

Agenda	IN ANCHOR NODES
International Lunar Network Overview	G. Tahu B. Cohen
Mission Design Concepts and Risk Reduction Tasks	B. Morse

ILN U.S. Anchor Nodes Programmatics

 Pre-Phase A Cost Estimates for U.S. Anchor Nodes have been validated through independent PA&E technical, schedule and cost review

NASA

- Cost estimates of mission concepts and instruments are in-family with historic NASA planetary missions
- Cost analysis is traceable and contains supporting documentation and technical data
- Due to the high cost of a Decadal class Anchor Nodes mission, lunar network science has been remanded to the Decadal Survey for prioritization
- Robotic Lunar Lander team is proceeding with risk reduction and technology development of the small lunar lander design
 Lander designs are capable of supporting the selected SMD science mission based on results from Decadal Survey

NASA

ILN Science Definition Team: Findings

- Defined ILN science objectives ⇒ derived mission objectives ⇒ measurement and mission requirements
- The goal of a Lunar Geophysical Network is to understand the interior structure and composition of the moon:
- Seismometry
- Heat flow
- Electromagnetic sounding
- Laser ranging
- The next generation of geophysical measurements have to improve on our current (largely Apollo-derived) knowledge:
- wider geographical placement
 more sensitive instrumentation
- longer baseline of observations

Science Baseline and Floor Definition Geophysical Network Science Baseline Mission Four stations, four instruments, concurrently active, lifetime of 6 years; farside coverage desirable, or nearside stations within ~20' of the limb Science Floor Mission Two stations, seismometer only, concurrently active, lifetime of 2+ years, stations placed relative to A33 moonquake nest hypocenter SDT defined graceful descopes between Baseline and Science Floor Instrument requirements, number and type of instruments, total lifetime, reduced power modes for nightime operations, number of nodes "Two nodes are insufficient for achieving major new lunar science. Therefore, the SDT strongly advocates a Network Science Baseline Mission, where two initial nodes are one with at least two additional nodes to form a larger network for a combined 6-year minimum operational lifetime." SDT report p. 2

"NASA must continue its long-term partnership with the international community for the success of the entire International Lunar Network." SDT report p. 33

	SDT Report	Rationale
Number of Nodes	4 baseline 2 floor	4+ measurements for new independent science 2 nodes achieves reduced science objectives
Ops	Continual	Simultaneously receive seismic energy; capture diurnal and seasonal variations in heat flow/EM
Lifetime	6 year baseline 2 year floor	Cover tidal cycle; collect sufficient # of moonquakes
Landing sites	Global access	Need wide separation of all nodes (>2000km); characterize lateral variations
Launch Date	When needed to be part of network	Anchor larger network
Instrument payload	4 inst. baseline	Complementary measurements increase science,

nodes at poles is below the science floor
four nodes placed simultaneously, two might be polar, but third and fourth odes have to be nonpolar, so lander design can't be exclusively polar
ternational partners may well end up at a pole for their own exploration/ search
hetic seismogram study will evaluate potential locations
selection should be done with full community input, plus traints from engineering

	2011	2012	2013	2014	2015	2016	2017	2018	2019		
IASA Inchor Nodes			6	2 ILN anch	or nodes			I			
							• Ti	o accomplicience. IL	lish new N needs to		
india Chandrayaan-2 Luna-GLOB 2		Polar k	ander				ir p sj	clude a m rofiles that pace, and	ix of missi t cover tim instrumer	on e, it	
Japan SELENE-2	2	300	Poler	lander			• S	requirements Strategic addition of a			
Britain MoonLITE		No broadband selent onester					nie ni w	 least 2 NASA anchor nodes in the 2012-2014 will provide others the flexibility to contribute to 			
ESA Moon-NEXT		(str		R ,		Polarlander	ť	e network gency pla	as their ns allow		
Russia Luna-GLOB 1		No br	2 penetromete cedbend seler	rs; nometer							
China			Pour baids								

Measurement	Instrument (Heritage)	Mass kg	Data Mb/day	Ave. Power W	Assumed Derived Requirements
Seismometry	Seismometer* (CNES Exomers, Netlander) Betmometer instates package with heaters, enclosure, foot pads	5	100	2.6	Vibration lecistion 0.001-20 H: Thermal stability ±5 deg Relative Time Acc ±5 meec Continuous day/right operation
Heat Flux	Mole* (DLR HP3 Exemens) Mole includes perdrage with electronics.	1.5	10	22	Regolith contact Verical align during penetratic Minimize thermal variations Operate during lunar night
EM Sounding	Electrometer, Magnetometers, langmuir probe (soluding booms, in lander accommodation	2.6	20	4.7	1.5 m boom 1 m maat for langmuir probe
Laser Ranging	Retro-reflector (LRO)	0.9	0	0	+/ 15 deg alignment to Earth
Guest Payload (e	xtra instrument capacity)	2.2	5	3	
Lander accommo booms)	dation (blankets, deploys,	7.2			Booms/mast for EM, blankete, deployment mechanisma
Total		19.4	135	12	

Summary: Lunar Network Science NASA MSF NASA The goal of a Lunar Geophysical Network is to understand the Interior structure and composition of the moon A variety of geophysical and compositional analyses of the Moon will International Lunar Network Anchor Nodes enable researchers to determine the internal structure and **Mission Design Concepts** composition of a differentiated planetary body The next generation of geophysical measurements have to . substantially improve on our current knowledge in order to make significant advances in science Brian Morse, Assistant Project Manager Lunar geophysical science drives severe mission implementation needs: - Sophisticated instrument payload - 4 simultaneously operating nodes - Continuous seismometer operations - Long lifetime (2-6 years) - Farside placement

ID # on chart 35	Lander Config	Core Lander Architecture	Day or Night?	Lifetime	Payload Mass (kg)	Payload Power (W)
1	Solar	Solar/Battery	Day	2 weeks to multiple months (polar/non-crater)	121 (Note 1)	100 (Note 1)
2	ASRG on lame lander	Solar/Battery	Day and/or Night	up to 6 years	90 kg	100 W
3	ASRG Hopper	Solar/Battery	Day and/or Night	up to 6 years	65 kg	100 W
4	Solar/Battery Hopper	Solar/Battery	Day and/or Limited	10 days (Note 2)	60 kg (Note 2)	20 W (Note 2)
5 Small S	Small Solar	ASRG	Day	2 weeks to multiple months (polar/non-crater)	45 kg	70 W
6	ILN Solar/ Battery	Solar/Battery	Day and Night	6 years	19.2 kg	14.9 W
7	ILN ASRG	ASRG	Day and Night	6 years	23 kg	~100 W available
Not shown	Primary Battery/Fuel Cell	Solar/Battery	Day and/or Limited Night	10 hrs 100 hrs 4 weeks (Note 3)	118 kg 80 kg 50 kg (Note 3)	75 W 80 W 60 W (Note 3)

