
Communication Optimizations for a Wireless Distributed
Prognostic Framework

Sankalita Saha	 Bhaskar Saha	 Kai Goebel
RIACS/NASA Ames Research Center MCT/NASA Ames Research Center 	 RIACS/NASA Ames Research Center

Moffett Field, CA 94035	 Moffett Field, CA 94035	 Moffett Field, CA 94035
ssaha@riacs.edu	 bhaskar.saha@nasa.gov	 kai.goebel@nasa.gov

Abstract—Distributed architecture for prognostics is an
essential step in prognostic research in order to enable
feasible real-time system health management.
Communication overhead is an important design problem
for such systems. In this paper we focus on communication
issues faced in the distributed implementation of an
important class of algorithms for prognostics – particle
filters. In spite of being computation and memory intensive,
particle filters lend well to distributed implementation
except for one significant step – resampling. We propose
new resampling scheme called parameterized resampling
that attempts to reduce communication between
collaborating nodes in a distributed wireless sensor network.
Analysis and comparison with relevant resampling schemes
is also presented. A battery health management system is
used as a target application. 12

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. BACKGROUND ...2
3. DISTRIBUTED PROGNOSTICS ...2
4. DISTRIBUTED PARTICLE FILTERS3
5. DISTRIBUTED RESAMPLING ...5
6. EXPERIMENTS AND RESULTS ...6
7. CONCLUSIONS ..8
REFERENCES ..8
BIOGRAPHIES ...8

1. INTRODUCTION

As health management issues become an increasingly
dominant concern in the aerospace domain, it becomes
imperative to explore efficient architectures for system
implementation. An important constituent of a health
management system is prognostics or determining
remaining useful life. Such systems consist of multiple
sensors that monitor various subsystems; the data collected
from these sensors are processed by suitable algorithms to
determine the health of the system. Thus, they are complex
and deploy sophisticated algorithms as well as sensor
instrumentation.

Most of the system development assumes a centralized
health management architecture, i.e., a central computing
machine collects all the sensor data, processes them, and
then runs various diagnostic and prognostic algorithms.

1U.S. Government work not protected by U.S. copyright.
2 IEEEAC paper #1332, Version 3, Updated November 2, 2008

Such a system architecture has to deal with several
challenges: (a) large amounts of sensor data being collected
for more refined analysis (e.g., high frequency vibration
data for structures health management or data with high
sampling rate for avionics health management); (b)
increasingly more complex algorithms – intensive in terms
of memory as well as computation speed – are being
deployed to process this data, exceeding the capabilities of
single-processor systems; and (c) vulnerability to complete
loss of functionality in case of a crash of the central
processor/monitor. In the last case, considerable amount of
time and effort is required to recover and restore back the
health management system and in many instances such a
recovery may not be possible at all. A centralized
architecture is not sufficient for the increasingly multi-
operational and complex systems of today.

Distributed health management is the next step in the
evolution of prognostic methodologies. A distributed
architecture comprises multiple smart sensor devices that
monitor different parts of a system and collaborate when
computationally intensive prognostic algorithms or large
amounts of data are involved that cannot be handled
efficiently by a single processor/node. Recent advances in
smart sensor technology combining the power of embedded
computing devices with sensors and wireless transmission
technology make the practical implementation of such
systems feasible.

One of the most important design considerations in such
systems is the communication overhead. Inefficient
communication architecture can reduce computational
performance gains obtained from task distribution.
Additionally, design issues faced in a wired distributed
system are significantly different from that faced in wireless
systems. Thus, prognostics algorithms need to be specially
designed for such systems to increase their communication
efficiency.

Particle filters provide an important class of algorithms
employed in system prognostics. They are computation and
memory intensive algorithms but lend very well to
distributed implementations except for one significant step –
resampling. Efforts for efficient distributed resampling
schemes have been made. However, the suitability of such
schemes is heavily dependent on the application as well as
target implementation platform. In this paper, we explore
different resampling schemes for a particle filter based
battery health management system with special focus on

reduction of communication between collaborating nodes in
a wireless sensor network. In addition, we propose a new
resampling scheme for particle filter systems targeted
towards reducing the communication overhead. The specific
target platform in our case is a network of Sun
Microsystems SPOT (Small Programmable Object
Technology) devices. However, the techniques developed in
this paper are generic enough for use in other particle filter
based systems.

2. BACKGROUND

The field of prognostics is still maturing and hence
significant work in distributed prognostics does not exist. A
few efforts have been made recently. The authors briefly
outline a distributed prognostics system architecture in [1]
where tasks are distributed at the prognostics algorithm
level, i.e., identifying the different system modules and
where they fit into a given system using prognostics. In [2] a
distributed network of smart sensor elements integrated
using a knowledge-driven environment to perform self-
diagnosis of health and participate in a hierarchy of health
determination at sensor, process, and system levels. This
network will be used as an element of the prototype
intelligent rocket test facility being implemented at NASA
Stennis Space Center. In [3] a hardware multi-cellular
sensing and communication network (a smart “skin”) is
presented and discussed for health management of space
vehicles. The main aim of such a smart “skin” aim is to
detect and react to impacts caused by projectiles that, for a
vehicle in space, might be micro-meteoroids or space debris.

Some of the techniques used in prognostics – such as
particle filters – have been investigated in the context of
distributed implementations. For example, in [4] the authors
present three different distributed methods for implementing
particle filter system. However, the algorithms presented do
not distribute the algorithm fully. In [5] the authors present a
parallel particle filter implementation on a shared-memory
multiprocessor cluster. Sensor networks have gained
popularity of late and often employ particle filters for
tracking objects. Distributed particle filters for such
applications have also been explored ([6], [7], [8], [9], [10]).
However, none of the work above addresses the problem of
communication overhead involved in distributed particle
filters and improving the communication efficiency.

Communication issues are widely recognized and analyzed
in the context of generic distributed networks. It is most
often the highest contributor to resource management costs,
typically higher by orders of magnitude as compared to
other factors. Various approaches have been explored to
mitigate the effects of communication issues. For example,
an approximate dynamic programming approach that
integrates the value of information and the cost of
transmitting data over a rolling time horizon is presented in
[11] in the context of object tracking with a distributed

sensor network. However, the above technique is specific to
a given application domain and may not be easily extended
to other domains. Network topology can play an important
role in improving communication overheads, and in [12] the
authors present few recent developments in networking
techniques for multiple sensor systems. In [13], the problem
of minimizing communication in general distributed
systems is considered in a discrete-event formalism where
the system is modeled as a finite-state automaton. This work
provides an interesting approach; however it focuses more
on an analysis framework.

As may be observed from the above discussed work, there is
a distinct lack of work on design of distributed algorithms in
the context of prognostics that focus on reducing the
communication overhead. The work presented in this paper
attempts to address this problem with focus on a special
class of algorithms – particle filters. However, the solutions
presented are generic enough for extension to other
application domains that are particle-filter based.

Figure 1 – Overview of distributed prognostics system
architecture. Note that all the CEs may not have wireless
connectivity.

3. DISTRIBUTED PROGNOSTICS

Overview

In a distributed prognostics system multiple smart sensor
devices are employed that monitor various subsystems or
modules. The devices perform diagnostics operations and
trigger the prognostics mode based on user defined
thresholds and rules. An example of such a distributed
prognostics system is shown in Figure 1. As shown in this
figure, the system architecture in general comprises multiple
computing elements (CEs) each of which consists of a
sensor or a set of sensors and a communication device i.e., a
wireless transreceiver or wired communication capabilities
besides an embedded processing element. Though, in this
paper we mainly focus on a wireless implementation

platform, in a real-life scenario the connection between the
sensor devices may be wired or wireless. A wireless
connection enables more flexibility in the system design
with regards to placement of sensors. However, this
flexibility comes at the cost of significantly higher
communication overhead that involves concerns such as
synchronization and packet losses besides performance
issues.

Under most operating conditions the CEs would use both
the sensor and embedded processing capabilities. However,
in many cases their sensor capabilities may not be utilized,
i.e., they could act as monitors for the rest of the system –
schedule tasks, detect failures and initiate recovery, provide
access to resources such as an external database etc. – or act
as “helpers” to offload the computation requirements from
other CEs in order to maintain real-time constraints of the
application.

There are two operating modes for a CE: diagnostics and
prognostics [14]. A CE runs in the default mode of
diagnostics until a flag is raised by some CE. Depending on
the current state (i.e., availability of resources) it then
switches to prognostics mode. Thus, in the prognostics
mode it is not necessary that all the CEs are utilized; some
of them may be busy monitoring critical components or may
not have enough computing power to simultaneously
execute default operations. Note that the diagnostics
operations are not halted in the prognostics mode. To ensure
that a CE can support such multi-tasking efficiently the
prognostics algorithms need to be distributed efficiently.

In Figure 1, the basestation is not statically determined.
Initially, a default basestation is allocated whose main job is
to monitor the CEs and coordinate information exchange.
This information exchange not only involves the CEs
themselves but also includes entities such as the user, a
database server (for accessing history knowledge, or store
collected sensor data for later analysis) and other clusters of
CEs in a hierarchical system. When the prognostics mode is
triggered, either the base station or the CE that triggered the
mode makes an estimate of available computing resources.
The new basestation is chosen which then partitions,
schedules and delegates tasks accordingly.

Implementation Platform

The implementation platform consists of a network of smart
sensor devices from Sun Microsystems called SPOT (Small
Programmable Object Technology) devices. The SPOT
device is a small, wireless, battery powered experimental
platform which is built by stacking a Sun SPOT processor
board with a sensor board and battery. The sensor board
includes a range of built-in sensors as well as the ability to
easily interface to external devices. In terms of processing
power, each Sun SPOT has a 180MHz 32-bit ARM920T
core processor with 512K RAM and 4M Flash. As shown in
[14] this provides sufficient multi-tasking capabilities for
the systems under consideration in this work.

The SPOT devices communicate using radio channels. The
processor board has a 2.4GHz radio with an integrated
antenna on the board. The radio is IEEE 802.15.4 compliant.
The communication capability of this system was severely
overloaded for our distributed prognostics implementation
[14] due to limitations imposed by the restrictions on the
message length by the communication channel. In the
context of a particle-filter based prognostics system, this
posed a significant design challenge, as particle filters are
data intensive algorithms. Particle filters main system
information in terms of states and each state is represented
using large number of as samples (further details are
provided in section 4). Due to the above-mentioned
communication limitations, the full state information for a
single particle filter iteration could not be packed into one
message. Thus, the message had to be broken into multiple
parts and sent iteratively as separate messages. This
increased the amount of time spent in communication
considerably, as the time to set up and send a message as
well as receiving the message is significantly high.
Furthermore, communication was acknowledgement-based
in order to handle lost or corrupt messages, thereby further
adding to the communication overhead.

It may be emphasized that such problems with high volume
of communication are commonly encountered in many
distributed and wireless systems. Therefore, there is a strong
need to design algorithms which reduce both the number of
communication messages as well as the message lengths.
Battery power consumption gets significantly affected by
wireless communication usage as well. The maximum
capacity of the built-in battery (3.7V rechargeable, Lithium-
ion battery) for the SPOT devices is 720 mAhr. Since
battery power management is a key issue in wireless
systems, this provides further motivation for improving
communication efficiency.

4. DISTRIBUTED PARTICLE FILTERS

Particle filters (PFs) provide a powerful technique for
prognostics. They are based on Bayesian learning networks
and essentially implement a recursive Bayesian filter using
Monte Carlo (MC) simulations; hence they are also known
as sequential MC methods. In the prognostics domain, PFs
are mainly used to track progression of system state in order
to make estimations of remaining useful life (RUL).

Bayesian techniques provide a general rigorous framework
for such dynamic state estimation problems where the core
idea is to construct a probability density function (pdf) of
the state based on all available information. For the PF
approach ([15], [16]) this is done by approximating the pdf
with a set of particles (points) representing sampled values
from the unknown state space, and a set of associated
weights denoting discrete probability masses. The particles
are generated and recursively updated from a nonlinear
process model that describes the evolution in time of the
system under analysis, a measurement model, a set of

available measurements and an a priori estimate of the state
pdf.

Particle filter methods assume that the state equations can be
modeled as a first order Markov process with the outputs
being conditionally independent. This can be represented as
follows:

xk = f(xk- 1) + ωk

yk = h(xk) + υk	 (1)

where, k is the time index, x denotes the state, y is the
output or measurements, and both ω and υ are samples from
noise distributions. The algorithm is initiated by a best guess
estimate of the state space represented as a set of N
weighted particles { (wk(

i) ,xk(
i
)): i=1,... ,N}. The importance

weights wk
(i) are approximations to the relative posterior

probabilities of the particles.

In terms of computation, a particle filter based system
consists of the following three computational steps:
1. Sampling: Generation of samples (particles) of the

unknown state based on the given sampling function to
provide an estimate of the current state of the system
and also propagate the particles from the previous time
step to the current time using Eq. (1).

2. Weight Calculation: Update importance weights for
each particle based on external observations:

w (i) = w (i) p (y k | x k)p (x k | x k- 1
)

. (2)
k	 k 1

'7 (x k | x 0:k -1
, y

1:k)

Resampling: Redrawing particles from the same
probability density based on some function
(resampling function) of the particle weights such
that the weights of the new particles are
approximately equal.

Though particle filters are expensive with respect to
computation as well as memory requirements, they exhibit
considerable amount of data parallelism to enable
distributed processing. All the steps enlisted above except
resampling can be completely distributed over
independently executing CEs. Since there are no data
dependencies during sampling and weight updates, these
segments of particle filtering form a data parallel single
instruction multiple data (SIMD) algorithm and can be
partitioned into M CEs. Thus, if there are N particles, (1 <
M < N) each CE performs the same operations in time on Nn

= N/M different particles where both M and Nn are integers.
An overview of this distributed particle filter architecture is
given in Figure 2. The central server performs resampling —
partial or full depending on the resampling scheme — and
particle routing as well as overall control.

Resampling is a critical step in particle filter
implementations. Without it the variance of the particle
weights quickly increases, i.e., very few normalized weights

4

remain substantial. This causes degradation in inference
because the effective number of particles used for the state
representation decreases. Resampling removes particle
trajectories with small weights and replicates trajectories
with large weights. Unfortunately, most resampling
algorithms are essentially sequential. Since resampling
involves updating of weights, most resampling algorithms
require the completion of sampling and weight updating
prohibiting concurrency between steps. Though, various
efforts to derive distributed versions of resampling
algorithms have been made, it has not been possible till now

Computing Computing
Element 1 Element 2

Central
Server

Computing Computing
Element 3 Element 4

Figure 2 – System architecture for particle filter based
prognostics system.

to formulate a fully distributed version. Besides, the
following problems diminish the advantages of existing
algorithms for partial distribution of the resampling task: (a)
communication of new particles and weights amongst CEs
after resampling is extensive, and (b) connections among the
CEs are not known before the run-time and may change
after each sampling period. Furthermore, the resampling
technique used is often dictated by the application and
system requirements and hence existing distributed versions
cannot be used in all designs.

In the following subsections, a discussion of existing
resampling techniques suitable for our domain is discussed
along with the performance trade-offs involved in their use.
Finally, a discussion our proposed new resampling
technique is presented and discussed.

5. DISTRIBUTED RESAMPLING

In order to prevent degradation of inference in the particle
filter, resampling ensures that the effective number of
particles does not decrease over time. Here, effective
number of particles represents the total number of
statistically significant particles. It is not desirable to waste
computing resources on propagating and updating particles
with negligible weights. The effective number of particles in
any given population is calculated as:

Neff
=

^7+ N

1/

1 	 (3)

Li i= 1 \
w

k

i)2 .

Conventional Resampling Techniques

A communication-efficient conventional resampling scheme
is threshold-based resampling. In such a scheme, when the
effective number of particles is less than some threshold (i.e.
Neff < Nthr), resampling is performed. The new population of
particles { xk

(i)* : i=1,... ,N} is generated by sampling with
replacement N times from the approximate discrete
representation of the posterior state distribution given by:

N

p(x k | y k) : Z wk

i)

s(xk
—xk),	

(4)
i 1

such that p (xk
(i)*= xk

(i)) = wk
(i) . The resampled population is

independently and identically distributed with uniform
weight of 1/N.

Figure 3 – Systematic resampling.

Figure 3 shows a schematic of the resampling process (CSW
stands for the cumulative sum of the weights). The random
variable ui, j=1,... ,N is uniformly distributed on [0, 1].

In terms of computing steps, first the cumulative sum of
weights (CSW) of sampled particles (wk

j for jth particle in
the kth filter iteration) is computed. Then, as shown on the
right of the figure, uj (a uniform random number) is
systematically updated and compared with the CSW of the
particles. The particle with CSW greater than uj is
replicated. If number of particles in N, uj is sampled N times
to complete the resampling. Note that these resampling steps
are carried out in the central server (Figure 2) after it has
collected the updated particle values and their weights.

The value of Nthr chosen determines the frequency of the
resampling step. This choice governs the tradeoff between
prediction uncertainty (width of the state pdf) and
computational and communication burden. If Nthr is chosen
to be N, then resampling is performed every filter iteration.
This resampling scheme is also known as systematic
resampling. For the purposes of this paper we call this the
baseline resampling scheme. We compare the results
obtained by this method with those derived from taking Nthr

= 0.4×N.

Parametric Resampling

In this section, we present a new resampling scheme that
aims to reduce both the communication message length and
the number of messages. As, shown in the results, this leads
to a significant decrease in communication load. In the
threshold-based resampling scheme, minimizing
communication requirements corresponds to lowering the
value of Nthr would achieve that. But this can
correspondingly increase the degeneracy of the particle
weights between resampling steps. This might lead to
unacceptable uncertainty bounds for the state estimates.

Since the communication overhead of resampling stems
from the need to aggregate all particle values and weights,
the load may be somewhat reduced by performing
resampling locally at each CE for most iterations and
resampling globally (across all CEs) every few iterations.
The main issue for this scheme is to maintain the statistical
invariance property of resampling while doing so locally
(i.e. ensuring that the statistical properties of the particle
population after local resampling is unchanged). This is
achieved in two ways:
1. Each CE operates on a statistically significant number of

particles, i.e. Nn >> 1, where Nn denotes the number of
particles for CEn, (ΣNn = N). Without loss of generality
we assume that for all CEs Nn = N/M, where M is the
number of CEs.

2. Any given CEn has a particle population { (wk
(in) ,xk

(in)
):

in= 1,... ,Nn } representing the full state pdf. To ensure
this, we perform a parametric approximation of the state
pdf at the global resampling step. A mixture of
Gaussians is fitted to the particle population of each CE
using a least squares method. Thus for CEn we would
obtain the following vectors,
9k

n
 containing the means ,j,k

n
 of the j Gaussian kernels

fitted to the population (wk k(`n) ,x (in)
),

σk
n
 containing the standard deviations σj,kn of the
kernels, and

αk
n
 containing the relative weights αj,k

n
 of the kernels

such that Σj(αj,k
n
) = 1.

3. The parametric estimates of all the CEs are
communicated globally, following which the weighted
sum of all the Gaussian kernels is sampled Nn times to
generate the resampled population.

We call this technique parametric resampling. Thus, this
method attempts to decrease the communication message
length by representing the state pdf by 3 parameters as
compared to N particles. However, this new scheme also
entails additional computations for parameterizing the pdf as
well as reconstruction of pdf from the paremeters. In the
results for this method presented in the next section, we
perform threshold-based resampling locally and every 3
iterations we resample globally according to the steps
described above. With reference to the distributed the
particle filter architecture of Figure 2, the global resampling
step is performed in the central server after the individual
CEs communicate the parametric estimates to the server.

6. EXPERIMENTS AND RESULTS
	 equation (6) for the propagation of the particles (samples

from the pdf of xk). For further details, the reader is referred

Application: Battery Health Monitoring
	 to [17].

The application domain towards which this work is geared
is battery health monitoring. Batteries form a core
component of the power supply system for many machines,
and their degradation often leads to reduced performance,
operational impairment and even catastrophic failure. Thus,
robust RUL estimation algorithms for batteries are an
important research domain in prognostics. The battery aging
data used in the experiments were collected from second
generation 18650-size lithium-ion cells (i.e., Gen 2 cells)
that were cycle-life tested at the Idaho National Laboratory
under the Advanced Technology Development (ATD)
Program. The battery model used in the particle filter based
prognostic algorithm is shown in Figure 4.

Figure 4 – Lumped Parameter Model of a Battery
(revised from [17] Fig. 1).

The parameters of interest are the double layer capacitance
CDL, the charge transfer resistance RCT, the Warburg
impedance RW and the electrolyte resistance RE, whose
values change with various aging and fault processes. From
the aging data collected, RE and RCT are found to change
significantly in value, and hence, are considered to be the
state variables of interest. Exponential growth models, as
shown in equation 5, are fitted onto their aging curves to
identify the relevant decay parameters C and λ:

θ = C4 exp(λt) 	 (5)

where, θ is the model predicted value of RE or RCT. The
state and measurement equations that describe the battery
model are given below:

z0 = C; Λ0 = Λ
zk = zk- 1 . expΛk + wk

Λk = Λk- 1 + vk

xk = [zk ; Λk]

yk = zk + vk 	(6)

where, the vector z comprises RE and RCT, and C and Λ
contain their C and λ values, respectively. The z and Λ
vectors are combined to form the state vector x. The
measurement vector y comprises the battery parameters
inferred from the test data. The noise samples w, v and v are
picked from zero mean Gaussian distributions whose
standard deviations are derived from the training data. The
particle filter uses the parameterized model described in

Experiment Details and Results

The system architecture used is the same as outlined in
Figure 2. The CE in our experiments is the Sun SPOT
device. The resampling schemes along with their
corresponding communication models were designed and
simulated in MATLAB (version 8a). The times spent in
message sending and receiving were measured using the
SPOT device and the corresponding values were integrated
into the simulation model. The software development for the
Sun SPOTs was done using Netbeans IDE version 5.0.
Besides the new scheme proposed in this paper, simulations
for the baseline and threshold-based resampling schemes
were also performed for comparison. Simulation and
measurement of communication time were carried out for 2,
3 and 4 SPOT devices. For the case of 2 SPOT devices, one
of them acts as the central server while the other is a CE. In
all the 3 cases, the central server also performs sampling and
weight updating.

Each state was a 2-dimensional vector. Also, parameter
identification was done along with state estimation, hence 2-
dimensional parameter values were also part of the particle
along with the state values. The number of particles used
was 100. Prognostics is performed by first carrying out state
tracking for a few iterations followed by computation of the
RUL or time-to-failure (TTF).

Figure 5 – Particle filter prediction pdfs for 3
resampling schemes.

Figure 5 shows the prediction pdfs for the 3 different
resampling schemes for the case of distribution over 2 CEs.
Two test cases for prediction were used; for the first case
tracking was performed till week 32 while for the second
case tracking was done till week 48 after which tracking and
RUL estimation were carried out. The original dataset

contained aging data till week 72. From Figure 5 it may be
observed that the RUL pdf improves in both accuracy
(centering of the pdf over the actual failure point) and
precision (spread of the pdf over time) for prediction at 48
weeks compared to prediction at 32 week as more
measurements are included before prediction. The actual
RUL for the given data set was at 64.4563 weeks.

The comparison of communication performance for the 3
resampling schemed for prediction at 32 weeks is shown in
Figure 6 while the same for prediction at 48 weeks is shown
in Figure 7. The communication time increases as the
number of CEs is increases, since this causes an increase in
the number of messages being sent. With more CEs, the
number of particles being handled by a single CE decreases,
however the total number of particles that needs to be
distributed by the central server increases. Thus, for 2CEs,
the central server needs to send only 50 particles to the other
CE (each of them operate on 50 particles), but for 4CEs 75
particle values need to be sent out to the remaining 3 CEs as
each of them now handle 25 particles each.

Figure 6 – Comparison of communication times for
prediction at 32 weeks.

performs the remaining two resampling schemes by a wide
margin. However, this improvement in communication also
results in increase in computation as now additional
computations parameterizing the pdf at each CE and
recreation of pdf from parameters at the central server will
have to be performed. The effects of this increase in
computation as well as efficient algorithms to perform the
computations are an important direction for future studies.
Note that the communication times for prediction at 32
weeks are slightly less compared to the corresponding
results for prediction at 48 weeks. This is due to the fact that
the prediction part of the algorithm does not involve
resampling and hence does not encounter performance
degradation due to serialization. Thus more tracking results
in more communication and hence higher execution time.
The choice of how long tracking should be done is clearly
and important design trade-off issue as it significantly
impacts the accuracy of the prediction.

7. CONCLUSIONS

A new resampling scheme for distributed implementation of
particle filters has been discussed in this paper. Analysis and
comparison of this new scheme with existing resampling
schemes in the context for minimizing communication
overhead have also been discussed. Our proposed new
resampling scheme performs significantly better compared
to other schemes by attempting to reduce both the
communication message length as well as number total
communication messages exchanged while not
compromising prediction accuracy and precision.

Future work will explore the effects of the new resampling
scheme in the overall computational performance of the
whole system as well as full implementation of the new
schemes on the Sun SPOT devices. Exploring different
network architectures for efficient communication is an
importance future research direction as well.

REFERENCES

Figure 7 – Comparison of communication times for
prediction at 48 weeks.

The results clearly show that parametric resampling out

[1] M. Roemer, C. Byington, G. Kacprzynski and G.
Vachtsevanos, “An Overview of Selected Prognostic
Technologies with Reference to an Integrated PHM
Architecture”, In Proc. of the First Intl. Forum on
Integrated System Health Engineering and Management
in Aerospace, 2005.

[2] J. Schmalzel, F. Figueroa, J. Morris, S. Mandayam and R.
Polikar, “An Architecture for Intelligent Systems Based
on Smart Sensors”, IEEE Transactions on
Instrumentation and Measurement, Vol. 54, No. 4, Aug.
2005, pp. 1612-1616.

[3] M. Prokopenko, P. Wang, D. C. Price, P. Valencia, M.
Foreman, A. J. Farmer, “Self-organizing Hierarchies in
Sensor and Communication Networks”. Artificial Life,
Special Issue on Dynamic Hierarchies, Vol. 11(4), 407-
426, 2005.

[4] A. S. Bashi, V. P. Jilkov, X. R. Li and H. Chen,
“Distributed Implementations of Particle Filters”, in
Proc. Of Sixth International Conference of Information
Fusion, 2003. Volume: 2, pp: 1164- 1171.

[5] S. Saha, C. Shen, C. Hsu, A. Veeraraghavan, G.
Aggarwal, A. Sussman and S. S. Bhattacharyya, “Model-
based OpenMP Implementation of a 3D Facial Pose
Tracking System”, in Proc. of the Wkshp. on Parallel and
Distributed Multimedia, Columbus, Ohio, Aug. 2006, pp.
66-73.

[6] M. Bolic, P. M. Djuric and S. Hong, “Resampling
Algorithms and Architectures for Distributed Particle
Filters”, IEEE Transactions on Signal Processing, Vol.
53, Issue: 7 pp. 2442- 2450 July 2005.

[7] M. Coates, “Distributed Particle Filters for Sensor
Networks”, in Third Intl. Symp. on Information
Processing in Sensor Networks, 2004, pp. 99- 107.

[8] G. Ing and M. J. Coates, “Parallel Particle Filters for
Tracking in Wireless Sensor Networks”, In IEEE 6 th

Workshop on Signal Processing Advances in Wireless
Communications, 5-8 Jun. 2005, pp. 935- 939.

[9] X. Sheng, Y.-H. Hu and P. Ramanathan, “Distributed
Particle Filter with GMM Approximation for Multiple
Targets Localization and Tracking in Wireless Sensor
Network”, in Fourth Intl. Symp. on Information
Processing in Sensor Networks, 2005, pp. 181- 188.

[10]M. Rosencrantz, G. Gordon and S. Thrun,
“Decentralized Sensor Fusion with Distributed Particle
Filters”, in Proc. Conf. Uncertainty in Artificial
Intelligence Acapulco, Mexico, Aug.2003.

[11]J. L. Williams, J. W. Fisher and A. S. Willsky,
“Approximate	 Dynamic	 Programming	 for
Communication-Constrained Sensor Network
Management”, IEEE Transactions on Signal Processing,
Vol. 55, Issue 8, Aug. 2007, pp. 4300-4311.

[12]S. S Iyengar, Q. Wu, N. S. V. Rao, “Networking
paradigm for distributed sensor networks”, In Proc. of
the Second IEEE International Workshop on Intelligent
Data Acquisition and Advanced Computing Systems:
Technology and Applications, Sept. 8-10, 2003, pp. 284-
290.

[13]W. Wang, S. Lafortune and F. Lin, “A Polynomial
Algorithm for Minimizing Communication in a
Distributed Discrete Event System with a Central
Station”, In Proc. Of 45th IEEE Conference on Decision
& Control, San Diego, CA, USA, December 13-15,
2006.

[14]S. Saha, B. Saha and K. Goebel, “Distributed Prognostics
Using Wireless Embedded Devices”. In IEEE
International Conference on Prognostics and Health
Management, Denver, CO, USA, October 2008.

[15]S. Arulampalam, S Maskell, N. J Gordon and T. Clapp,
“A Tutorial on Particle Filters for On-line Non-
linear/Non-Gaussian Bayesian Tracking”, IEEE Trans.
on Signal Processing, vol. 50, no. 2, pp. 174-188, 2002.

[16]N. J. Gordon, D. J. Salmond and A. F. M. Smith, “Novel
Approach to Nonlinear/Non-Gaussian Bayesian State
Estimation”, Radar and Signal Processing, IEE
Proceedings F, vol. 140, no. 2, pp. 107-113, April 1993.

[17]B. Saha and K. Goebel, “Uncertainty Management for
Diagnostics and Prognostics of Batteries using Bayesian
Techniques”, in Proc. 2008 IEEE Aerospace Conference,
March 2008.

BIOGRAPHIES

Sankalita Saha received her B. Tech
(Bachelor of Technology) degree in
Electronics and Electrical
Communication Engineering from
Indian Institute of Technology,
Kharagpur, India in 2002 and Ph.D.
degree in Electrical and Computer
Engineering from University of
Maryland, College Park in 2007. She is
currently a post-doctoral scientist
working at RIACS/NASA Ames

Research Center, Moffett Field, CA. Her research interests are in
prognostics algorithms and architecture, distributed systems and
system synthesis.

Bhaskar Saha is a Research
Programmer with Mission Critical
Technologies at the Prognostics Center
of Excellence, NASA Ames Research
Center. His research is focused on
applying various classification,
regression and state estimation
techniques for predicting remaining
useful life of systems and their
components. He has also published a
fair number of papers on these topics.

Bhaskar completed his PhD from the School of Electrical and
Computer Engineering at Georgia Institute of Technology in 2008.
He received his MS from the same school and his B. Tech.
(Bachelor of Technology) degree from the Department of
Electrical Engineering, Indian Institute of Technology, Kharagpur.

Kai Goebel is a senior scientist at
NASA Ames Research Center where he
leads the Prognostics Center of
Excellence (prognostics.arc.nasa.gov).
Prior to that, he worked at General

• Electric’s Global Research Center in
Niskayuna, NY from 1997 to 2006 as a
senior research scientist. He has
carried out applied research in the
areas of artificial intelligence, soft

I computing, and information fusion. His
research interest lies in advancing these techniques for real time
monitoring, diagnostics, and prognostics. He has fielded numerous
applications for aircraft engines, transportation systems, medical
systems, and manufacturing systems. He holds half a dozen patents
and has published more than 75 papers. He received the degree of
Diplom Ingenieur from the Technische Universität München,
Germany in 1990. He received the M.S. and Ph.D. from the
University of California at Berkeley in 1993 and 1996,
respectively.

