
34 NASA Tech Briefs, November 2009

plete experimental data or from theoret-
ical calculations that involved question-
able assumptions.

The method can be implemented by
use of any of a variety of digital proces-
sors comprising hardware and software
subsystems capable of simulating flows.
The hardware subsystem could be, for
example, a microprocessor, a main-
frame computer, a digital signal proces-
sor, or a portable computer. The soft-
ware subsystem can include any of a
number of flow solvers — that is, com-
puter programs that solve the govern-
ing equations of flow. One such pro-
gram that is particularly suitable for
use in this method is ARC2D, which
utilizes finite-difference techniques to
numerically solve the Reynolds-aver-
aged Navier-Stokes equations of two-di-
mensional compressible flow.

At the beginning of a process using
this method, the processor receives a de-
scription of the airfoil and a pre-input
file, which contains parameters represen-
tative of the ranges of flow conditions in
which the airfoil is to be tested via com-
putational simulations. The processor
can perform steady-state and/or time-ac-
curate calculations for simulating flows.
Steady-state calculations are typically ap-
plicable to such conventional flow condi-
tions as small angles of attack with fully
attached flows for which the solutions
are independent of time. Time-accurate
calculations model the temporal behav-
iors of time-varying flows.

The upper part of the figure illus-
trates steady-state calculations accord-
ing to this method. After reading the
pre-input file, the processor determines
whether the steady-state calculations
specified by that file have been com-
pleted. If the calculations have not
been completed, the processor gener-
ates a flow-solver input file, then the
processor executes the flow solver using
this input file. If the output of the flow
solver includes a negative density or
pressure, which is physically impossible,
then the pseudo-time step used in the
flow solver is reduced and the flow
solver is run again using the same in-
puts. This sub-process is repeated, if
necessary, until neither the pressure
nor the density in the output of the flow
solver is negative, at which point the
output of the flow solver is concate-
nated into an output file. Next, the
processor analyzes the residual history
of forces and pitching moments and in-
crements the run count. The processor
then returns to the step in which it de-
termines whether the steady-state calcu-
lations have been completed. If the cal-
culations are found to have been
completed, the processor determines
whether satisfactory results were ob-
tained. If satisfactory results were not
obtained, the processor switches to
time-accurate mode.

The lower part of the figure depicts
time-accurate calculations according to
this method. First, the processor deter-

mines whether the time-accurate calcu-
lations have been completed. If not, the
processor adjusts the physical time step
or the maximum allowable value,
CFLMAX, of the Courant-Friedrichs-Levy
number. [The Courant-Friedrichs-Levy
number (CFL) is the product of a time
step and a speed characteristic of the
flow.] Next, the processor generates a
flow-solver input file using the adjusted
physical time step or adjusted CFLMAX.
If negative density or pressure is found
in the output of the flow solver, then the
physical time step or CFLMAX is further
adjusted, a corresponding new flow-
solver input file is generated, and the
flow solver is run again. This subprocess
is repeated, if necessary, until neither
the pressure nor the density is negative.
Next, the processor analyzes the force
and moment histories and increments
the run count. The processor then re-
turns to the step in which it determines
whether the time-accurate or the steady-
state calculations have been completed.
If the time-accurate calculations are
found to have been completed, or if the
steady-state calculations have been com-
pleted with satisfactory results, then the
processor writes the results into an out-
put file. 

This work was done by Roger Strawn of the
U.S. Army and E. A. Mayda and C. P. van
Dam of the University of California for Ames
Research Center. Further information is con-
tained in a TSP (see page 1).
ARC-15649-1 

Progressive Classification Using Support Vector Machines
An approximate classification is generated rapidly, then iteratively refined over time.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An algorithm for progressive classifi-
cation of data, analogous to progressive
rendering of images, makes it possible
to compromise between speed and ac-
curacy. This algorithm uses support vec-
tor machines (SVMs) to classify data.
An SVM is a machine learning algo-
rithm that builds a mathematical model
of the desired classification concept by
identifying the critical data points,
called support vectors. Coarse approxi-
mations to the concept require only a
few support vectors, while precise,
highly accurate models require far
more support vectors. Once the model
has been constructed, the SVM can be
applied to new observations. The cost
of classifying a new observation is pro-

portional to the number of support vec-
tors in the model. When computational
resources are limited, an SVM of the ap-
propriate complexity can be produced.
However, if the constraints are not
known when the model is constructed,
or if they can change over time, a
method for adaptively responding to
the current resource constraints is re-
quired. This capability is particularly
relevant for spacecraft (or any other
real-time systems) that perform on-
board data analysis. 

The new algorithm enables the fast,
interactive application of an SVM clas-
sifier to a new set of data. The classifi-
cation process achieved by this algo-
rithm is characterized as progressive

because a coarse approximation to the
true classification is generated rapidly
and thereafter iteratively refined. The
algorithm uses two SVMs: (1) a fast, ap-
proximate one and (2) slow, highly ac-
curate one. New data are initially clas-
sified by the fast SVM, producing a
baseline approximate classification.
For each classified data point, the algo-
rithm calculates a confidence index
that indicates the likelihood that it was
classified correctly in the first pass.
Next, the data points are sorted by
their confidence indices and progres-
sively reclassified by the slower, more
accurate SVM, starting with the items
most likely to be incorrectly classified.
The user can halt this reclassification

cdancy
Highlight



NASA Tech Briefs, November 2009 35

process at any point, thereby obtaining
the best possible result for a given
amount of computation time. Alterna-
tively, the results can be displayed as
they are generated, providing the user
with real-time feedback about the cur-
rent accuracy of classification.

Computational savings are realized
through the guided application of re-
sources only to those items that are es-
timated to be misclassified. The coarse
approximation may suffice for items

that can be classified easily, and more
computation can be devoted to am-
biguous or difficult cases. Thus, the al-
gorithm enables the user to exert di-
rect, dynamic control over the balance
between classification speed and accu-
racy. When constraints on computation
time and other resources preclude a to-
tally accurate classification of all the
data, this algorithm provides the best
possible approximation to the classifi-
cation of each item, rather than fully

classifying only a fraction of the data
set and leaving the rest marked “un-
known.”

This work was done by Kiri Wagstaff and
Michael Kocurek of Caltech for NASA’s Jet
Propulsion Laboratory. Further information is
contained in a TSP (see page 1).

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-44089.

Active Learning With Irrelevant Examples
Classification algorithms can be trained to recognize and reject irrelevant data.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An improved active learning method
has been devised for training data classi-
fiers. One example of a data classifier is
the algorithm used by the United States
Postal Service since the 1960s to recog-
nize scans of handwritten digits for pro-
cessing zip codes. Active learning algo-
rithms enable rapid training with
minimal investment of time on the part
of human experts to provide training ex-
amples consisting of correctly classified
(labeled) input data. They function by
identifying which examples would be
most profitable for a human expert to
label. The goal is to maximize classifier
accuracy while minimizing the number
of examples the expert must label.

Although there are several well-estab-
lished methods for active learning, they
may not operate well when irrelevant ex-
amples are present in the data set. That

is, they may select an item for labeling
that the expert simply cannot assign to
any of the valid classes. In the context of
classifying handwritten digits, the irrele-
vant items may include stray marks,
smudges, and mis-scans. Querying the
expert about these items results in
wasted time or erroneous labels, if the
expert is forced to assign the item to one
of the valid classes.

In contrast, the new algorithm pro-
vides a specific mechanism for avoiding
querying the irrelevant items. This algo-
rithm has two components: an active
learner (which could be a conventional
active learning algorithm) and a rele-
vance classifier. The combination of
these components yields a method, de-
noted Relevance Bias, that enables the
active learner to avoid querying irrele-
vant data so as to increase its learning

rate and efficiency when irrelevant items
are present.

The algorithm collects irrelevant data
in a set of rejected examples, then trains
the relevance classifier to distinguish be-
tween labeled (relevant) training exam-
ples and the rejected ones. The active
learner combines its ranking of the items
with the probability that they are relevant
to yield a final decision about which item
to present to the expert for labeling. Ex-
periments on several data sets have
demonstrated that the Relevance Bias
approach significantly decreases the
number of irrelevant items queried and
also accelerates learning speed.

This work was done by Kiri Wagstaff of Cal-
tech and Dominic Mazzoni of Google, Inc. for
NASA’s Jet Propulsion Laboratory. For more in-
formation, contact iaoffice@jpl.nasa.gov. 
NPO-44094

A simple 2D M×N matrix involving
sample preparation enables the micro-
analyst to peer below the noise floor of
element percentages reported by the
SEM/EDX (scanning electron mi-
croscopy/energy dispersive x-ray)
analysis, thus yielding more meaning-
ful data.

Using the example of a 2×3 sample
set, there are M = 2 concentration levels

of the original mix under test: 10 per-
cent ilmenite (90 percent silica) and 20
percent ilmenite (80 percent silica). For
each of these M samples, N = 3 separate
SEM/EDX samples were drawn. In this
test, ilmenite is the element of interest.
By plotting the linear trend of the M
sample’s known concentration versus
the average of the N samples, a much
higher resolution of elemental analysis

can be performed. The resulting trend
also shows how the noise is affecting the
data, and at what point (of smaller con-
centrations) is it impractical to try to ex-
tract any further useful data.

This work was done by John Lane of
Kennedy Space Center. For further informa-
tion, contact the Kennedy Innovative Part-
nerships Program Office at (321) 861-7158.
KSC-13303

A Data Matrix Method for Improving the Quantification of
Element Percentages of SEM/EDX Analysis
John F. Kennedy Space Center, Florida


