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Abstract. The analysis of spectral signals for features that represent physical phenomenon
is ubiquitous in the science and engineering communities. There are two main approaches
that can be taken to extract relevant features from these high-dimensional data streams.
The first set of approaches relies on extracting features using a physics-based paradigm
where the underlying physical mechanism that generates the spectra is used to infer the
most important features in the data stream. We focus on a complementary methodology
that uses a data-driven technique that is informed by the underlying physics but also has
the ability to adapt to unmodeled system attributes and dynamics. We discuss the fol-
lowing four algorithms: Spectral Decomposition Algorithm (SDA), Non-Negative Matrix
Factorization (NMF), Independent Component Analysis (ICA) and Principal Components
Analysis (PCA) and compare their performance on a spectral emulator which we use to
generate artificial data with known statistical properties. This spectral emulator mimics
the real-world phenomena arising from the plume of the space shuttle main engine and can
be used to validate the results that arise from various spectral decomposition algorithms
and is very useful for situations where real-world systems have very low probabilities of fault
or failure. Our results indicate that methods like SDA and NMF provide a straightforward
way of incorporating prior physical knowledge while NMF with a tuning mechanism can give
superior performance on some tests. We demonstrate these algorithms to detect potential
system-health issues on data from a spectral emulator with tunable health parameters.

1. Introduction

The analysis of spectral signals is one of the classic problems in physics. Numerous
references, dating back to the 17th century have discussed optical spectra, and then with the
deeper understanding of quantum mechanics, the relationship between chemical elements
and spectral energy. For the purposes of this paper, we model the observed spectral data as
a time series of spectra Y (Λ, N). The columns in this matrix correspond to the observations
of the spectra at a given time N . The rows correspond to the wavelengths at which the
spectral observations are made. The spectral components at a given time are a vector of
observations of length Λ where Λ depends on the resolution of the spectral data acquired by
the detector. In our current application, Λ is typically 1061.

The problem that we address in this paper is to develop and test approaches to extract
relevant system-health information from Y (Λ, N). We advance this by studying various
matrix factorization techniques which result in signals that are of lower dimension and that
can contain relevant health information. The standard approach to solve this problem is to
use Principal Components Analysis (PCA) which results in a factorization of the matrix into
a set of m orthogonal basis vectors where m � Λ and m is chosen from the eigenspectrum
of Y . As we will see in our analysis, these results can be very useful in understanding
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the underlying data generating process. However, the PCA algorithm suffers from some
shortcomings that require us to make further algorithmic advances. These deficiencies will
be discussed later in this manuscript.

Figure 1. This ’waterfall’ figure shows a typical spectral signal generated by
our Spectral Emulator, which is a software program that generates spectral
time series with known statistical properties. The output of the Spectral Em-
ulator has some properties that are similar to emissions spectra from liquid
propulsion systems. The figure shows significant structure in the lower wave-
length bands and has been seeded with known wavelength locations for 10
elements. Notice that the spectral signatures are time varying in nature.

Figure 1 shows a few columns in a Y matrix that is generated from a Spectral Emulator
that is discussed later in this paper. The key properties of spectral signals is that they
exhibit variations in multiple wavelength bands (left-hand axis) that can be correlated due
to the underlying data generating process. The large signature on the left-hand side of the
figure is often indicative of a process that covers a large band of wavelengths. Although from
a statistical perspective Y can be modeled as a multivariate time series, it is helpful to note
that the spectral properties are highly correlated with one another.

The application of algorithms for spectral decomposition to systems health manage-
ment issues arises as follows. Most data-driven anomaly detection algorithms are not able to
directly operate on high dimensional data sets because of the so-called curse of dimensional-
ity [7]. The spectral decomposition methods we discuss here result in significant dimension-
ality reduction while preserving a significant amount of systems health related information
as measured by the performance of the detection algorithm. This paper shows, however, that
standard dimensionality reduction techniques, such as PCA must be applied judiciously in
situations where the amount of data is significant or when one has a priori knowledge.
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2. Spectral Emulator

The emulator is designed to generate a set of time series of spectra similar to what
is measured with a spectrometer in optical plume analysis in liquid propulsion engines. It
does not employ a physics based model for data generation, but instead the intent is to
emulate similar signals that can be found in optical plume data with the assumption that
the basis vectors are linearly mixed. The resulting data is a linear combination between a
set of spectral basis vectors S and the corresponding temporal profiles a, with a noise factor
η. The linear combination is as follows: Y = Sa + η. The spectral basis vectors consist of
three distinct components

1.) The estimated broadband spectral profile of a hydroxide burn.
2.) The spectral profile due to reflective particle scattering.
3.) Ten unique severity one elemental wavelengths profiles.
The hydroxide (OH) component represents the spectral features produced from the

burning of pure hydrogen and oxygen during engine operation. It makes up the majority of
the energy in the signal and has a broadband spectral profile. The emulator recreates this
spectral feature by building a higher order polynomial function with coefficients that are
allowed to vary from run to run in such a way as to have a similar patter as the OH burn
found in the real data. The corresponding time profile for the OH component can either be
generated as a linear slope or exponential profile with intermittent amplitude changes or any
combination.

The background scatter profile attempts to represent the phenomena that occurs when
particles produce radiation which is reflected amongst the rest of the particles in the plume.
This creates a background noise that has a periodic characteristic in the spectral domain [1,
2]. The emulator recreates this spectral feature by using a weighted combination of sines
and cosines to produce the desired effect. The corresponding background scatter time profile
is a positive random distribution over time.

Table 1. The table shows the prominent spectra lines for SSME elements in
the spectral range of 320 to 426 nm [17].

Elements Wave lengths
Nickel 341.5, 345.9, 346.2, 349.3, 351.6, 352.6, 362.0

Iron 372.0, 373.7, 374.6, 375.0, 382.1, 382.6, 385.7, 386.1, 388.7, 388.7

Chromium 357.9, 359.4, 360.6, 425.6

Cobalt 341.3, 345.0, 345.5, 346.6, 347.5, 350.3, 351.5, 353.1, 357.6, 387.4

Copper 324.8, 327.4

Manganese 403.4

Calcium 422.6

Aluminium 396.1

Silver 328.0, 338.3

Magnesium 370.2, 371.9, 380.8, 383.3, 384.5

The elemental profiles each have a set of primary and secondary wavelengths that corre-
spond to known severity one list elements found during engine operation (Ni, Fe, Cr, Co, Cu,
Mn, Ca, Al, Ag, and Mg) [6]. The spectral profile is recreated by generating a high signal
to noise ratio at the peaks of the primary and secondary wavelengths for a given element
and assigning positive uniform noise to the remaining wavelengths in the spectrum. The
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corresponding time profiles for the elements have intermittent spikes and have a baseline
close to zero. This behavior has been documented in previous publication [1, 2, 5, 4] and
also observed in the real data.

The element spectral basis vectors are individually linearly combined with appropriate
time profiles to form a time series of spectra Y for each element. Each Y is then normalized
to have unit energy. The OH and background scatter spectral basis vectors are combined and
normalized with their corresponding time profiles in the same manner. The matrix elements
for all Y ’s are then combined as follows:

YFinal =

√

√

√

√

m
∑

i=1

Y 2
i · ωi + η.(1)

Yi represents the time series of spectra matrix for each component including the OH, the
background scatter, and each of the ten element components. ω corresponds to the energy
weight for each component. The element components are each given weights on the order of
10−3, the background scatter at 10−2 and the OH component contains the remaining energy.

After combining all contributions and their appropriate energy weighting from the in-
dividual Y matrices the energy of YFinal has unit energy. The resulting YFinal matrix has
dimensions Λ × N where Λ is the number of wavelengths in the spectral domain and N is
the number of time samples. At any given time sample the spectra contains a mixing of all
components. The decomposition techniques addressed in this paper attempt to extract these
basis vectors and isolate the element components. Unlike test stand data the emulated data
contains known ground truth for all samples in time that correspond to the element burns
and therefore we can compute detection rates, which are reported in the results section.

3. Decomposition Algorithms

The main idea behind the decomposition algorithms discussed here is to reduce the
number of dimensions in the observed signal to extract features that can be used for anomaly
detection. Ideally the features would be indicative of the health of the system under study.
For our examples, we assume that we are studying data from a liquid propulsion system
such as the space shuttle main engine. These extracted signals should correspond to known
chemical species in the propulsion system. Higher concentrations of certain metals, such
as Cr, Ni, and Fe can be indicative of adverse conditions in the engine [17]. Thus, these
algorithms must generate interpretable signal decompositions so that users can have a clear
understanding of the underlying physical mechanism. This ’interpretability’ requirement
is not necessarily achieved by standard statistical algorithms. This paper overviews some
key innovations in the statistical machine learning community that can be useful for this
application domain 1.

3.1. Spectral Decomposition Algorithm. The approach that we take to decompose the
spectral time series Y (Λ, N) utilizes methods in the blind source separation literature [11].
In so-called blind source separation problems, we assume that a set of stationary signals S
is mixed through a linear mixing matrix a. The result of this mixing matrix is the observed
signal Y [16]:

1More detailed information on these algorithms and Opad application is available at Dashlink website
(http://dashlink.arc.nasa.gov/).
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y(t) =
m

∑

i=1

Siat + ηt(2)

Y = Sa + η(3)

In this formulation, y(t) is a column vector of size Λ × 1, Si is a vector of Λ× 1 and at

is a vector of size m × 1 and we assume that there are a total of m stationary components
Si. In this formulation, we need to solve for S and a given the Y vectors. The procedure to
do this decomposition is given in [16] and is called the Spectral Decomposition Algorithm
(SDA). SDA works by assuming a random starting point for S, computing a and then
recomputing a given the current estimate of S. The update equations are based on a least
squares solution to the problem and provides fast convergence to a solution and are given
in the cited reference. The cost function that is minimized in SDA is ||Y − Sa||2 which is
solved using an unconstrained optimization procedure.

This algorithm features an easy way to incorporate prior knowledge. For example,
suppose that one knows the spectral emission lines for m1 elements under study. In this
case, these mi spectral lines can be encoded into the initial guess of the matrix S. The first
estimate of a then will result in the optimal (in the least squares sense) result given the initial
guess. Subsequent guesses will lead to further refinements in the initial estimates of S with
additional signals being estimated if m > mi. With a random initialization, this algorithm
converges to a set of orthogonal stationary signals. While there are many solutions to the
linear model show in Equation 3, SDA is particularly fast and flexible in its formulation,
thus providing an ideal model for decomposing spectra.

A key weakness of the algorithm, however, is that it assumes that the mixing between S
and a is linear. In many real-world cases, it may be the case that a nonlinear mixing occurs.
Depending on the nature of the nonlinearity, SDA may not correctly capture the appropriate
components. A nonlinear form for this mixing can be expressed as Y = Φ(S, a) + η. We
have solved the problem for Φ being a linear operator.

3.2. Principal Components and Factor Analysis. The solution can be shown to be a
variant of the famous PCA algorithm [10] developed originally by Hotelling in the 1930’s. The
principal components algorithm computes an orthogonal decomposition of the correlation
matrix produced by the matrix Y . In this computation we define the correlation matrix
Σ = (Y − jȲ )T (Y − jȲ ), where Ȳ is the mean of the data in the columns of Y and j is a
vector of size N × 1 where we assume that we have N spectral samples. A diagonalization
of this matrix yields the principal components:

(4) Σ = V T ∆V

where first m columns of the matrix V correspond to the largest eigenvalues in the diago-
nal matrix ∆. These eigenvectors can be easily shown to span the directions of maximum
variance in the data matrix Y . This specific and unique property of PCA makes the station-
ary signals easy to interpret from a mathematical perspective. However, these components
may not be easily interpretable from the point of view the data generating process. The
PCA algorithm cannot be easily initialized with prior knowledge since the extracted signals
are uniquely determined by Equation [?]. PCA, as in the case of SDA, does not extract
appropriate signals in cases with nonlinear mixing.
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Input: YΛ×N , m (desired rank),SΛ×m, am×N and Q (stopping criteria)
Step 1: Randomly intialize S, a with positive values.
Step 2: While(not Q)
a) Update a:=a. ∗ (ST Y )./(STSa);
b) Update S:=S. ∗ (Y aT )./(SaaT );
end
Output: S, a

Figure 2. Steps of Standard NMF Algorithm.

In the statistical community, there is a variant of PCA known as Factor Analysis, which
is widely used in the social sciences. In Factor Analysis, the matrix Y is decomposed as
Y = Sa + δi where the factors S and a are assumed to have zero mean, orthogonal and
of unit length (orthonormal). There are additional constraints placed on S and a in this
decomposition. Once a decomposition is performed, it is possible to rotate the resulting
factors S via a rotation matrix. This allows the analyst to identify features that may be
more interpretable [10] [14].

3.3. Non Negative Matrix Factorization. In SDA and PCA, the matrix decompositions
allow the elements of S and a to be either positive or negative. However, the spectral data
that is observed in Y is always non-negative. Recently [9, 8, 12] a new matrix decomposition
algorithm has been developed called non negative matrix factorization (NMF) which finds
a decomposition Y = Sa such that all the elements of S and a are non negative. This
decomposition preserves an important property of the spectral data and can lead in some
cases to superior results.

NMF minimizes the squared reconstruction error C = ||Y − Sa||2 given the constraints
that S and a contain non negative values. In some variants of the algorithm, it is possible
to place a sparseness constraint on the solution matrices. This can lead to better and more
interpretable solutions [9, 8]. Another attractive feature of NMF is that it converges rapidly
and can be easily interpretable for some applications. The pseudo code of some variants NMF
algorithms using various updating rules can be obtained in the following review literature [15].
Like SDA, this constrained optimization problem leads to an iterative algorithm to update
S and a. The standard NMF algorithm is given in Figure 2.

3.4. Non Negative Matrix Factorization with Energy Minimization. We explored
two novel variants of NMF that allows us to impose a further constraint on the energy (i.e.,
the sum of the squared values in the components of S and a). These variants can be captured
through the following two optimization functions:

C1 =
1

2
||Y − Sa||2 +

1

2
α1||S||

2(5)

C2 =
1

2
||Y − Sa||2 +

1

2
α1||S||

2 +
1

2
α2||a||

2(6)

For cost function C1, the objective is to minimize the squared reconstruction error
(Euclidean distance) given the constraints non-negativity constraints. The penalty function
includes a function section term that represents the energy of the hidden components in the
spectral domain. The constant α1 is user specified and controls the relative weight of this
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Input: YΛ×N , m (desired rank),SΛ×m, am×N , Q (stopping
criteria),α1 and α2 (regularization parameter)
Step 1: Intialize S,a.
Step 2: While(not Q)

a) Update a:=
(ST Y )

(STS + α2I)
;

b) a = a. ∗ (a >= 0);

c) Update S:=
(aT Y )

(aaT + α1I)
;

d) S = S. ∗ (S >= 0);
end
Output: S, a

Figure 3. Pseudo code for NMF Algorithms with alternating least squares
update using both reglarization parameters as shown in Equation 6.

constraint in the overall optimization problem. The presence of this second term creates a
tradeoff between the smoothness of the S components with the reconstruction error. The
optimization algorithm will tend to minimize first term (Euclidean distance) of C1 while
minimizing the 2nd term for a given α1. Therefore, while running the optimization at each
iteration, the optimization algorithm tends to scale down S while scaling up a in ruturn, so
that the product of these two terms always stays the same. In the existing literature, the
way this problem is handled is by rescaling S and a after each iteration [9]. This means,
after every iteration, each column of a is normalized to unit length followed by an update of
S.

Cost function C2 has similar properties to C1 with the added constraint that the energy
of a is to be minimized as well. This results in enforcing a smoothness constraint on both
S and a while potentially increasing the reconstruction error. For this case, since both
terms are included in the optimization function, no rescaling is necessary. The pseudo code
of NMF that correspond to C2 cost functions is given in Figure 3. Here the update rule
is obtained from the least square solution of the derivative of the objective function with
respect to S or a. This method is known as “NMF with least square update” and further
details of this approach can be obtained in the some of the very recent literatures [3, 13].
In the current scope of this study, we intend to demonstrate the applicability of the above
mentioned blind source algorithms to analyze high dimensional spectral time series Y (t, λ)
in order to detect the presence of the element burns in the wavelength-time plane as an
indicative of the degradation of the systems heath. In this context it is worth to mention
here that the choice of the second variants of NMF (as given in Figure 3) is very instinctive
as we are searching for the sparse failure profiles corrosponding to each element from the
severity list.

3.5. Independent Components Analysis. Independent Components Analysis (ICA) [7]
has received wide-spread attention as a new method of signal decomposition. It assumes
that the signal matrix Y is a superposition of components that are statistically independent
and non-Gaussian.
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Table 2. This table shows the Area under an ROC curve for SDA, PCA,
and NMF for three different detection thresholds. Here σ is the standard
deviation of the reconstructed Y matrix for each algorithm and α1 & α2 are the
regularization parameters. Note that the SDA algorithm and PCA algorithms
have very similar performance.

Algorithms Area Under ROC Time
Threshold 3-σ Threshold 5-σ Threshold 10-σ Complexity
mean std mean std mean std (Seconds)

SDA 0.59 0.006 0.80 0.006 0.93 0.009 11
PCA 0.59 0.000 0.80 0.000 0.94 0.000 11
ICA 0.59 0.004 0.76 0.005 0.75 0.012 25

NMF (α1,α2) 0.62 0.022 0.81 0.038 0.86 0.106 1867
NMF (prior) 0.59 0.016 0.78 0.008 0.83 0.031 3577
SDA (prior) 0.59 0.000 0.80 0.000 0.93 0.000 7
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Figure 4. The figure shows the true failure profiles corrosponding to the OH
component and the element burns, plotted across time.

4. Results

Table 2 represents a comparative study on the peformance of all the four different
algorithms on a spectral data set (Y ) which has a dimension of 1061 and 1000 instances.
The true failure profile of the hydroxide (OH) and element burns corrosponding to test set
(Y ) has been shown in Figure 4. As mentioned earlier, that the outcome of any of these
decomposition algorithms is a set of basis vectors and their corrosponding failure profiles.
In this study, we have deliberatly extracted 12 hidden components because we assume that
the first 12 basis vectors will consist most of the spectrum information regarding the OH
burn, element burns and background scatter. For analysis purpose, we first reconstructed a
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data matrix Ŷtrue with only the true element burns and their time profiles. This new data
matrix serves as a ground truth representing the varying energy profile corrosponding to the
element burns over time. Similiar data matrix Ŷalgo has been constructed using the profiles
(spectrum and time) of the decomposed element burns extracted from eacho individual

algorithm. Thereafter a detection threshold has been imposed on Ŷtrue and Ŷalgo to calculate
the ”area under the ROC curve”’, a metric that has been used to evaluate the performance
of the algorithm in this study. For each algorithms, all the readings corrosponding to 50 runs
have been recorded. The numbers shown in Table 2 represent the mean and the standard
deviation calculated over those 50 runs for 3 different detection threshold. The right most
column of the table represents the mean time complexity of each algorithm.

From the above table it can be seen that both SDA and PCA exibit similiar performance
and emerge as winners. We have also observed that standard NMF was unable to seperate
the OH burns from the element burns and all the 12 components extracted by standard
NMF consists of OH profile. This is understandable as standard NMF would always try to
minimize the reconstruction error and it will try to achieve this by distributing the energy of
the most dominent feature (in this case the OH burn) over all the 12 extracted components.
The NMF algorithm with sparsity factors as proposed by Hoyer [8] was unable to provide
with some meaningfull solution in this case, as the data matrix (Y ) is composed of both non-
sparse OH profile and sparse element profiles in wavelength-time domain. However NMF
with regularization parameter was able to present a much better performance compared to
standard NMF with/without sparsity and ICA while detecting the element burns.

In a seperate study, we have incorporated domain knowledge in some of the algorithms
like SDA and NMF. This was done by intializing the first 10 components of S with digitalized
signal (of 1-s and 0-s) having peaks at the primary and secondary wavelengths corrosponding
to all 10 element while the rest 2 were initialized randomly. The result showed no particular
improvement in the performance of SDA with additional domain knowledge. However there
was a noticable improvement in the time complexity. While standard NMF (Figure 2) did
not work in the first place but with the domiain knowledge included, the same algorithm
proved to be successfull in detecting the element burns effectively.

5. Conclusions

This paper has reviewed some of the most recent and popular blind source seperation
techniques to generate low dimensional signals, which provide the best description of the
hidden features associated with the system states. In this paper we have discussed the
use of standard algorithms like SDA, PCA, ICA and NMF to extract hidden features as a
necessary step towards anomaly detection on high dimensional data sets and finally provided
a comparative study of the performances of these methods under different detection criteria.
We have also described a spectral emulator that provides a good approximation of some
of the events arising from the plume of the space shuttle main engine and this also serves
as a good source of high dimensional data sets. The above mentioned algorithms have
demonstrated the ability to detect the presence of element burns and separate them from
OH profiles. Furthermore the detection method applied was based on a fixed threshold,
which leaves room for improvement in future work where more advanced machine learning
algorithms that are not simply amplitude based can do much better at detecting similar
types of anomalies.
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Figure 5. The figure shows the outcome of the SDA algorithm without any
prior knowledge. Figure 5(a)represents the extracted bisis vectors while Fig-
ure 5(b) represents the time profile of each basis vectors, arranged in the same
sequence.
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(a) Spectrum profile: A total of 12 extracted basis vectors
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(b) Time profile of individual basis vector

Figure 6. The figure shows the outcome of the NMF algorithm with regular-
ization terms as expressed in Equation 6. In this analysis, the regularization
parameters α1 and α2 are set to 0.01 and 0.001 respectively.


