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The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a
unique test platform available for use on the NASA F-15B airplane, tail number 836, as a
modular host for a variety of aerodynamics and propulsion research. The first experiment
that is to be flown on the test fixture is the Channeled Centerbody Inlet Experiment. The
objectives of this project at Dryden are twofold: 1) flight evaluation of an innovative new
approach to variable geometry for high-speed inlets, and 2) flight validation of channeled
inlet performance prediction by complex computational fluid dynamics codes. The inlet
itself is a fixed-geometry version of a mixed-compression, variable-geometry, supersonic in-
let developed by TechLand Research, Inc. (North Olmsted, Ohio) to improve the efficiency
of supersonic flight at off-nominal conditions. The concept utilizes variable channels in the
centerbody section to vary the mass flow of the inlet, enabling efficient operation at a range
of flight conditions. This study is particularly concerned with the starting characteristics
of the inlet. Computational fluid dynamics studies were shown to align well with analytical
predictions, showing the inlet to remain unstarted as designed at the primary test point of
Mach 1.5 at an equivalent pressure altitude of 29,500 ft local conditions. Mass-flow-related
concerns such as the inlet start problem, as well as inlet efficiency in terms of total pressure
loss, are assessed using the flight test geometry.

Nomenclature

A∗ inlet throat area
A∗n nozzle throat area
A1 inlet capture area
A2 inlet entrance area
KSD subsonic inlet loss factor
M Mach number (general)
x axial distance, in
CCB Channeled Centerbody
CCIE Channeled Centerbody Inlet Experiment
CFD computational fluid dynamics
DFRC Dryden Flight Research Center
ECB Equivalent Centerbody
NASA National Aeronautics and Space Administration
PFTF Propulsion Flight Test Fixture
RAGE Rake Airflow Gage Experiment
SBIR Small Business Innovation Research
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I. Introduction

The Propulsion Flight Test Fixture (PFTF) system at the National Aeronautics and Space Administra-
tion (NASA) Dryden Flight Research Center (DFRC) (Edwards, California) provides an innovative and

cost-effective method of flight-testing advanced propulsion system concepts and components in a relevant
environment using an F-15B flight testbed airplane, tail number 836.

Figure 1. One of the NASA Dryden
Flight Research Center F-15B aircraft,
tail number 836, shown in flight with
the Propulsion Flight Test Fixture py-
lon.

The F-15B (The Boeing Company, Chicago, Illinois) is a two-
seat trainer version of the F-15 high-performance, supersonic air
superiority fighter airplane. It is powered by two Pratt & Whit-
ney (Hartford, Connecticut) F100-PW-100 afterburning turbofan
engines. The PFTF attaches to the centerline pylon of the airplane
and has an integrated six-axis force balance for flight-testing propul-
sion experiments.1 A photograph of the F-15B airplane in flight with
the PFTF pylon attached is presented as Fig. 1.

The Channeled Centerbody Inlet Experiment (CCIE) is a mixed-
compression inlet designed by TechLand Research, Inc. (North Olm-
sted, Ohio). The CCIE is a fixed-geometry version of the variable-
geometry translating channeled centerbody (TCCB), which was de-
signed to address the problem of changing mass flow requirements
for supersonic inlets as they pass through different flight conditions.
The CCIE is designed to study the operation of the TCCB at off-
design Mach numbers, specifically to assess the mass-flow, pressure
recovery, and inlet face distortion of with the channels fully open.
Data will be compared against an equivalent smoothed centerbody
with no channels but having the same area ratios. A solid model of
the CCIE is shown in Fig. 2.

High-speed supersonic inlets typically require designs that ac-
commodate a wide range of throat area; neglecting this in the inlet design leads to extremely inefficient
operation at off-design conditions due to improper mass flow ingested by the engine. The CCIE, originally
patented by TechLand as the Translating Channeled Centerbody (U.S. Patent Nos. 6,276,632 and 6,705,569),
was the result of a Small Business Innovation and Research (SBIR) contract to address flight evaluation for
this new approach to variable geometry for high-speed inlets, as well as validation of engine face distor-
tion prediction by complex computational fluid dynamics (CFD) codes.2 The translating centerbody inlet
designed by TechLand is shown in Figs. 3(a) and 3(b); both images are taken from Ref. 2.

Figure 2. Solid model of the Channeled
Centerbody Inlet Experiment, shown
mounted to the Propulsion Flight Test
Fixture pylon with duct and throttling
nozzle.

Though the research is applicable to the general case of variable-
geometry supersonic inlets, the CCIE was specifically designed for
the Rocket-Based Combined Cycle (RBCC) engine that was under
internal NASA development in the early 2000s, and was to even-
tually be flight-tested at DFRC.3 The program was put on hold
before completion.

For airbreathing high-supersonic and hypersonic engines, in-
lets such as the CCIE are expected to provide even greater effi-
ciencies than those already predicted for launch vehicle stages us-
ing combined-cycle engines, by allowing for improved performance
in the off-nominal, low-supersonic regime. Beyond providing a
method of allowing for variable mass-flow (and thus variable duct
start/unstart characteristics) in the inlet, the channels also will
have two secondary effects on the internal flow: distortion and
swirl. Because of the sharp features of the channels, flow distor-
tion and swirl are expected to occur, especially at flight conditions
where the incoming farfield is non-axial. Distortion is generally
considered detrimental, as it is associated with increased loss of
stagnation (total) pressure. However, particularly for ramjet-type
combustors found in combined-cycle engines, swirl can actually in-
crease combustion efficiency via increased mixing.4 The tradeoff

between these effects is a complex problem and beyond the scope of this paper.

2 of 14

American Institute of Aeronautics and Astronautics



(a) Fully closed configuration.

(b) Fully open configuration.

Figure 3. TechLand’s translating channeled centerbody inlet; images are taken from Ref. 2.
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The configuration presented for analysis is one of two that will be later flight-tested on the F-15B
PFTF. The Channeled Centerbody (CCB) configuration is the CCIE in the specific geometry of being fully
actuated (e.g., channels positioned for maximum mass-flow). The configuration analyzed in this study is the
Equivalent Centerbody (ECB), a smoothed centerbody that provides the same area distribution as the CCB,
but without any channels. Inviscid, viscous/laminar, and viscous/turbulent computations are performed at
a range of Mach numbers, and the inlet start curve is assessed.

The inlet starting characteristics are important to know prior to flight-testing, as the CCIE was designed
to operate in an unstarted state at an off-design flight condition of Mach 1.5, which will be tested during
the planned research flights. The unstarted condition at this Mach number is expected to be stable, which
is a positive influence on the safety of the F-15B captive-carry flight tests. Analysis must be conducted,
however, to verify this.

TechLand Research, Inc. previously performed extensive axisymmetric and reduced-three-dimensional
CFD analysis on the channeled and equivalent centerbody configurations during the design process, including
assessments of mass flow, pressure ratio, and distortion.5 The present study extends these computational
results by using an axisymmetric geometry that is more accurate to the flight hardware.

The geometry definition for this study is shown in Fig. 4, which shows contours as a function of axial
distance for the external cowl, the ECB, the CCB channel floor, and the CCB main centerbody. The inlet
throat (A∗) and inlet entrance area (A2) are indicated on the figure. Note that the scale on the vertical axis is
stretched; the exaggeration is for clarity in demonstrating the differences between the contours. TechLand’s
geometries define x = 0 as the point where the forebody spike is located when the spike is fully retracted (on
the variable-geometry translating channeled centerbody). This off-design configuration has the spike slightly
extended, with the spike tip at x = -2.035 inches. Behind the inlet configuration are the duct and throttling
nozzle. A plot of the area ratio for both the TechLand and the DFRC configurations, including the duct
and throttling nozzle, is shown in Fig. 5. The nozzle throat area (A∗n) is shown for reference.

While the two inlets have similar throat areas (near x = 13 inches on the graph), the nature of the
contours can be seen to differ between the throat and the aft end of the inlet, and the hardware (DFRC)
throat is slightly smaller than the TechLand throat. The differences between the TechLand design and the
flight test article form a significant part of the impetus for this study; a model truer to the flight hardware
than the TechLand model should be analyzed prior to flight.

The results from this study will be used in the flight test planning process for the CCIE, which at present
is planned for flight on the NASA DFRC F-15B, tail number 836, in calendar year 2010.

II. Theoretical Background and Analytical Calculations

Analytical techniques for calculating shock location, mass ingestion, and other basic compressible gas
dynamic properties of internal flow exist as per several notable references, including an early, definitive work
on the subject by Rudolph Hermann,6 the classic NACA paper by Kantrowitz and Donaldson,7 as well as
more modern texts by Anderson8 and Mattingly.9 Despite the validation of these analytical methods at
various specific test points, care should be taken to account for all assumptions made; for example, actual
supersonic internal flows (especially in mixed-compression inlets) are quite complex, typically consisting
of linked systems of oblique and normal shocks, viscous effects, and also the combined phenomenon of
shock/boundary-layer interaction.6 These phenomena prompt a healthy degree of caution when applying
analytical methods to real inlets.

In general, these classical analytical techniques, including those of Hermann and Kantrowitz, provide
a simplified treatment of the detailed flow physics; the mixed-compression scenario that supports a shock
train of multiple oblique shocks inside the inlet is typically not considered directly. The core principle is,
however, that the inlet throat must be large enough to pass a starting shock, which is a normal shock that
sweeps through the inlet with the onset of supersonic flow. The minimum swallowing throat required to
pass this shock is always larger than the theoretical (optimum) isentropic De Laval nozzle solution, giving
rise to the supersonic inlet starting problem: that the inlet does not start at the isentropic De Laval critical
area ratio, but instead requires the throat area to be much larger. The Kantrowitz limit was found to be
generally conservative at higher Mach numbers as compared to test data by Van Wie, et al.10 By virtue of
their mathematical equivalence, it can be concluded that the Kantrowitz limit is similarly conservative in
the general case.

It is straightforward to derive from basic flow relations a starting point, the isentropic area-Mach relation.
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Figure 4. Axial geometry definition for the outer cowl, equivalent centerbody, channeled centerbody, and
channel floor.

Figure 5. Comparison of the TechLand (equivalent center body) and DFRC (flight) geometries used for CFD.
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Using this equation and the known value of A1
A∗ = 1.79, the isentropic limit Mach number for the CCIE was

found to be 1.41. It should be noted that this is the freestream Mach number limit, not the inlet entrance
Mach number, which is behind two conical shocks and the forebody compression surface.

As derived by multiple sources, one may then arrive at the Kantrowitz Limit by beginning with a variant
of the standard area-Mach relation, which provides the mass flow per unit area in a hypothetical duct at a
particular Mach number as a simple consequence of conservation of mass. In order to be able to do this, a
contraction ratio is typically defined as the inlet entrance area (A2) over the inlet throat area (A∗).

To account for the starting shock, as the total temperature remains constant over a normal shock (as-
suming adiabatic flow), the reduction in possible mass flow over such a shock arises solely from a reduction
in total pressure; therefore, as shown in Eq. 1, one can take the physical area contraction ratio required
by conservation of mass for a sonic throat, and multiply by the total pressure ratio over a normal shock to
arrive at Kantrowitz’s maximum contraction ratio that permits swallowing of the starting shock:

(
A

A∗

)
max,start

=
M

γ
γ−1−1

[
γ+1
γ−1

]γ+1/γ−1 [
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2
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(1)

This is mathematically equivalent to the inverse of Hermann’s swallowing function, shown in Eq. 2, which
describes instead the minimum swallowing-throat as:
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1
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(2)

Both of these functions are general functions of Mach number. For example, by plugging in the Mach
number at the entrance to the inlet (M2) into Eq. 2, one may arrive at the particular ratio A∗

A2
for the

minimum value of throat area A∗ to swallow the starting shock. These analytical methods may be used
to arrive at a baseline rough estimate of the minimum starting Mach number for the CCIE by starting the
analysis from the point where flow enters the inlet. This will require estimating the flow behind the two
three-dimensional conical shocks generated by the forebody.

The forebody/spike of the CCIE is biconic, which does not lend itself to an easy analytical post-shock
solution; however, the average half-angle of the two cones (7.5o and 8.5o) is 8o. Using this rough estimate
of an average right cone, a Taylor-Maccoll solution could be obtained for the flowfield behind the assumed
single conical shock. Tabulated results of the Taylor-Maccoll equations and summaries of their significance
may be found from a number of sources, one fine example of which is that by Sims.11 Using the Mach
number on the surface of the cone behind the assumed conical shock as the inlet entrance Mach number, the
Kantrowitz limit freestream Mach number for the CCIE inlet was determined from Eq. 1 to be 1.44, which
is only very slightly higher than the isentropic limit for this relatively small contraction ratio. This result is
the identical result found from Hermann’s swallowing function.

While the inlet might now be expected to theoretically start at Mach 1.44, there is an additional factor:
the throttling nozzle aft of the duct, which was designed to choke the flow such that the inlet will remain
unstarted at Mach numbers well higher than the inlet starting limit. As per Hermann,6 the critical nozzle
throat area ratio, where the upstream shock first touches the cowl lip may be found from Eq. 3:(

A∗n
A2

)
=
ϑ(M̄2)
KSD

(3)

where A∗n is the critical nozzle throat area, and KSD is a factor that accounts for losses specifically in
the subsonic inlet (downstream of the inlet terminal shock). Assuming 5% losses in the subsonic diffuser
downstream of the normal shock, the critical Mach number due to nozzle throttling was determined to be
1.81. This is the expected starting Mach number for the combined system of the inlet and throttling nozzle.

Figure 6 shows the two curves of Kantrowitz limit and isentropic limit versus freestream Mach number,
along with the critical Mach number associated with the nozzle throttling ratio. It should be reemphasized,
however, that the freestream Mach number is not what was used in the contraction ratio or swallowing
function equation in order to generate the curve; the Taylor-Maccoll estimate of the inlet entrance Mach
number behind the CCIE forebody, given that particular freestream Mach number, is what was used. For
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example, if the freestream Mach number (x-axis) is 1.5, the Taylor-Maccoll post-shock Mach number along
the surface of a 16-degree cone is 1.245. This value is then used to calculate the isentropic and Kantrowitz
limits shown in Fig. 6, resulting in curves that are shifted to the right relative to a standard graph showing
the curves as direct functions of freestream Mach number.

Figure 6. Maximum theoretical ratio of inlet entrance
area to throat area that will allow starting, calculated
using post-conical-shock Mach number and plotted ver-
sus freestream Mach number.

The actual contraction ratio for the CCIE geom-
etry (shown in red) is shown for reference.

As described in Barber et al,12 whose analytical
and computational approach on hypersonic inlets is
very similar to that of the present study, supersonic
inlet flow follows three basic phases when starting.
From the isentropic limit, when sonic flow is first
established at the throat, a normal shock is present
in front of the inlet entrance. As the Mach number
is increased (moving toward the right along the red
line in Fig. 6), the Kantrowitz limit is eventually
reached. If there is no additional throttling nozzle,
then the inlet will theoretically start at this limit;
otherwise, the Mach number must be increased fur-
ther to the critical Mach number as determined by
the nozzle throttling ratio.

Upon swallowing, the terminating normal shock
is in the supercritical position downstream of the
throat that allows the inlet to continue operating at
the pressure ratio prior to swallowing.6 In order to
achieve the higher efficiencies of operating critically
(and thus to push the post-start total pressure ratio
curve upward), the inlet at this point would have
to be backed off to either a slower Mach number, a
narrower throat, reduced bleed (if any were present
for starting), increased back-pressure, or some com-

bination thereof. The theoretical optimum point to operate the inlet would be with the normal shock
swallowed and just aft of the throat. However, any operating point that involves the shock even slightly fore
of the throat is an unstable condition, and would result in an inlet unstart.

These analyses were based on many assumptions. The true biconic nature of the CCIE forebody was
simplified to a single, average right-circular cone. The average flow Mach number for the inlet entrance was
assumed to be equal to the surface Mach number on this average cone, and the inlet entrance was assumed
to be inviscid. Spillage effects from the off-nominal flight conditions were not taken into account. Though
the distance from the inlet entrance to the throat is only approximately one-half inch, neither the effects of
viscosity nor the effects of the oblique shocks that are most certainly present between these two points were
considered. Despite this list of simplifications, the analytical calculation provided a reasonable estimate of
the more rigorous computational results, as will be demonstrated.

III. Computational Analysis

Computational fluid dynamics analysis was performed to extend the analytical predictions and study the
problem in more depth. Since the phenomenon of inlet unstart is primarily dependent on area distribution,
the CCB unstart characteristics should be at least similar to those of the ECB, which provides for a simpler
analysis due to the axisymmetric geometry. The axisymmetric block topology of the ECB is shown with
the duct and throttling nozzle (included in this present study) attached in Fig. 7. The grid extends much
further downstream (right) and outward (up), but in the interest of showing detail in the CCIE, the image
was zoomed in on the area of interest.

Twenty-two interdependent CFD cases were performed using the VULCAN (Viscous Upwind aLgorithm
for Complex flow ANalysis) flow solver, developed and maintained by the Hypersonic Airbreathing Propulsion
Branch at the NASA Langley Research Center (LaRC). The VULCAN code is a turbulent, non-equilibrium,
finite-rate chemical kinetics, Navier-Stokes flow solver for structured, cell-centered, multiblock grids. The
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Figure 7. Block topology of the Equivalent Centerbody, shown with the duct and throttling nozzle on the aft
end.

computation used a 2nd-Order upwind solver, Van Leer flux limiting, and Edwards low-dissipation flux-
splitting scheme (LDFSS).13

Freestream static conditions for the analyses were set to the various Mach numbers at 29,500 ft pressure
altitude (1976 U.S. Standard Atmosphere). A Mach number of 1.5 at this pressure altitude corresponds
to the local conditions under the F-15B (behind the forebody shockwaves and inlet effects of the airplane)
necessary for the flight experiment. A previous flight program, called the Rake Airflow Gage Experiment
(RAGE) helped to determine the local flowfield angularity and in-flight airplane Mach numbers necessary
for the desired local flight conditions at the PFTF. The RAGE program is described in Ref. 1.

A. Inviscid Computation

Cases were run using an Euler solver for Mach numbers 1.0 to 2.0, in increments of 0.1. Care was taken to
converge a solution at Mach 1.0 to serve as a starting point. Initially, it was thought that each subsequent
solution should be developed incrementally by using the output restart files of the previous Mach number
as the initialization flowfield for the next (higher) computation. This was intended to simulate the starting
process of the inlet; however, this led to the amplification of what were initially tiny numerical instabilities
in each incremental solution. Because this method is essentially a long combined run of a large number of
iterations, numerical errors in the solution scheme build cumulatively. Instead of using artificial viscosity or
other damping techniques that may adversely influence the solution, the instability problem was addressed
by using the converged Mach 1.0 case as a starting point for the Mach 1.1 through Mach 1.5 cases, and the
clean Mach 1.5 case as the starting point for the Mach 1.6 through Mach 2.0 cases.

A close-up view of the inviscid grid, showing the inlet portion only, is presented in Fig. 8. The grid is a
seven-zone axisymmetric slice of the equivalent centerbody configuration, with the upstream zones aligned
with the local Mach wave angle to improve shock capture. The external flow of the inlet is modeled via
the outer zones, including the boattail portion of the rear nozzle, providing a more natural exit pressure
condition than that of the TechLand study.

Although not physically realistic for the test article and flight condition, the inviscid cases serve as a
starting point for the computational analysis, and help to quantify the significance of viscous effects on the
internal flow of this and similar inlets.
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Figure 8. Close-up view of the inlet portion of the inviscid grid.

Figure 9. Viscous grid showing the denser mesh near the boundary layer, zoomed in on the entrance portion
of the inlet.
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B. Viscous Turbulent Computation

Once complete, the inviscid runs provided an initial qualitative picture of the flow. The grid was subsequently
refined near internal boundaries in order to resolve the boundary layer in the viscous turbulent computations.
The external solid boundaries of the cowl, duct, and nozzle were treated as slip walls for computational
efficiency. Although this simplification neglected the contribution of skin-friction drag from the outer inlet
housing, the present study focuses only on the inlet starting and inlet efficiency. Both of these effects are
functions of internal flow and are adequately captured by the present approach.

(a) Inviscid grid independence.

(b) Turbulent grid independence.

Figure 10. Results of grid independence
studies on three different mesh sizes.

The turbulent computation was performed using the two-
equation Wilcox k−ω turbulence model.14 The turbulence in-
tensity was increased from the default 1.0% to a level of 2.5%;
similarly, the turbulent viscosity ratio was increased from the
default 10% to a level of 40% in the internal zones. Such in-
creases were deemed appropriate for a moderately complex in-
ternal flow problem, in which turbulence levels are higher in the
flow region of interest than for a purely external flow. These
particular values were chosen as the minimum levels required
to converge a physically meaningful solution on an initial test
case. Convergence and cleanliness of the turbulent results were
much improved by restarting the Mach 1.0 turbulent case from
a fully converged Mach 0.8 laminar solution, then building in-
crementally as performed for the inviscid and laminar cases.

The grid used for viscous calculations is shown in Fig. 9.
The mesh has been tightened near the walls in order to ac-
curately resolve the boundary layer over an adiabatic, no-slip
wall. For the Wilcox k−ω turbulence model, a y+ value of less
than 1 is recommended;15 the value for this grid is 0.25, placing
approximately 4 points within the laminar sublayer. For the
specific case of the 1X turbulent grid at Mach 1.5, this results
in 25 points in the boundary layer at the inlet throat. Each
computation was for a steady-state case.

IV. Results

Grid independence studies were performed for both the in-
viscid and turbulent grids. Mesh density was doubled in ar-
eas of interest, including the forebody compression surface,
the complete interior of the inlet-duct-nozzle assembly, and the
nozzle plume/wake region. Though total pressure is a parame-
ter of greater interest in the present study, the Mach number in
the internal portion of the inlet was chosen as the parameter for
grid independence. This is because Mach number, like static
pressure, is much more prone to variation across the whole
range of the inlet, and thus provides a higher resolution of
comparison between two grids.

Comparisons of the Mach number along the compression
surface and in the middle of the inlet interior inlet are shown
at 0.5x, 1x, and 2x grid densities for the inviscid Mach 1.0
case in Fig. 10(a). In addition, Fig. 10(b) shows a similar
comparison for the turbulent Mach 1.0 case. The 1x and 2x

solutions are quite close; for the inviscid comparison, some minor discrepancies in the curves can be seen.
For these cases, the grid independence can be verified by assessing the differences between the two solutions
using a flow quantity of interest. The total pressure ratio across the inlet for the 1x and 2x inviscid grids
differ by less than 0.1%, providing additional assurance of grid convergence. The plots in Fig. 10 are for
geometries that were translated from the TechLand reference point such that x = 0 inches corresponds to
the tip of the forebody spike.
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A. Inlet Start Curves, By Flow Regime

Figure 11. Terminal (normal) shock location versus
Mach number for inviscid and turbulent cases, as well
as theoretical limits for Channeled Centerbody Inlet
Experiment geometry.

Figure 11 shows the calculated terminal normal
shock location along the longitudinal axis of the ge-
ometry as a function of Mach number. Note that
the results shown from the CFD cases are with the
geometry translated such that x = 0 is the CCIE
forebody tip. Because the data points shown were
taken from the midpoint of the duct, scrutiny was
required for points at or near the cowl lip, as the
shocks can be bowed or not perpendicular to the
axial direction due to inlet geometry, and the inlet
throat is less than 1 inch downstream of the cowl.
Starting was defined as having no portion of the ter-
minal shock attached to the cowl lip and the mid-
point of the terminal shock downstream of the cowl
lip. Combining the computational and theoretical
solutions, the actual starting limit for the inlet can
be reasonably concluded to be somewhere between
Mach 1.8 and 1.9. Finer resolution was not deemed
necessary, as this is well above the primary CCIE
flight test point of Mach 1.5.

It can be seen that the turbulent cases much
more closely approximate the Hermann analytical
approach (incorporating the throttling nozzle) start-
ing limit than do the inviscid ones. With less mo-
mentum and energy loss due to friction in the inte-
rior, the same geometry in the inviscid run is able
to accommodate more mass flow than the turbulent cases, and thus should start well before a realistic Mach
number is reached. This is because the growth of the boundary layer in the viscous scenario shrinks the avail-
able cross-sectional area of the inlet, making for a smaller effective throat (and consequently a higher effective
contraction ratio). The starting Mach number for such flow should intuitively be higher; this supposition is
shown by the computational results.

The inviscid runs, however, should not be starting at or below the isentropic limit as indicated by the
numerical results. The starting shock that must be passed in order to start the inlet is still a requirement for
inviscid flows, and the throttling nozzle is still present in the inviscid geometry. At this time the discrepancy is
believed to be a consequence of the extreme difficulty in converging the inviscid solutions for this geometry.
Without a turbulence model active, every case above Mach 1.2 exhibited severe separation issues in the
diverging portion of the inlet as the flow approached the adverse pressure gradient at the rounded aftbody
of the inlet. Further analysis, especially as three-dimensional cases are planned for distortion studies, are
expected to clarify the present results.

The turbulent results indicate that the flight experiment should remain safely unstarted, with a solid
margin of safety, at the primary local flight condition of Mach 1.5 and an equivalent pressure altitude of
29,500 ft. In planning the CCIE research flights, PFTF/RAGE flight data will be used to correlate the
airplane freestream Mach number with the local test conditions at the PFTF pylon location in order to
ascertain the appropriate flight condition.

Contours of Mach number for the primary test point (Mach 1.5, unstarted) are shown in Fig. 12(a).
A similar contour plot for a started case (Mach 2.0) is shown in Fig. 12(b). It is also apparent from Fig.
12(b) that the terminal shock is ingested and located at a supercritical position downstream of the throat
as expected.

These axisymmetric computational results, while carefully verified with grid independence studies and
validated with analytical methods, should still be taken as approximate. While both analytical and compu-
tational solutions often do provide a fairly good estimate of the actual values, they need to be validated by
flight test. Studies by Van Wie10 indicate that there is significant spread in inlet starting Mach numbers
of the same contraction ratio, simply due to the variety of geometries and unaccounted-for factors already
discussed. Three-dimensional CFD studies of the flight hardware will further quantify inlet starting points,
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(a) Freestream Mach number = 1.5.

(b) Freestream Mach number = 2.0

Figure 12. Contours of Mach number for an unstarted and a started case.
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expected mass flow, and distortion levels.
In the case of the ECB, it is reasonable to conclude that additional losses between the entrance and throat

for a mixed-compression inlet are not accounted for in the analytical methods designed for pure inlets; the
additional flow losses may be increasing the effective contraction ratio, requiring a higher Mach number
to start the inlet. These losses would include those from un-modeled internal hardware, such as struts,
distortion rakes, et cetera.

B. Inlet Total Pressure Ratio and Mass Flow

(a) Inlet total pressure ratio as a function of Mach
number.

(b) Inlet mass flow as a function of freestream Mach
number

Figure 13. Performance of the inlet result-
ing from inviscid and turbulent cases.

The inlet total pressure ratio, taken from the freestream to the
interface plane between the inlet and the duct, is shown as a
function of Mach number in Fig. 13(a). The ratio drops with
increasing Mach number as expected, as the terminal shock
occurs at ever higher local Mach numbers, which results in
greater total pressure loss. The mass flow, taken at the nozzle
exit plane, is shown as a function of Mach number in Fig. 13(b).
The expected direct relation between flow velocity and mass
flow rate is observed. The mass flow at the primary test point of
Mach 1.5 was found to be 8.2 lbm/s, which is 12.7% lower than
the designed-for mass flow of 9.4 lbm/s. The turbulent cases
have lower efficiency and reduced mass flow than the inviscid
cases due to viscous flow losses.

The effect of the forebody compression should be providing
more efficient inlet operation than a single normal shock. It
is puzzling that the inviscid cases are not showing appreciably
better performance than a pure normal shock. Further analy-
sis, using three-dimensional CFD cases that are under way, will
work toward clarifying these discrepancies. The turbulent cases
incorporate viscous losses and also all of these Mach numbers
shown are off-design flight conditions for this inlet; for these
cases, reduced efficiency to some degree is expected.

V. Concluding Remarks

A. Summary of Results

The starting characteristics of a channeled, mixed-compression,
variable inlet were assessed using an equivalent-area, axisym-
metric simplification of the flight geometry. The starting Mach
number for the inlet was found to be close to, but higher than,
the analytical prediction calculated via the Kantrowitz limit for
maximum allowable contraction ratio. The primary objective
of the study was met in finding that the Channeled Centerbody
Inlet Experiment hardware as designed should remain safely
unstarted at the primary test point of Mach 1.5 and 29,500
equivalent pressure altitude (roughly 1000 psf of dynamic pres-
sure). Maintaining an unstarted condition is essential for this
phase of the flight experiment. The present hardware is not
designed with the necessary active bleed and geometry control
to detect and mitigate an unstart transient, as it was intended
for a fixed off-nominal study in a range of the flight envelope
where the inlet would be unstarted by design.

Though the Equivalent Centerbody configuration studied
in this paper will be flown on the Propulsion Flight Test Fixture as well and does have the same equivalent
area ratios, it is not representative of the Channeled Centerbody geometry. Total pressure losses in the
channeled geometry, as well as un-modeled features such as the distortion rakes, struts, and others, may
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make the actual flight articles (both the Channeled Centerbody and Equivalent Centerbody configurations)
more restrictive with respect to starting.

B. Future Goals

Further study will attempt to compare the flight geometry of the Equivalent Centerbody and Channeled
Centerbody configurations in a fully three-dimensional computational fluid dynamics analysis, also using
the local flowfield flight data. This analysis will attempt to probe the side discrepancies discovered in the
present study. A comparison between the two should also quantify the level of distortion introduced by
the channels and the associated magnitude of total pressure loss. If later studies are able to also quantify
the increase in combustion mixing using the downstream conditions of the inlet modeling presented in this
paper, then a tradeoff analysis can be made regarding the value of a) the overall efficiency boost of the
propulsion system due to variable-geometry, and b) the increased combustion efficiency on one hand, versus
the distortion losses on the other hand. In general, axisymmetric inlets with moderate amounts of internal
compression have been shown to offer relatively high total pressure recovery.5

Additionally, as the Rake Airflow Gage Experiment flights have shown that on-axial flow at the primary
test point may not be possible to achieve in the Channeled Centerbody Inlet Experiment flight tests due to
physical constraints on the equipment, off-axial studies of the inlet may be of value. A treatment of inlet
buzz and other dynamic effects for safety considerations may also be of operational and academic interest.

Finally, comparing the computational analysis of the three-dimensional configurations to the flight data
will provide an important insight into the fidelity of computational fluid dynamics codes in accurately
predicting inlet flow distortion in realistic flight conditions.
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