage.

Figure 15.—Rotor exit blade angle versus stage.

Figure 16.—Rotor diffusion factor versus stage.

Figure 17.—Rotor relative velocity ration versus stage.

Figure 19.—Rotor total-to-total pressure ratio per stage.

Figure 20.—Rotor total-to-total temperature ratio per stage.

Figure 21.—Stage head rise coefficient.

Figure 22.—Horsepower per stage.

Figure 23.—Total temperature rise per stage.

Appendix C.—All-Axial Compressor Data

Below are the all-axial compressor mean-line flow analysis results at the design point operating condition.

LCTR 8 Axial Compressor Stage 100% Speed

	COMPRESSO	R INLET CO	NDITIONS	, STAGE		1		
RESET =	0.000 E	LEED = 0.	000 DP	Inc 5.00	0 Kg/sec	= 12.9042	25	
w	act R	PM act	Pt		rt.	'POTS	POTH	AeroBl
	28.39	27289.000	14.	613	518.670	1.100	0.8	00 0.980
W	cor F	PM cor	GAMM	A	Ср	'R	NBLAD	THK
	28.39	27289.789	1.4	402	0.249	53.349	28.0	00 0.030
R	OTOR LEAD	ING EDGE C	ONDITION	S. STAGE		1		
	R1	Stator	Alfa	C1	CU1	- Cm1	Abs MACH	
TIP	6.28	0.00	-0.02	636.07	-0.22	636.07	0.59	
MEAN	4.72	0.00	-0.02	578.24	-0.20	578.24	0.53	
HUB	2.25	0.00	-0.02	462.60	-0.16	462.60	0.42	
	BeteRla	BetaBla	de Incid	771	พ1	De1	Te1	Pel Mach
TTP	66.96	62.00	4.96	1495.53	1625.38	11.58	485.21	1.50
MEAN	62.76	57.66	5.10	1123.15	1263.44	12.05	490.74	1.16
HUB	49.17	44.20	4.97	535.10	707.46	12.95	500.97	0.64
								••••
	ROTOR EXI	T CONDITIO	NS, STAG	E	1			
В2	axial	THK	AeroBl					
0.	30	0.030	0.950					
			a a			M1-0		
-	R2	C2			A02	Macn2		
TIP	0.28	890.20	702.10	54/.2/	1105 30	0.73		
MEAN UTTD	3 90	0/4.11 1092 43	04/.99	505.07	1143 21	0.74		
HOB	5.00	1002.45	029.3/	095.50	1143.21	0.95		
	U 2	W2	Wu2	Mach R	el2 Ws1/W	₹2		
TIP	1495.53	963.86	793.43	0.79				
MEAN	1236.03	830.64	588.04	0.70	1.96			
HUB	904.94	699.65	75.57	0.61				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	33.52	2.29	23.55	687.41	1.33	621.24	0.83	
MEAN	29.62	2.03	20.63	647.37	1.25	583.59	0.90	
HUB	28.63	1.96	16.06	639.26	1.23	541.65	0.91	
	X1 f =2	Bota BLO	Bota BL	ADE Dorrig	at dia	v niff v	at Colidit	
TTD	52 06	55 40	51 50	3 9N	10 911D	0 57	1 32	Y
MEAN	47 84	45 07	40 50	4 57	0.95	0.57	1 75	
HUB	50.01	6.20	1.00	5.20	0.93	0.21	3.68	
		0011D T # T 0110			-			
ST	AGE EXIT	CONDITIONS	, STAGE		T			
DIF	F LOSS	Effic	Pdi	sch	PR	TR	Ns	Ns nondim
	0.05	0.855	30.	065	2.057	1.269	267.7	91 2.076
Del En	thalpy	Del H/U^2	GHP	Rev	nolds#			
867	478.44	0.388	1391.	703 1191	539.375			

	COMPRESSO	R INLET CO	NDITIONS,	, STAGE		2		
w	act F	PM act	Pt	•	F t	' POTS	POTH	AeroBl
	28.39	27289.000	30.0	065	658.012	1.100	0.9	00 0.980
w	cor F	PM cor	GAMMZ	A	Cro	'R	NBLAD	тнк
	15.63	24228.629	1.4	101	0.249	53.349	38.0	00 0.030
_								
R	COTOR LEAL	DING EDGE C	ONDITION	5, STAGE		2		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	6.20	0.00	-0.02	720.54	-0.25	720.54	0.59	
MEAN	5.39	0.00	-0.02	655.04	-0.23	655.04	0.54	
HUB	4.44	0.00	-0.02	589.54	-0.20	589.54	0.48	
	BetaFlo	BetaBla	de Incid	U 1	W1	Ps1	Ts1	Rel Mach
TIP	63.97	57.82	6.15	1475.29	1642.07	23.76	615.16	1.34
MEAN	62.96	56.70	6.26	1283.25	1440.97	24.73	622.24	1.18
HUB	60.85	54.60	6.25	1056.87	1210.36	25.73	629.32	0.98
	ROTOR EXI	T CONDITIO	NS, STAGI	C	2			
В2	axial	тнк	AeroBl					
0.	20	0.030	0.950					
	R2	C2	Cu2	Cm2	A02	Mach2		
TIP	0.10	885.95	663.11	587.53	1341./1	0.66		
MEAN	5.49	881.34	657.35	587.06	1325.89	0.66		
HUB	4.72	900.82	641.19	632.74	1303.07	0.69		
	U 2	₩2	Wu2	Mach R	el2 Ws1/1	W2		
TIP	1466.71	995.48	803.60	0.74				
MEAN	1306.45	875.19	649.09	0.66	1.85			
HUB	1123.55	795.64	482.36	0.61				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	56.83	1.89	42.40	813.88	1.24	748.46	0.84	
MEAN	55.75	1.85	41.44	795.64	1.21	730.90	0.92	
HUB	51.09	1.70	37.11	773.46	1.18	705.83	0.93	
	316 -2	Bota BLO	Boto BLI		-+ 01im	w niff w	at Golidit	
ттD	A1182	E2 93		ADE Devi			1 27	Y
MEAN	49 23	47 97	43 50	4 37	0.93	0.55	1 46	
UITO	45 39	27 22	32 50	4 92	0.93	0.55	1 77	
нов	10.30	37.32	32.30	7.02	0.93	0.50	1.//	
ST	AGE EXIT	CONDITIONS	, STAGE		2			
DIF	F LOSS	Effic	Pdis	sch	PR	TR	Ns	Ns nondim
	0.05	0.876	53.8	345	1.791	1.207	213.5	12 1.655
Del En	thalpy	Del H/U^2	GHP	Rev	nolds#			
851	000.19	0.396	1365.2	266 794	049.563			

	COMPRESSO	OR INLET CO	NDITIONS	, STAGE		3		
w	act I	RPM act	Pt		Ft	' POTS	POTH	AeroBl
	28.39	27289.000	53.0	845	794.328	1.100	0.90	0 0.980
w	cor I	RPM cor	GAMM	A	Ср	'R	NBLAD	THK
	9.59	22051.896	1.:	398	0.251	53.349	50.00	0 0.030
R	OTOR LEAI	DING EDGE C	ONDITION	S, STAGE		3		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	6.10	0.00	-0.02	699.40	-0.24	699.40	0.52	
MEAN	5.56	0.00	-0.02	635.82	-0.22	635.82	0.47	
HUB	4.96	0.00	-0.02	572.24	-0.20	572.24	0.42	
	BetaFlo) BetaBla	de Incid	U 1	W1	Ps1	Tsl R	el Mach
TIP	64.29	58.20	6.09	1452.66	1612.48	44.87	754.12	1.19
MEAN	64.35	58.40	5.95	1323.90	1468.86	46.28	760.77	1.09
HUB	64.16	58.40	5.76	1181.18	1312.67	47.71	767.41	0.96
	ROTOR EXI	T CONDITIO	NS, STAGI	E	3			
B2	arial	тнк	AeroBl					
0.	10	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	6.07	873.06	624.63	609.97	1449.37	0.60		
MEAN	5.60	861.81	618.16	600.50	1440.31	0.60		
HUB	5.09	848.71	568.87	629.84	1423.84	0.60		
	112	W2	10112	Mach P	al2 We1/1	W7		
ттр	1445 76	1022 80	921 12	0 71		n2		
MFAN	1333 01	934 29	715 75	0.71	1 69			
HUB	1211.78	900.01	642.91	0.63	1.05			
	Pt2	PR	PSZ	Tt2	TR	TS2	EII2	
TIP	88.57	1.64	69.33	938.26	1.18	875.00	0.84	
MEAN	88.57	1.64	69.55	925.75	1.17	864.11	0.92	
HOR	82.37	1.53	64./9	904.19	1.14	844.42	0.93	
	Alfa	2 Beta FLO	Beta BL	ADE Devia	at Slip	F. Diff Fo	t Solidity	
TIP	45.68	53.39	49.70	3.69	0.93	0.52	1.22	
MEAN	45.83	50.00	46.00	4.00	0.93	0.52	1.34	
HUB	42.09	45.59	41.50	4.09	0.93	0.46	1.51	
ST	AGE EXIT	CONDITIONS	, STAGE		3			
DIF	F LOSS	Effic	Pdia	sch	PR	TR	Ns	Ns nondim
	0.05	0.873	85.	573	1.589	1.162	179.75	4 1.393
Del En	thalpy	Del H/U^2	GHP	Revi	nolds#			
806	058.38	0.386	1293.3	166 650	593.000			

N act 28.39 RPM act 27289.000 Pt 85.573 Tt 922.735 'POTS 1.100 POTE 0.900 AeroBl 0.900 W cor 6.50 20460.078 GAMMA 1.355 Cp 0.253 'R 53.349 NBLAD 0.000 TEK 0.000 RCOR LEADING EDGE CONDITIONS, STAGE 4 TIP 6.02 0.00 -0.02 592.91 -0.23 658.76 0.45 MEAN 5.65 0.00 -0.02 592.91 -0.23 658.76 0.45 MEAN 5.24 0.00 -0.02 592.91 0.40 -4 TIP 63.20 57.00 6.61 1344.95 107.43 72.33 879.86 1.10 MEAN 63.21 57.00 6.61 1344.94 1382.69 76.53 894.04 0.94 MEAN 63.20 57.66 64.1 1344.94 1382.69 76.53 894.04 0.94 MEAN 5.68 902.12 610.45 664.20 1536.64 0.60 0.60 MEAN 5.68 902.12 Chu A 664.20 1536.54 0.60 0.50 <t< th=""><th></th><th>COMPRESSO</th><th>R INLET CO</th><th>NDITIONS</th><th>, STAGE</th><th></th><th>4</th><th></th><th></th></t<>		COMPRESSO	R INLET CO	NDITIONS	, STAGE		4		
28.39 27285.000 85.573 922.735 1.100 0.900 0.980 W cor RPM cor GAMMA Cp 'R NBLAD THK 6.50 20460.078 1.395 0.253 53.349 60.000 0.030 ROTOR LEADING EDGE CONDITIONS, STAGE 4 TIP 6.02 0.00 -0.02 724.66 0.50 MEAN 5.65 0.00 -0.02 592.91 -0.23 658.78 0.45 HUB 5.24 0.00 -0.02 592.91 -0.20 592.91 0.40 BETAPIO BETABLAGE Incid UI W1 Ps1 Ts1 Rel Mach TIP 63.20 57.00 6.21 1434.56 1607.43 72.33 879.86 1.10 MEAN 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 ROTOR EXIT CONDITIONS, STAGE 4 10.10 0.030 0.950 153.20 57.53 894.04 0.94 TIP 6.20 1246.21 1536.64 0.60 160	W	act R	PM act	Pt		Tt	' POTS	POTH	AeroBl
N COT RPM COT GAMMA Cp 'R NBLAD THK ROTOR LEADING EDGE CONDITIONS, STACE 4 TIP 6.02 0.000 -0.02 724.66 -0.25 724.66 0.50 MEAN 5.65 0.000 -0.02 552.91 -0.20 552.91 0.40 MEAN 5.24 0.00 -0.02 552.91 -0.20 552.91 0.40 BetzFlo BetzBlade Incid U WI Ps1 TS Rei Mach MEAN 63.20 57.00 6.41 1344.94 1497.83 74.41 886.96 1.03 MEAN 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 MEAN 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 MEAN 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 MEAN 63.61 58.00 0.61 1536.64 0.65 1.62 1536.64 0.65 <td< td=""><td></td><td>28.39</td><td>27289.000</td><td>85.</td><td>573</td><td>922.735</td><td>1.100</td><td>0.90</td><td>0.980</td></td<>		28.39	27289.000	85.	573	922.735	1.100	0.90	0.980
W COT RPM COT GAMMA Cp 'R MELAD THK 6.50 20460.078 1.395 0.253 53.349 60.000 0.030 ROTOR LEADING EDGE CONDITIONS, STAGE 4 R1 Stator Alfa C1 CU1 Cml Abs MACH TIP 6.02 0.00 -0.02 724.66 -0.25 724.66 0.50 MEAN 5.65 0.00 -0.02 658.78 -0.45 1.40 HUB 5.24 0.00 -0.02 522.91 -0.20 552.91 0.40 BetaFlo BetaBlade Incid U1 W1 Ps1 Ts1 Rel Mach TIP 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 HUB 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 ROTOR EXIT CONDITIONS, STAGE 4 122 610.45 667.30 1.64 0.55 <tr< td=""><td></td><td>_</td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td></tr<>		_			_	_			
Constructions and the set of the s	W	cor R	PM COT	GAMM	A	Ср	'R	NBLAD	THK
A R1 Stator Alfa C1 CU1 Cal Abs MACH TFP 5.65 0.00 -0.02 658.78 -0.23 658.78 0.45 TED 5.24 0.00 -0.02 659.78 -0.23 658.78 0.45 TFP 63.20 57.00 6.21 1434.55 1607.43 72.33 879.86 1.10 MEAN 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 MEAN 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 MEAN 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 MEAN 5.63 90.02 724.66 153.04 0.94 0.94 MEAN 56.00 6.61 1248.91 1382.69 76.53 894.04 0.94 MEAN 55.23 724.20 CA2 Mach2 0.50 1.52 0.50 1.53 0.60 TP 6.00 <td></td> <td>6.50</td> <td>20460.078</td> <td>1.,</td> <td>395</td> <td>0.253</td> <td>53.349</td> <td>60.00</td> <td>0.030</td>		6.50	20460.078	1.,	395	0.253	53.349	60.00	0.030
R1 Stator Alfa C1 CU1 Cm1 Abs MACH TTP 6.02 0.00 -0.02 724.66 0.53 0.45 HUB 5.65 0.00 -0.02 592.91 -0.23 658.78 0.45 TTP 63.20 57.00 6.20 1434.56 1607.43 72.33 879.66 1.10 MEAN 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 MEAN 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 NCOR EXIT CONDITIONS, STAGE 4	R	OTOR LEAD	ING EDGE C	ONDITION	S, STAGE		4		
TIP 6.02 0.00 -0.02 724.66 -0.23 658.78 0.45 HUB 5.65 0.00 -0.02 658.78 -0.20 552.91 0.40 BetaFlo BetaBlade Incid UI WI Psi Tsi Rel Mach TIP 63.20 57.00 6.20 1434.56 1607.43 72.33 879.86 1.00 MEAN 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 HUB 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 ROTOR EXIT CONDITIONS, STAGE 4 4 4 4 4 4 4 10 0.030 0.950 - 4 4 4 4 4 TIP 6.00 926.43 632.40 677.01 1543.43 0.60 4 5 HUB 5.34 916.89 621.65 673.98 1530.54 0.60 5 TIP 1429.32 1045.68 756.93 <t< td=""><td></td><td>R1</td><td>Stator</td><td>Alfa</td><td>C1</td><td>CU1</td><td>Cm1</td><td>Abs MACH</td><td></td></t<>		R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
MERN 5.65 0.00 -0.02 552.98 -0.20 552.98 0.45 HUB 5.24 0.00 -0.02 552.98 -0.20 552.98 0.40 BetaFlo BetaBlade Incid U1 W1 Ps1 Ts1 Rel Mach TIP 63.20 57.00 6.41 1344.54 1607.43 72.33 879.86 1.10 MEAN 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 HUB 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 NOTOR EXIT CONDITIONS, STAGE 4 4 4 4 4 4 4 B2 axial THK AeroB1 0.10 0.030 0.950 5 4 4 HUB 5.68 902.12 610.45 664.20 1536.64 0.59 4 4 4 HUB 5.68 902.12 665 1.62 4 4 4 4 4 4 4 4 <td< td=""><td>TIP</td><td>6.02</td><td>0.00</td><td>-0.02</td><td>724.66</td><td>-0.25</td><td>724.66</td><td>0.50</td><td></td></td<>	TIP	6.02	0.00	-0.02	724.66	-0.25	724.66	0.50	
HUB 5.24 0.00 -0.02 592.91 -0.20 592.91 0.40 TIP 63.20 57.00 6.20 1434.56 1607.43 72.33 879.86 1.10 MEAN 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 HUB 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 ROTOR EXIT CONDITIONS, STACE 4 B2 axial THK AerOBI 0.10 0.030 0.950 Nono 926.43 632.40 677.01 1543.43 0.60 MEAN 5.68 902.12 610.45 664.20 1530.54 0.60 HUB 1429.32 1045.68 796.93 0.68 1.62 1.62 HUB 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14<	MEAN	5.65	0.00	-0.02	658.78	-0.23	658.78	0.45	
Beta Plo Beta Blade Incid U1 W1 Ps1 Ts1 Rel Mach TIP 63.20 57.50 6.41 1344.56 1607.43 72.33 879.86 1.10 HUB 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 RUD GA.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 ROTOR EXIT CONDITIONS, STAGE 4 4 4 4 4 4 4 B2 axial THK AeroBl 0.950 5 <	HUB	5.24	0.00	-0.02	592.91	-0.20	592.91	0.40	
TIP 63.20 57.00 6.20 1434.56 1607.43 72.33 879.86 1.10 MEAN 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 HUB 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 ROTOR EXIT CONDITIONS, STAGE 4 B2 axial THK AeroBl 0.10 0.030 0.950 TIP 6.00 926.43 632.40 677.01 1543.43 0.60 MEAN 5.68 902.12 610.45 664.20 1536.64 0.59 HUB 5.34 916.89 621.65 673.98 1530.54 0.60 U2 W2 Wu2 Mach Rel2 Ws1/W2 119 132.17 1.04 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 1.52 1.53 9.44 1.93 HUB 130.41 1.52 102.40 1047.67 1.14 986.21 0.93 HUB <td< td=""><td></td><td>BetaFlo</td><td>BetaBla</td><td>de Incid</td><td>U1</td><td>W1</td><td>Ps1</td><td>Tsl F</td><td>Rel Mach</td></td<>		BetaFlo	BetaBla	de Incid	U 1	W1	Ps1	Tsl F	Rel Mach
MEAN 63.91 57.50 6.41 1344.94 1497.83 74.41 886.96 1.03 HUB 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 ROTOR EXIT CONDITIONS, STAGE 4 B2 axial THK AeroBl 0.10 0.030 0.950 REAN 5.68 902.12 610.45 664.20 1530.54 0.60 MEAN 5.68 902.12 610.45 664.20 1530.54 0.60 UZ W2 Wu2 Mach Rel2 Ws1/W2 TIP 1429.32 1045.68 796.93 0.68 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 111 132.17 1.54 103.67 1.65.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94	TIP	63.20	57.00	6.20	1434.56	1607.43	72.33	879.86	1.10
HUB 64.61 58.00 6.61 1248.91 1382.69 76.53 894.04 0.94 ROTOR EXIT CONDITIONS, STAGE 4 B2 axial THK AeroBl 0.10 0.030 0.950 REA C2 Cu2 Cm2 Ao2 Mach2 TIP 6.00 926.43 632.40 677.01 1543.43 0.60 MEAN 5.68 902.12 610.45 664.20 1536.64 0.59 HUB 5.34 916.89 621.65 673.98 1530.54 0.60 U2 W2 Wu2 Mach Rel2 Ws1/W2 HUB 132.12 1045.68 716.53 9.68 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 1.15 994.92 0.84 MEAN 132.17 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0	MEAN	63.91	57.50	6.41	1344.94	1497.83	74.41	886.96	1.03
A A B2 ATEK AeroB1 0.10 0.030 0.950 TIP C2 C2 C12 Cm2 Mach MEAN S.68 902.12 C10.2 Cm2 Mach TIP S.00 926.43 632.40 677.01 1543.43 0.60 MEAN S.68 902.12 C10.65 664.20 1530.54 0.60 TIP 6.08 902.12 Mach Rel2 Ws1/W2 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 132.17 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 MEAN 42.69 43.94 39.70 4.24 0.93 0.51 1.19 MEAN 42.69 43.94 39.70 4.24 0.93 0.51	HUB	64.61	58.00	6.61	1248.91	1382.69	76.53	894.04	0.94
B2 axial 0.10 THK 0.030 AeroBl 0.950 TIP MEAN 6.00 926.43 632.40 677.01 1543.43 0.60 MEAN 5.68 902.12 610.45 664.20 1536.64 0.59 HUB 5.34 916.89 621.65 673.98 1530.54 0.60 V2 W2 Mach Rel2 Ws1/W2 TIP 1429.32 1045.68 796.93 0.65 1.62 HUB 1371.10 935.97 649.46 0.61 153 Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.17 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.17 HUB 42.69 43.94 39.70 4.24 0.93 <td< td=""><td></td><td>ROTOR EXI</td><td>T CONDITIO</td><td>NS, STAGI</td><td>C</td><td>4</td><td></td><td></td><td></td></td<>		ROTOR EXI	T CONDITIO	NS, STAGI	C	4			
B2 axial THK AeroB1 0.10 0.030 0.950 R2 C2 Cu2 Cm2 Ao2 Mach2 TIP 6.00 926.43 632.40 677.01 1543.43 0.60 MEAN 5.68 902.12 610.45 664.20 1536.64 0.59 HUB 5.34 916.89 621.65 673.98 1530.54 0.60 U2 W2 Wu2 Mach Rel2 Ws1/W2 TIP 1429.32 1045.68 796.93 0.68 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.767 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 MEAN </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>				_					
0.10 0.030 0.950 R2 C2 Cu2 Cm2 Ao2 Mach2 TIP 6.00 926.43 632.40 677.01 1543.43 0.60 MEAN 5.68 902.12 610.45 664.20 1536.64 0.59 HUB 5.34 916.89 621.65 673.98 1530.54 0.60 U2 W2 Wu2 Mach Rel2 Ws1/W2 TIP 1429.32 1045.68 796.93 0.68 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150	B2	axial	THK	AeroBl					
R2 C2 Cu2 Cm2 Ao2 Mach2 TIP 6.00 926.43 632.40 677.01 1543.43 0.60 MEAN 5.68 902.12 610.45 664.20 1536.64 0.59 HUB 5.34 916.89 621.65 673.98 1530.54 0.60 U2 W2 Wu2 Mach Rel2 Ws1/W2 TIP 1429.32 1045.68 796.93 0.68 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 103.67 1.065.67 1.15 994.92 0.84 MEAN 132.17 1.54 103.67 1065.67 1.14 978.38 0.94 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 HUB </td <td>0.</td> <td>10</td> <td>0.030</td> <td>0.950</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.	10	0.030	0.950					
TIP 6.00 926.43 632.40 677.01 1543.43 0.60 MEAN 5.68 902.12 610.45 664.20 1536.64 0.59 HUB 5.34 916.89 621.65 673.98 1530.54 0.60 U2 W2 Wu2 Mach Rel2 Ws1/W2 TIP 1429.32 1045.68 796.93 0.68 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 0.93 Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity 119 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.4		R2	C2	Cu2	Cm2	Ao2	Mach2		
MEAN HUB 5.68 5.34 902.12 916.89 610.45 621.65 664.20 673.98 1530.54 0.59 0.60 U2 W2 Wu2 Mach Rel2 Ws1/W2 TIP 1429.32 1045.68 796.93 0.68 0.65 1.62 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.49 1.37 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE Effic	TIP	6.00	926.43	632.40	677.01	1543.43	0.60		
HUB 5.34 916.89 621.65 673.98 1530.54 0.60 TIP 1429.32 1045.68 796.93 0.68 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61	MEAN	5.68	902.12	610.45	664.20	1536.64	0.59		
U2 W2 Wu2 Mach Rel2 Ws1/W2 TIP 1429.32 1045.68 796.93 0.68 MEENN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 1.62 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEENN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 HUB 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEEAN 42.59 48.17 44.24 3.93 0.93 0.49 1.37 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37	HUB	5.34	916.89	621.65	673.98	1530.54	0.60		
U2 W2 WU2 MACH Re12 WB1/W2 TIP 1429.32 1045.68 796.93 0.68 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy						10 /			
TIP 1429.32 1045.08 796.93 0.08 MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 1.150		02	W2	Wu2	Mach R	el2 WS1/	W2		
MEAN 1352.53 995.92 742.08 0.65 1.62 HUB 1271.10 935.97 649.46 0.61 Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521	TIP	1429.32	1045.68	796.93	0.68	1 60			
NOB 12/1.10 935.97 649.46 0.61 Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 8	MEAN	1352.53	995.92 035 07	742.08	0.65	1.02			
Pt2 PR Ps2 Tt2 TR Ts2 Eff2 TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 1.48.141 567954.750 1.444 1.48.35	HUB	12/1.10	933.97	043.40	0.01				
TIP 132.14 1.54 103.67 1065.67 1.15 994.92 0.84 MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy 0el Enthalpy Del_H/U^22 GHP Reynolds# 840325.50 0.411 1348.141 567954.750		Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
MEAN 132.17 1.54 104.75 1053.29 1.14 986.21 0.93 HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 840325.50 0.411 1348.141 567954.750	TIP	132.14	1.54	103.67	1065.67	1.15	994.92	0.84	
HUB 130.41 1.52 102.40 1047.67 1.14 978.38 0.94 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 4 4 1.521 1.144 148.354 1.150 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 840325.50 0.411 1348.141 567954.750	MEAN	132.17	1.54	104.75	1053.29	1.14	986.21	0.93	
Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^22 GHP Reynolds# 840325.50 0.411 1348.141 567954.750	HUB	130.41	1.52	102.40	1047.67	1.14	978.38	0.94	
TIP 43.05 49.65 45.80 3.85 0.93 0.51 1.19 MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 840325.50 0.411 1348.141 567954.750		Alfa2	Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff F	at Solidity	,
MEAN 42.59 48.17 44.24 3.93 0.93 0.50 1.27 HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 840325.50 0.411 1348.141 567954.750	TIP	43.05	49.65	45.80	3.85	0.93	0.51	1.19	
HUB 42.69 43.94 39.70 4.24 0.93 0.49 1.37 STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 840325.50 0.411 1348.141 567954.750	MEAN	42.59	48.17	44.24	3.93	0.93	0.50	1.27	
STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 840325.50 0.411 1348.141 567954.750	HUB	42.69	43.94	39.70	4.24	0.93	0.49	1.37	
STAGE EXIT CONDITIONS, STAGE 4 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 840325.50 0.411 1348.141 567954.750									
DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U^2 GHP Reynolds# 567954.750 50 0.411 1348.141 567954.750	ST	AGE EXIT	CONDITIONS	, STAGE		4			
0.05 0.876 130.176 1.521 1.144 148.354 1.150 Del Enthalpy Del_H/U ² 2 GHP Reynolds# 840325.50 0.411 1348.141 567954.750	DIF	F LOSS	Effic	Pdi	sch	PR	TR	Ns	Ns nondim
Del Enthalpy Del_H/U [^] 2 GHP Reynolds# 840325.50 0.411 1348.141 567954.750		0.05	0.876	130.3	176	1.521	1.144	148.35	54 1.150
840325.50 0.411 1348.141 567954.750	Del En	thalry	Del H/11^2	GHD	Rein	nolde#			
	840	325.50	0.411	1348.3	141 567	954.750			

	COMPRESSO	R INLET CO	NDITIONS	, STAGE		5		
W	act R	PM act	Pt		Tt	' POTS	POTH	AeroBl
	28.39	27289.000	130.3	176 10	055.544	1.100	0.90	0 0.980
W		PM cor	GAMM	Δ	Cn.	'R	NBLAD	тнк
	4.57	19129.678	1.3	389	0.256	53.349	70.00	0 0.030
R	OTOR LEAD	ING EDGE C	ONDITION:	S, STAGE		5		
	R1	Stator	Alfa	C1	CU1	Cml	Abs MACH	
TIP	5.96	0.00	-0.02	798.75	-0.28	798.75	0.51	
MEAN	5.70	0.00	-0.02	726.14	-0.25	726.14	0.47	
HUB	5.43	0.00	-0.02	653.52	-0.23	653.52	0.42	
	BetaFlo	BetaBla	de Incid	U1	W1	Ps1	Tsl R	el Mach
TIP	60.63	54.10	6.53	1418.85	1628.47	108.87	1003.97	1.05
MEAN	61.85	55.60	6.25	1356.98	1539.27	112.20	1012.50	0.99
HUB	63.18	56.80	6.38	1292.16	1448.22	115.61	1021.01	0.92
	ROTOR EXI	T CONDITIO	NS, STAGI	2	5			
B2	axial	тнк	AeroBl					
0.	05	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.94	983.70	648.18	739.95	1634.40	0.60		
MEAN	5.70	961.63	635.91	721.35	1630.91	0.59		
HUB	5.46	931.93	562.69	742.88	1619.14	0.58		
	U2	W2	Wu2	Mach R	el2 Ws1/V	W2		
ΨTP	1414.08	1064.96	765.90	0.65				
MEAN	1358.52	1021.04	722.61	0.63	1.56			
HUB	1300.59	1047.07	737.90	0.65				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	191.71	1.47	150.33	1198.90	1.14	1119.92	0.84	
MEAN	193.99	1.49	153.56	1190.66	1.13	1115.18	0.92	
HUB	183.68	1.41	146.96	1170.00	1.11	1099.12	0.93	
	Alfa2	Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff Fo	ct Solidity	
TIP	41.22	45.99	42.00	3.99	0.93	0.51	1.21	
MEAN	41.40	45.05	41.00	4.05	0.93	0.50	1.27	
HUB	37.14	44.81	41.00	3.81	0.93	0.42	1.33	
ST	AGE EXIT	CONDITIONS	, STAGE		5			
DIF	F LOSS	Effic	Pdie	sch	PR	TR	Ns	Ns nondim
	0.05	0.872	187.0	818	1.443	1.124	129.36	1 1.003
Del En	thalpy	Del H/U^2	GHP	Rev	nolds#			
837	881.94	0.419	1344.3	221 5174	435.875			

	COMPRESS	OR INLET CO	NDITIONS	, STAGE		6		
w	act 1	RPM act	Pt	•	F t	' POTS	POTH	AeroBl
	28.39	27289.000	187.8	318 1	186.523	1.100	0.90	0 0.980
w	cor 1	RPM cor	GAMM	A	Ср	'R	NBLAD	THK
	3.36	18042.957	1.3	383	0.259	53.349	80.00	0 0.030
R	OTOR LEAD	DING EDGE C	ONDITION	S, STAGE		6		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	5.91	0.00	-0.02	793.95	-0.27	793.95	0.48	
MEAN	5.71	0.00	-0.02	721.77	-0.25	721.77	0.44	
HUB	5.50	0.00	-0.02	649.60	-0.22	649.60	0.39	
	BetaFle	o BetaBla	de Incid	U1	W1	Ps1	Tsl R	el Mach
TIP	60.57	53.90	6.67	1407.11	1615.88	160.59	1136.17	0.98
MEAN	62.03	55.43	6.60	1359.21	1539.18	164.89	1144.50	0.93
HUB	63.62	57.10	6.52	1309.56	1462.03	169.25	1152.81	0.88
	ROTOR EX	IT CONDITIO	NS, STAG	E	6			
B2	axial	тнк	AeroBl					
0.	05	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.90	981.22	654.68	730.87	1723.20	0.57		
MEAN	5.71	951.16	626.87	715.37	1719.28	0.55		
HUB	5.52	926.24	571.24	729.11	1711.00	0.54		
	112	W2	Wu 2	Mach R	-12 Ws1/1	W2		
ΨTP	1404 58	1047 15	749 90	0 61				
MEAN	1360.01	1024.33	733.14	0.60	1.56			
HUB	1313.92	1040.76	742.68	0.61				
	D+2	DB	De2	m+0	ΨD	Ta 2	R66 0	
TTD	265 99	1 42	214 00	1329 46	1 12	1250 91	0 95	
MEAN	203.33	1 42	217.66	1310 11	1 11	1245 14	0.05	
HUB	257.59	1.37	217.00	1302.37	1.10	1233.18	0.94	
	N lfo	Poto ELO	Boto BI		at olin	v Diff v	at Colidity	
סדיד	A1 05			7 UT DEV19		F. DITE FO	1 21	
MEAN	41 22	45 70	41 70	4.04	0.93	0.52	1 25	
HIB	38 08	45 53	41 70	3 83	0.93	0.50	1 30	
	50.00	10.00	11.70	5.05	0.95	0.11	1.50	
ST	AGE EXIT	CONDITIONS	, STAGE		6			
DIF	F LOSS	Effic	Pdi	sch	PR	TR	Ns	Ns nondim
	0.05	0.874	261.3	184	1.391	1.109	113.10	6 0.877
Del En	thalpy	Del H/U^2	GHP	Rey	nolds#			
841	334.13	0.426	1349.	759 468	731.500			

	COMPRESSO	OR INLET CO	NDITIONS	, STAGE		7		
w	act I	PM act	D+		r+	POTS	POTH	AeroBl
	28.39	27289.000	261.3	184 1:	316.314	1.100	0.90	0 0.980
	_			_	_			
W	cor F	RPM COT	GAMM	A	Cp	'R	NBLAD	THK
	2.55	1/130.342	Τ.,	3/0	0.263	53.349	82.00	0 0.030
R	OTOR LEAI	DING EDGE C	ONDITION	S, STAGE		7		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	5.87	0.00	-0.02	761.01	-0.26	761.01	0.44	
MEAN	5.71	0.00	-0.02	691.83	-0.24	691.83	0.40	
HUB	5.54	0.00	-0.02	622.65	-0.21	622.65	0.36	
	BetaRl	BetaBla	de Incid	TT1	W1	De1	Tel P	el Mach
ΨTP	61 46	54 80		1398 96	1592 79	229 53	1270 68	0 92
MEAN	63.04	56.20	6.84	1359.76	1525.85	234.57	1278.23	0.88
HUB	64.74	57.90	6.84	1319.40	1459.13	239.67	1285.76	0.83
	ROTOR EXI	T CONDITIO	NS, STAGI	8	7			
В2	axial	тнк	AeroBl					
0.	05	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.87	963.51	659.92	702.04	1807.01	0.53		
MEAN	5.71	938.35	639.43	686.75	1804.28	0.52		
HUB	5.55	915.64	595.68	695.39	1798.28	0.51		
	U 2	W2	Wu2	Mach Re	el2 Ws1/1	W2		
TIP	1397.06	1017.95	737.13	0.56				
MEAN	1359.94	995.37	720.51	0.55	1.58			
HUB	1321.78	1005.38	726.10	0.56				
	Pt2	PR	PS2	Tt2	TR	TS2	Eff2	
TIP	358.21	1.37	296.07	1456.51	1.11	1382.65	0.85	
MEAN	361.80	1.39	301.75	1448.54	1.10	13/8.49	0.93	
HUB	332.33	1.35	290.03	1430.04	1.09	1309.33	0.94	
	Alfa2	2 Beta FLO	Beta BLA	ADE Devia	at Slip	F. Diff F	ct Solidity	
TIP	43.23	46.40	42.30	4.10	0.93	0.53	1.22	
MEAN	42.96	46.37	42.30	4.07	0.93	0.51	1.26	
HUB	40.58	46.24	42.30	3.94	0.93	0.47	1.30	
ST	AGE EXIT	CONDITIONS	, STAGE		7			
				1				
DIF	F LOSS	Effic 0 076	Pdi	SCD 474	PR 1 257	TR 1 000	NS OO FO	NS NONDIM
	0.05	0.8/6	354.4	1/4	1.35/	1.099	98.58	J U./04
Del En	thalpy	Del H/U^2	GHP	Revi	nolds#			
860	064.69	0.441	1379.0	809 427	515.625			

	COMPRESS	OR INLET CO	NDITIONS	, STAGE		8		
W	act	RPM act	Pt	1	Tt	' POTS	POTH	AeroBl
	28.39	27289.000	354.	474 1	447.031	1.100	0.90	0.980
W	cor	RPM cor	GAMM	A	Ср	'R	NBLAD	THK
	1.97	16338.298	1.	368	0.267	53.349	84.00	0.030
I	ROTOR LEA	DING EDGE C	ONDITION	S, STAGE		8		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	5.84	0.00	-0.02	721.08	-0.25	721.08	0.39	
MEAN	5.71	0.00	-0.02	655.53	-0.23	655.53	0.36	
HUB	5.56	0.00	-0.02	589.98	-0.20	589.98	0.32	
	BetaFl	o BetaBla	de Incid	U 1	W1	Ps1	Tsl Re	el Mach
TIP	62.62	55.70	6.92	1391.89	1567.80	319.10	1406.66	0.86
MEAN	64.25	57.60	6.65	1358.91	1508.97	324.77	1413.34	0.83
HUB	66.00	59.00	7.00	1325.11	1450.70	330.49	1420.00	0.79
	ROTOR EX	IT CONDITIO	NS, STAG	E	8			
B2	2 axial	тнк	AeroBl					
0.	.05	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.84	933.48	648.48	671.46	1885.48	0.50		
MEAN	5.71	912.48	632.67	657.54	1883.46	0.48		
HUB	5.57	892.03	596.42	663.33	1878.86	0.47		
	U 2	₩2	Wu2	Mach R	el2 Ws1/1	W2		
TIP	1390.20	1000.50	741.72	0.53				
MEAN	1358.65	979.50	725.98	0.52	1.59			
HUB	1326.35	986.31	729.93	0.52				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	469.94	1.33	398.85	1581.94	1.09	1513.62	0.85	
MEAN	475.61	1.34	406.42	1575.66	1.09	1510.38	0.93	
HUB	466.31	1.32	400.91	1565.40	1.08	1503.02	0.94	
	Alfa	2 Beta FLO	Beta BL	ADE Devi	at Slip	F. Diff Fo	t Solidity	
TIP	44.00	47.85	43.80	4.05	0.93	0.53	1.21	
MEAN	43.90	47.83	43.80	4.03	0.93	0.52	1.24	
HUB	41.96	47.74	43.80	3.94	0.93	0.48	1.28	
SI	FAGE EXIT	CONDITIONS	, STAGE		8			
DII	FF LOSS	Effic	Pdi	sch	PR	TR	Ns	Ns nondim
	0.05	0.877	467.	192	1.318	1.088	88.784	0.688
Del Er	nthalpy	Del H/U^2	GHP	Rey	nolds#			
851	1134.44	0.440	1365.	482 393	019.219			
017	2881.T. P yt		д. а т.т.		8 <u>9</u> 73 <i>C</i> 5	q		
						-		
Del Er	thalov	CHD	E	RRTCTENC	V DR	TR		

 Del Enthalpy
 GHP
 EFFICIENCY
 Fx
 IN

 6755277.50
 10837.5469
 0.8032
 31.7818
 3.0353

Appendix D.—Axial-Centrifugal Compressor Data

Below are the axial-centrifugal compressor mean-line flow analysis results at the design point operating condition.

LCTR 7 Axial 1 Centrifugal Stage 100% Speed COMPRESSOR INLET CONDITIONS, STAGE 1 RESET = 0.000 BLEED = 0.000 DPInc 5.000 Kg/sec = 12.90909 POTH W act RPM act Тt ' POTS AeroB1 Pt 28.40 27289.000 14.613 518.670 1.100 0.800 0.980 W cor RPM cor GAMMA 'R NBLAD тнк Ср 28.40 27289.789 1.402 0.249 53.349 28.000 0.030 ROTOR LEADING EDGE CONDITIONS, STAGE 1 R1 Stator Alfa C1 CU1 Cm1Abs MACH 6.28 0.00 -0.02 636.97 -0.22 636.97 0.59 TIP MEAN 4.71 0.00 -0.02 579.07 -0.20 579.07 0.53 0.00 HUB 2.25 -0.02 463.25 -0.16 463.25 0.42 BetaFlo BetaBlade Incid ΰ1 W1 Ps1 Ts1 Rel Mach 485.12 66.93 62.00 4.93 1495.05 1625.29 11.57 1.50 TIP MEAN 62.72 57.56 5.16 1122.83 1263.54 12.04 490.66 1.16 HUB 49.12 44.20 4.92 535.10 707.89 12.94 500.92 0.64 ROTOR EXIT CONDITIONS, STAGE 1 B2 axial THK AeroBl 0.30 0.030 0.950 R2 C2 Cu2 Cm2 Ao2 Mach2 TIP 6.28 864.45 685.22 527.02 1222.52 0.71 5.14 870.86 667.80 558.97 1188.55 MEAN 0.73 1048.17 HUB 3.67 801.40 675.59 1140.89 0.92 TT2 W2 Wu2 Mach Rel2 Ws1/W2 1495.05 966.22 809.83 0.79 TIP 1224.70 789.04 556.90 0.66 2.00 MEAN HUB 874.41 679.52 73.00 0.60 Pt2 PR Ps2 Tt2 TR Eff2 Ts2 TIP 32.96 2.26 23.60 683.30 1.32 620.90 0.83 30.05 2.06 21.02 650.09 1.25 586.78 0.91 MEAN 27.51 HUB 1.88 15.93 631.26 1.22 539.70 0.92 Alfa2 Beta FLO Beta BLADE Deviat Slip F. Diff Fct Solidity 56.95 TIP 52.44 53.20 3.75 0.93 0.57 1.32 MEAN 50.07 44.89 40.10 4.79 0.93 0.53 1.75 HUB 49.87 6.17 1.00 5.17 0.93 0.23 3.68 STAGE EXIT CONDITIONS, STAGE 1 DIFF LOSS Effic Pdisch PR TR Ns Ns nondim 0.05 0.858 29.677 2.031 1.263 272.485 2.112 Del H/U^2 Del Enthalpy GHP **Revnolds#** 848001.94 0.379 1360.967 1192642.500

	COMPRESS	OR INLET CO	NDITIONS	, STAGE		2		
w	act :	RPM act	Pt	•	Ft	' POTS	POTH	AeroBl
	28.40	27289.000	29.0	577 (654.883	1.100	0.90	0 0.980
w	cor	RPM cor	GAMM	A	Ср	'R	NBLAD	THK
	15.81	24286.434	1.4	401	0.249	53.349	38.00	0 0.030
-		DING BDGE G				2		
R	OTOR LEA	DING EDGE C	UNDITION:	5, STAGE		2		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	6.10	0.00	-0.02	679.69	-0.23	679.69	0.56	
MEAN	5.23	0.00	-0.02	617.90	-0.21	617.90	0.50	
HUB	4.18	0.00	-0.02	556.11	-0.19	556.11	0.45	
	BetaFle	o BetaBla	de Incid	U1	W 1	Ps1	Tsl R	el Mach
ΨТР	64 93	59 00	5 93	1452 66	1604 02	24 06	616 74	1 31
MEAN	63 62	57 42	6 20	1245 69	1390 71	24 93	623 05	1 14
HUB	60.84	54.50	6.34	996.62	1141.44	25.83	629.35	0.92
	ROTOR EX	IT CONDITIO	NS, STAG	2	2			
B2	axial	тнк	AeroBl					
	0.20	0.030	0.9	950				
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.98	865.82	633.85	589.80	1331.49	0.65		
MEAN	5.26	873.23	644.05	589.68	1316.63	0.66		
HUB	4.43	941.87	700.49	629.63	1297.19	0.73		
	772	MO	Ma 2	Mach D	-10 11-1/1	CTM		
-	1424 00	W2	WUZ	Mach R	eiz wsi/	n 2		
TIP	1424.09	986.07	/90.23	0.74				
MEAN	1253.29	847.87	609.24	0.64	1.88			
HUB	1055.20	722.67	354.71	0.56				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	53.91	1.82	40.57	799.56	1.22	737.07	0.84	
MEAN	53.30	1.80	39.67	784.25	1.20	720.69	0.92	
HUB	51.19	1.72	36.04	773.34	1.18	699.41	0.93	
	Alfa	2 Beta FLO	Beta BL	ADE Devi:	at Slin	F Diff F	et Solidity	
ттр	47 06	53 26	49 47	3 79	0 93	0 54	1 27	
MEAN	47 52	45 93	41 46	4 47	0.55	0.54	1 49	
TITD	47.54	20.40	24 00	5.40	0.93	0.55	1 05	
нов	40.05	29.40	24.00	5.40	0.93	0.54	1.05	
ST	AGE EXIT	CONDITIONS	, STAGE		2			
DIF	F LOSS	Effic	Pdia	sch	PR	TR	Ns	Ns nondim
	0.05	0.875	52.0	97	1.755	1.200	219.48	1 1.701
Del En	thalpy	Del H/U^2	GHP	Rev	nolds#			
816	707.63	0.403	1310.	742 812	599.375			

	COMPRESS	OR INLET CO	NDITIONS	, STAGE		3		
w	act 1	RPM act	Pt		ſt	' POTS	POTH	AeroBl
	28.40	27289.000	52.0	097	785.718	1.100	0.9	0.980
w	cor 1	RPM cor	GAMM	A	Ср	'R	NBLAD	THK
	9.86	22172.389	1.3	399	0.251	53.349	50.00	0.030
R	OTOR LEAD	DING EDGE C	ONDITION	S, STAGE		3		
	R 1	Stator	Alfa	C1	CII1	Cm1	Abs MACH	
TIP	5.79	0.00	-0.02	729.10	-0.25	729.10	0.54	
MEAN	5.22	0.00	-0.02	662.81	-0.23	662.81	0.49	
HUB	4.59	0.00	-0.02	596.53	-0.21	596.53	0.44	
	PotoR1	n PotoPla	do Traid	771	7071	De1	T a1 1	Pol Moch
TT D	62 14			1370 04	1550 06	FB1 40 60	742 01	1 16
MEAN	61 96	55.00	6 26	1244 19	1400 03	44.02	742.01	1 05
HUB	61.38	55.00	6.38	1093.07	1245.43	45.60	756.46	0.92
	DOTOD FY				2			
	ROIOR EA.		NO, DIAGI	2	3			
B2	axial	тнк	AeroBl					
0.	15	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.71	868.09	609.75	617.89	1433.13	0.61		
MEAN	5.19	855.65	596.31	613.63	1422.29	0.60		
HUB	4.61	895.51	633.67	632.78	1411.88	0.63		
				- -				
	U 2	W2	Wu2	Mach Re	el2 Ws1/1	W2		
TIP	1359.79	971.77	750.04	0.68				
MEAN	1236.09	886.48	639.78	0.62	1.77			
HUB	1098.55	785.19	464.88	0.56				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	83.00	1.59	64.79	917.93	1.17	855.37	0.84	
MEAN	82.05	1.57	64.26	903.25	1.15	842.47	0.92	
HUB	80.47	1.54	61.39	896.71	1.14	830.13	0.93	
	Alfa	2 Beta FLO	Beta BLA	ADE Devia	at Slip	F. Diff F	t Solidity	v
TIP	44.62	50.52	46.64	3.88	0.93	0.54	1.22	
MEAN	44.18	46.19	42.01	4.18	0.93	0.53	1.36	
HUB	45.04	36.30	31.47	4.83	0.93	0.53	1.54	
OT		CONDITIONS	QTA CP		3			
51	age eati	CONDITIONS	, DIAGE		J			
DIF	F LOSS	Effic	Pdis	sch	PR	TR	Ns	Ns nondim
	0.05	0.874	80.9	924	1.553	1.153	192.00	65 1.489
Del En	thalpy	Del H/U^2	GHP	Revi	nolds#			
754	495.94	0.408	1210.8	398 703	566.375			

	COMPRESS	OR INLET CO	ONDITIONS	, STAGE		4		
W	act : 28.40	RPM act 27289.000	Pt 80.1	924	Tt 905.963	'POTS 1.100	POTH 0.9	I AeroBl 000 0.980
W	cor	RPM cor	GAMM	A	Ср	'R	NBLAD) ТНК
	6.82	20648.596	1.3	395	0.252	53.349	60.0	0.030
F	ROTOR LEAD	DING EDGE C	CONDITION	S, STAGE	1	4		
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH	
TIP	5.54	0.00	-0.02	697.68	-0.24	697.68	0.48	
MEAN	5.09	0.00	-0.02	634.26	-0.22	634.25	0.44	
HUB	4.61	0.00	-0.02	570.83	-0.20	570.83	0.39	
	BetaFl	o BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mach
TIP	62.12	56.00	6.12	1318.83	1492.21	69.06	866.19	1.03
MEAN	62.40	56.20	6.20	1213.05	1369.05	70.93	872.77	0.95
HUB	62.52	57.00	5.52	1097.12	1236.91	72.84	879.34	0.85
	ROTOR EX	IT CONDITIC	ONS, STAG	E	4			
B2	2 axial	тнк	AeroBl					
	0.10	0.030	0.	950				
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	5.44	863.90	584.23	636.39	1519.69	0.57		
MEAN	5.03	852.54	575.81	628.70	1512.51	0.56		
HUB	4.58	879.96	603.22	640.68	1505.43	0.58		
	U 2	W2	Wu2	Mach R	el2 Ws1/1	W2		
TIP	1295.49	954.40	711.26	0.63	•			
MEAN	1197.27	884.01	621.46	0.58	1.69			
HUB	1090.24	804.77	487.02	0.53				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	117.54	1.45	94.47	1025.79	1.13	964.21	0.84	
MEAN	117.44	1.45	94.72	1015.10	1.12	955.13	0.92	
HUB	115.96	1.43	92.08	1010.07	1.11	946.18	0.93	
	Alfa	2 Beta FLC) Beta BL	ADE Devi	at Slip	F. Diff F	ct Solidit	y
TIP	42.55	48.18	44.26	3.92	0.93	0.52	1.19	
MEAN	42.49	44.67	40.51	4.16	0.93	0.52	1.29	
HUB	43.28	37.24	32.62	4.62	0.93	0.52	1.43	
SI	FAGE EXIT	CONDITIONS	, STAGE		4			
DIE	F LOSS	Effic	Pdi	sch	PR	TR	Ns	Ns nondim
	0.05	0.872	115.	820	1.431	1.123	172.5	86 1.338
Del Er	nthalpy	Del_H/U^2	GHP	Rey	nolds#			
701	L661.88	0.418	1126.	104 637	040.500			

act RPM act Pt Tt 'POTS POTH 28.40 27289.000 115.820 1016.988 1.100 0.900 W act RPM act -- NBLAD 53.349 70 000 W cor RPM cor GAMMA 5.05 19488.920 1.391 GAMMA 'R Ср 70.000 0.255 ROTOR LEADING EDGE CONDITIONS, STAGE 5 Cm1 Abs MACH Stator Alfa Cl CU1 R1 5.24 0.00 -0.02 690.70 -0.24 690.70 0.45 TIP 0.00 -0.02 627.91 -0.22 627.91 0.00 -0.02 565.12 -0.19 565.12 4.88 MEAN 0.41 4.48 0.00 0.37 HUB BetaFloBetaBladeIncidU1W1Ps1Ts1Rel Mach61.0454.806.241247.861426.47100.90978.310.9361.6055.206.401161.061320.17103.26984.700.8662.1055.506.601067.231207.79105.66991.090.78 BetaFlo BetaBlade Incid U1 TIP MEAN HUB

5

5

AeroBl

THK

Rel Mach

0.980

0.030

ROTOR EXIT CONDITIONS, STAGE

COMPRESSOR INLET CONDITIONS, STAGE

B2 axial	тнк	AeroBl
0.10	0.030	0.950

	R2	C2	Cu2	Cm2	Ao2	Mach2
TIP	5.14	849.48	575.31	625.00	1597.25	0.53
MEAN	4.78	844.07	576.55	616.48	1592.18	0.53
HUB	4.39	854.35	579.87	627.43	1585.22	0.54

	U 2	W2	Wu2	Mach Rel2	Ws1/W2
TIP	1224.05	900.82	648.73	0.56	
MEAN	1138.39	834.09	561.85	0.52	1.70
HUB	1045.75	781.48	465.88	0.49	

	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2
TIP	158.30	1.37	130.71	1127.51	1.11	1068.43	0.84
MEAN	159.28	1.38	131.68	1120.00	1.10	1061.66	0.93
HUB	156.10	1.35	128.25	1112.16	1.09	1052.39	0.94

	Alfa2	Beta FLO	Beta BLADE	Deviat	Slip F.	Diff Fct	Solidity
TIP	42.63	46.07	42.00	4.07	0.93	0.53	1.21
MEAN	43.08	42.35	38.00	4.35	0.93	0.53	1.30
HUB	42.74	36.59	32.00	4.59	0.93	0.52	1.42

STAGE EXIT CONDITIONS, STAGE

DIFF LOSS	Effic	Pdisch	PR	TR	Ns	Ns nondim
0.05	0.873	156.506	1.351	1.101	159.814	1.239
Del Enthalpy 655986.81	Del_H/U^2 0.438	GHP 1052.800	Reynolds# 604502.250			

5

	COMPRESSO	R INLET CO	NDITIONS	, STAGE		6		
W	act R	PM act	Pt		Tt	'POTS	POTH	AeroBl
	28.40	27289.000	156.5	506 1	119.889	1.100	0.9	00.980
w	cor R	PM cor	GAMM	A	Ср	'R	NBLAD	THK
	3.92	18571.986	1.3	386	0.257	53.349	80.00	00 0.030
F	ROTOR LEAD	ING EDGE C	ONDITIONS	S, STAGE		6		
	R1	Stator	Alfa	C1	CU1	Cml	Abs MACH	
TIP	4.91	0.00	-0.02	703.82	-0.24	703.82	0.44	
MEAN	4.60	0.00	-0.02	639.84	-0.22	639.84	0.40	
HUB	4.27	0.00	-0.02	575.85	-0.20	575.85	0.36	
	BetaFlo	BetaBla	de Incid	U1	W1	Ps1	Ts1	Rel Mach
TIP	58.96	52.20	6.76	1169.27	1364.97	137.44	1080.07	0.85
MEAN	59.73	53.20	6.53	1096.05	1269.33	140.47	1086.66	0.79
HUB	60.50	54.20	6.30	1017.58	1169.39	143.54	1093.23	0.72
					5			
	ROIOR EAI	I CONDIIIO	ND, DIAGI	2	0			
B2	2 axial	THK	AeroBl					
0.	.10	0.030	0.950					
	R2	C2	Cu2	Cm2	Ao2	Mach2		
TIP	4.83	845.97	548.72	643.88	1661.44	0.51		
MEAN	4.52	833.86	537.94	637.13	1656.75	0.50		
HUB	4.18	864.62	579.20	641.95	1653.46	0.52		
	U 2	W2	Wu2	Mach R	el2 Ws1/N	¥2		
TIP	1151.18	881.78	602.46	0.53				
MEAN	1076.35	834.15	538.40	0.50	1.65			
HUB	995.91	765.34	416.70	0.46				
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2	
TIP	202.28	1.29	169.75	1218.08	1.09	1159.98	0.85	
MEAN	202.48	1.29	170.58	1209.89	1.08	1153.45	0.93	
HUB	202.83	1.30	168.62	1209.54	1.08	1148.86	0.94	
	Alfa2	Beta FLO	Beta BLA	ADE Devi	at Slip	F. Diff F	ct Solidity	Y
TIP	40.44	43.10	39.00	4.10	0.93	0.52	1.21	
MEAN	40.18	40.20	36.00	4.20	0.93	0.51	1.29	
HUB	42.06	32.99	28.36	4.63	0.93	0.52	1.39	
SI	FAGE EXIT	CONDITIONS	, STAGE		6			
DIE	F LOSS	Effic	Pdis	sch	PR	TR	Ns	Ns nondim
	0.05	0.871	200.8	387	1.284	1.083	154.64	47 1.199
Del Er	thalpy	Del H/U^2	GHP	Rev	nolds#			
596	5158.88	0.450	956.7	781 593	802.938			

COMPRESSOR	INLET	CONDITIONS,	STAGE
------------	-------	-------------	-------

W	act I 28.40	PM act 27289.000	Pt 200.8	י 887 12	t 12.503	'POTS 1.100	РОТН 0.9	24 00	eroBl 0.980
w	cor I	RPM cor	GAMM	A	Ср	'R	NBLAD	•	тнк
	3.18	17848.609	1.3	382	0.260	53.349	82.0	00	0.030
R	OTOR LEAI	ING EDGE C	ONDITION:	S, STAGE		7			
	R1	Stator	Alfa	C1	CU1	Cm1	Abs MACH		
TIP	4.65	0.00	-0.02	683.27	-0.24	683.27	0.41		
MEAN	4.37	0.00	-0.02	621.16	-0.21	621.16	0.37		
HUB	4.07	0.00	-0.02	559.04	-0.19	559.04	0.33		
	BetaFlo) BetaBlad	ie Incid	U 1	W1	Ps1	Ts1	Rel Mach	L
TIP	58.31	52.10	6.21	1106.55	1300.70	179.46	1175.31	0.78	
MEAN	59.16	53.00	6.16	1040.27	1211.79	182.88	1181.46	0.72	
HUB	60.04	53.80	6.24	969.47	1119.28	186.35	1187.61	0.66	
	ROTOR EXI	T CONDITIO	NS, STAGI	2	7				
B2	axial	THK	AeroBl						
0.	10	0.030	0.950						
	50	C 2	~ .2	~~ 2	302	Nach?			
ΨTD	4 5 8	826 13	547 75	618 44	1721 39	Maciiz 0 48			
MFAN	4 28	813 61	535 13	612 86	1717 06	0.40			
HUB	3.97	836.11	563.38	617.81	1713.53	0.49			
	••••			•=/••=					
	U 2	W2	Wu2	Mach Re	12 Ws1/W	W2			
TIP	1090.45	822.79	542.70	0.48					
MEAN	1020.07	781.52	484.95	0.46	1.67				
HUB	944.47	725.89	381.09	0.42					
	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2		
TIP	251.41	1.25	215.16	1304.43	1.08	1249.53	0.84		
MEAN	251.46	1.25	216.03	1296.52	1.07	1243.27	0.92		
HUB	250.66	1.25	213.42	1294.39	1.07	1238.15	0.93		
	Alfa	Beta FLO	Beta BL	ADE Devis	t Slin	R Diff R	rt Solidit	v	
TTP	41.53	41.27	37.00	4.27	0.93	0.54	1.22	Y	
MEAN	41 13	38 35	34 00	4 35	0.93	0.51	1 30		
HUB	42.36	31.67	27.00	4.67	0.93	0.53	1.39		
ST	AGE EXIT	CONDITIONS	, STAGE		7				
הדם		B66 1-	با 1.00	ach	DB	ΠD	Ne		a nondi-
DIF	0.05	0.868	249.3	360	FR 1.241	1.071	148.3	61	1.150
Del En	thalpy	Del_H/U^2	GHP	Reyr	olds#				
558	713.00	0.470	896.0	684 5845	503.813				

Pt Tt 'POTS POTH 249.360 1298.448 1.100 0.900 Pt Wact RPM act 28.40 27289.000 W cor RPM cor 2.65 17247.789 GAMMA 'R Ср 24.000 1.377 0.262 ROTOR LEADING EDGE CONDITIONS, STAGE 8 Cm1 Abs MACH Stator Alfa Cl CU1 R1 TIP 4.10 0.00 -0.02 562.70 -0.19 562.70 0.32 0.00 -0.02 511.55 -0.18 511.55 0.00 -0.02 460.39 -0.16 460.39 3.81 0.29 MEAN 3.50 0.00 0.26 HUB BetaFloBetaBladeIncidU1W1Ps1Ts1Rel Mach60.0554.006.05976.381127.09232.261273.450.6560.6054.506.10907.751042.12235.031277.590.6061.0955.006.09833.50952.33237.811281.710.54 BetaFlo BetaBlade Incid Ul TIP MEAN HUB ROTOR EXIT CONDITIONS, STAGE 8 B2 axial THK AeroBl 0.28 0.030 0.950 R2C2Cu2Cm2Ao2Mach26.701286.381137.24601.221846.690.70 TIP 6.70 1281.72 1149.70 566.57 1849.22 0.69 MEAN 6.70 1281.17 1151.12 562.42 1849.51 0.69 HUB

8

AeroBl

THK

0.980

0.030

	U 2	W2	Wu2	Mach Rel2	Ws1/W2
TIP	1595.55	755.98	458.31	0.41	
MEAN	1595.55	720.96	445.85	0.39	1.54
HUB	1595.55	716.82	444.42	0.39	

COMPRESSOR INLET CONDITIONS, STAGE

	Pt2	PR	Ps2	Tt2	TR	Ts2	Eff2
TIP	455.63	1.83	330.98	1574.88	1.21	1442.97	0.84
MEAN	483.37	1.94	352.20	1577.91	1.22	1446.95	0.92
HUB	486.92	1.95	354.91	1578.25	1.22	1447.40	0.93

	Alfa2	Beta FLO	Beta BLA	DE Deviat	Slip F.	Diff Fct	Solidity
TIP	62.14	37.32	20.00	17.32	0.85	0.75	1.50
MEAN	63.77	38.20	20.00	18.20	0.85	0.74	1.61
HUB	63.96	38.32	20.00	18.32	0.85	0.70	1.76

STAGE EXIT CONDITIONS, STAGE

DIFF LOSS	Effic	Pdisch	PR	TR	NS	Ns nondim
0.17	0.828	453.331	1.818	1.215	55.924	0.434
Del Enthalpy 1828923.63	Del_H/U^2 0.718	GHP 2935.257	Reynolds# 554689.563			

8

OVERALL EXIT	CONDITIONS;	ALL 8	STAGES	
Del Enthalpy	GHP	EFFICIENCY	PR	TR
6760649.50	10850.2324	0.7961	30,8389	3.0405

References

- 1. Johnson, Wayne; Yamauchi, Gloria K.; and Watts, Michael E.: NASA Heavy Lift Rotorcraft Systems Investigation. NASA/TP-2005-213467, 2005.
- 2. Snyder, C.: Gas Turbine Characteristics for a Large Civil Tilt-Rotor (LCTR). AHS 65th Annual Forum & Technology Display, Grapevine, Texas, 2009.
- 3. Veres, Joseph: Axial and Centrifugal Compressor Mean Line Flow Analysis Method. AIAA-2009-1641, 2009.
- 4. Reid, L.; and Moore, R.D.: Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor. NASA TP-1337, 1978.

- 5. Steinke, Ronald J.: Design of 9.271-Pressure-Ratio Five-Stage Core Compressor and Overall Performance for First Three Stages. NASA TP-2597, fig. 22, 1986.
- 6. Holloway, P.R., et al.: Energy Efficient Engine High Pressure Compressor Detail Design Report. NASA CR-165558, 1982.
- 7. Balje, O.E.: Turbomachines: A Guide to Design Selection and Theory. John Wiley & Sons, New York, NY, 1981.

	REPOR		ATION PAGE		Form Approved OMB No. 0704-0188				
The public reporting ourover for this collection of information is estimated to average 1 noticity per response, including the unter or revolving instructions, searching existing data sources, gathering and maintaining the data needed, and completing and residueing the subject of this collection of information. For educing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.									
1. REPORT DATI	E (DD-MM-YYYY)	2. REPORT TY			3. DATES COVERED (From - To)				
01-08-2009	IRTITI F	Technical Mo			52 CONTRACT NUMBER				
Compressor Stu	idy to Meet Large C	ivil Tilt Rotor	Engine Requirements		Ja. CONTRACT NUMBER				
					5b. GRANT NUMBER				
					5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)	D				5d. PROJECT NUMBER				
veres, Joseph, I									
					SE. TASK NUMBER				
					5f. WORK UNIT NUMBER				
					WBS 877868.02.07.03.01.02.02				
7. PERFORMING National Aeron John H. Glenn I	ORGANIZATION NAI autics and Space Ad Research Center at L	ME(S) AND ADD ministration ewis Field	RESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER E-16952				
Cieveianu, Onio	544155-5191								
9 SPONSORING					10 SPONSORING/MONITOR'S				
National Aeron	autics and Space Ad	ministration			ACRONYM(S) NASA				
					11. SPONSORING/MONITORING REPORT NUMBER NASA/TM-2009-215641				
12. DISTRIBUTIC Unclassified-Un Subject Categon Available electr This publication is a	12. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified-Unlimited Subject Categories: 02 and 07 Available electronically at http://gltrs.grc.nasa.gov This publication is available from the NASA Center for AeroSpace Information, 443-757-5802								
13. SUPPLEMENTARY NOTES									
 14. ABSTRACT A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressor's conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage. 15. SUBJECT TERMS Compressor: Turbomachinery: Aerodynamics 									
16. SECURITY C	LASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF	19a. NAME OF RESPONSIBLE PERSON STI Help Desk (email:help@sti.nasa.gov)				
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	ບບ	PAGES 33	19b. TELEPHONE NUMBER (Include area code) 443-757-5802				
·	-		•	•	Standard Form 298 (Rev. 8-98)				

Prescribed by ANSI Std. Z39-18