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E
fforts to design and operate hypersonic entry vehicles are constrained by many considerations that
involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that
affect entry trajectory and thermal protection system design is the occurrence of boundary layer

transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following
the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented
an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter.
The methodology for this implementation relies upon the framework of correlation techniques that have
been in use for several decades. What makes the Orbiter boundary layer transition correlation
implementation unique is that a statistically significant data set was acquired in multiple ground test
facilities, flight data exists to assist in establishing a better correlation and the framework was founded
upon state of the art chemical nonequilibriuni Navier Stokes flow field simulations. The basic tenets that
guided the formulation and implementation of the Orbiter Return To Flight boundary layer transition
prediction capability will be reviewed as a recornmended format for future empirical correlation efforts.
The validity of this approach has since been demonstrated by very favorable comparison of recent entry
flight testing performed with the Orbiter Discovery, which will be graphically summarized. These flight
data can provide a means to validate discrete protuberance engineering correlation approaches as well as
high fidelity prediction methods to higher confidence. The results of these Orbiter engineering and flight
test activities only serve to reinforce the essential role that en gineering correlations currently exercise in the
design and operation of entry vehicles. The framework of informationrelated to the Orbiter empirical
boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role,
to illustrate how quantitative statistical evaluations of empirical correlations can and should be used to
assess accuracy and to discuss what the authors' perceive as a recent heightened interest in the application
of high fidelity numerical modeling of boundary layer transition. Concrete results will also be developed
related to empirical boundary layer transition onset correlations. This will include assessment of the
discrete protuberance boundary layer transition onset data assembled for the Orbiter configuration during
post-Columbia Return To Flight. Assessment of these data will conclude that momentum thickness
Reynolds number based correlations have superior coefficients and uncertainty in comparison to roughness
height based Reynolds numbers, aka Re k or Rekk. In addition, linear regression results from roughness
height Reynolds number based correlations will be evaluated, leading to a hypothesis that non-continuum
effects play a role in the processes associated with incipient boundary layer transition on discrete
protuberances.
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Introduction

Successful design and operation of entry spacecraft requires significant interaction
between various communities. The technical expertise required encompasses the
guidance and control, navigation, aerodynamics, thermal protection system (TPS),
aerothermodynamics, structures and other disciplines. Although the risk
encountered by an entry vehicle and crew is minimized by some people, the fact
remains that the large energy imparted to orbiting spacecraft during launch and
ascent is not dissipated until entry. The consequences for failing to embrace this fact
include entry vehicle failures, and the significance of the entry regime to safety of
flight is a lesson to be learned from the Columbia accident. The reality of these
energy levels and their relevance to entry spacecraft is most poignant to the TPS and
entry aerothermodynamics communities. Notwithstanding the number of technical
communities listed above that must successfully interact on an entry spacecraft
design, a large number of specialties exist within the entry aerothermodynamics
discipline. These specialties include high temperature gas dynamics, fluid dynamics,
computational science, experimental methods, ground and flight test measurement
techniques, ground testing, flight testing, chemistry, and others. Each of these
specialties have a necessary role in the design and operation of entry vehicles.
Within the aerothermodynamics discipline, the phenomenon of Boundary Layer
Transition (BLT) is one of the most complex physical processes that is encountered.
Because of this complexity, activities associated with BLT investigations require
utilization of the talents and experience of many specialties within the
aerothermodynamics community. Getting this complexity to reveal its secrets
requires concerted effort and determination. In addition, the importance of BLT
requires practical methods to be available to the engineering community in order to
inform design and operational engineering and the programmatic decision making
process. It is within this framework that considerations of the role and value of
empirical BLT prediction capabilities are to be considered in this paper.

Background

The importance of entry BLT prediction can be demonstrated by reviewing the
historical utilization of empirical prediction methods. Since hind sight is
significantly influenced by the perspectives assembled by experience, and since the
Orbiter Return To Flight (RTF) activity was a very significant influence on the
authors' combined experience, a background will be provided that is framed by this
recent context. Since the Orbiter RTF activity involved development and
implementation of an essentially real time entry assessment of TPS damage
(Campbell ref, V1 session papers), the goals and implementation were very
application oriented.

As an example of this applied focus, it should be pointed out that practicality was of
primary significance during the technical activities that occurred as part of RTF
efforts following the Columbia accident on February 1, 2003. In particular,
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significant practicality was required for the aerothermodynamic capabilities
supporting the Damage Assessment Team (DAT) charter of dispositioning a variety
of potential TPS discrepancies identified on-orbit. The types of TPS hardware issues
that were expected to occur and do occur on nearly every mission include
protruding gap fillers, tile cavities due to ascent debris, out of specification thermal
blanket geometry due to the ascent loading environment, etc. The process to
provide assessment of these situations requires detailed engineering results to be
submitted to the Mission Management Team (MMT) within a matter of, at most, a
few days. In concert with the rigor required to review and quality check
assessments that have significant implications upon the crew of a mission, these
engineering assessments need to be accomplished in a matter of hours. Within the
realm of BLT prediction associated with discrete geometries that would promote
early transition, the only practical approach for satisfying this engineering challenge
was to implement a ground test based empirical correlation applied with a database
of Computational Fluid Dynamics (CFD) derived local flow properties at flight
conditions (Campbell ref, v1 refs). Accomplishing this required a multi-million
dollar activity spanning several years which also required integrating a diverse
team of BLT, CFD and experimental experts. In addition this team had to evolve the
details of this capability at the same time the broader entry aeothermodynamics,
thermal analyses, structural analyses and TPS community was implementing the
first ever real time TPS assessment process. The challenges involved in
accomplishing this were significant and are too easily dismissed by those unfamiliar
with details of the activity. The fact that a highly technical community typically used
to time frames of research and design (on the order of months or years) could
successfully pull together around this common goal is a testimony to all the
individuals involved. In the case of BLT prediction, the outcome of this RTF effort
produced an empirically based prediction capability which, in the opinion of the
authors, represents the state of the art in discrete protuberance based empirical
BLT prediction. Unfortunately, no other BLT prediction capability is currently at a
state of maturity that it can substantiate an ability to perform an essentially real
time assessment. As a broad engineering and research community, we need a
capability to provide higher fidelity BLT prediction capabilities that can be
performed on a complete trajectory in a matter of hours. Unless and until something
beyond an empirical correlation can accomplish this time frame goal, then
engineering practice will continue to utilize an empirical methodology - regardless
of the perceived merit or known pitfalls of utilizing a capability that has known and
significant uncertainty. Addressing the weaknesses of the current empirical
prediction methods by developing and implementing practical high fidelity,
mechanism based approaches should be and is a common goal of the engineering,
academic and research communities. Conversely, indictment of the weaknesses of
current empirical prediction methodologies without open recognition that these are
currently the only practical engineering approach is, in the authors opinion,
counterproductive.

The practical path of implementation utilized during RTF by the Orbiter entry
aerothermodynamics community is, in process, basically the same as that employed
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in the past. Albeit, there have been some key advancements in detail regarding how
correlations are selected and a flow field database is constructed. The prevalent use
of empirical methods for BLT prediction continues because the complexities
associated with BLT prediction have constrained the engineering community for
decades. The use of ground based empirical correlations is the common thread
running through this history of a practical path, which means providing an answer
in the time allotted but with less than desirable accuracy. Other works provide a
fairly comprehensive review of various correlations, and the works Schneider (refs)
and others (refs) can be reviewed for more background.

Recent Orbiter entry flight tests using a discrete protuberance have been conducted
that allow an assessment of the Orbiter RTF empirical BLT approach. These flight
test results indicate the validity of fusing empirically based capabilities for design
and operation, particularly when they can be flight calibrated. This work will review
RTF BLT correlation framework results of the recent Orbiter entry flight
experiments on STS-119 and STS-128, together with an investigation of a Knudsen
number based correlation. One intent of this discussion will be to characterize an
approach for quantitative evaluation of BLT prediction correlations and capabilities
using the statistical data as applied for the RTF BLT capability.

Other sections of this paper will provide a perspective on the important role of
empirical BLLT prediction in current and historical vehicle design and operation.
The practical path mentioned earlier in this introduction and to be discussed more
later in this paper requires that engineers have low cost and straight-forward tools
to guide decisions with. Such correlation, however, do not by themselves offer a
means to probe the mechanisms of BLT onset nor do they provide an apparent path
toward improved accuracy and uncertainty. Accomplishing the long sought after
goal of mechanism based BLT prediction will lead to a break-through in the
aerothermodynamics community's desire to provide more accurate and precise
results.

Overview of Historical Empirical BLT Prediction

The history of entry vehicle operation and design in the United States is replete with
examples of the application of empirical BLT prediction. Due to its significance on
entry heating, BLT can play a primary role in TPS selection, trajectory shaping and
even upon the vehicle configuration. A variety of empirical techniques have been
used by design engineers to establish informed inputs to guide design and
operational consideration. From the standpoint of the engineering community the
fact that empirical BLT prediction has been used almost exclusively is revealing.

It is helpful to reinforce the complete context of BLT prediction, however a full
review is beyond the scope of this paper. Instead, some key references and
observations will be made together with some discussion of BLT prediction as
practiced by the engineering community. A recently published review of blunt body
BLT by Schneider, et al. (Wright 32) provides a comprehensive perspective on
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extant flight data. To date, no thorough effort has been performed to assemble the
data identified by Schneider with a common analyses approach. Another significant
synthesis of data was performed by Reda (wright 43) in an effort to demonstrate the
efficacy of Re k approaches. However, that work focused the Rek family of correlating
parameters. An approach focused on investigating a variety of correlating
parameters was pursued during the Orbiter Return To Flight (RTF) activity (RTF V1
and V2 references). The benefits derived from considering a comprehensive
approach examining multiple correlations must rely upon having a framework to
rationally determine the most effective empirical correlation. To accomplish this,
the Orbiter RTF aerothermodynamic team utilized a statistical basis to perform this
evaluation. More information on this framework can be found in (BLT v1, v2 and
King TM).

One key conclusion that has been formulated by the empirical BLT prediction
community is the importance of using a common analyses approach and tools. This
is especially important when assembling data from a variety of individual sources,
but is also essential when formulating a correlation approach for a particular
application. As concluded by Berry et al (JSR), the use of different analyses tools can
lead to significant bias error affects which will yield differing correlation coefficients
and uncertainties. This is a significant conclusion considering that the technical
community's goals include developing a consistent means to interpret approaches.
As part of formulating the basis of implementation for the Orbiter BLT framework,
the conclusion of Berry et. al impacted the approach in a variety of ways. This
includes development of a technique of evaluating boundary layer properties with
minimal sensitivity to the CFD code utilized, as well as applying a consistent
approach across all facilities. Additional information on the computational approach
can be found in (v1 and v2 references, CFD tool EG notes). In the opinion of the
authors, it is also very important that any effort to empirically correlate a body of
experimental or flight data need to consider the available suite of correlation
parameters. Unfortunately, the history of empirical correlation has seen significant
interest by individuals in promoting their correlation without a quantitative
comparison basis to make relative accuracy assessments. As a research community,
and in particular as design engineers, our common goal should be to have a suite of
potential correlations which are then objectively evaluated for accuracy and
effectiveness. The goal of such an approach should not be to create a competition,
but instead to determine the most reasonable and accurate correlation for each
configuration and BLT initiator (e.g. discrete or distributed roughness, crossflow,
blowing, etc.). At the same time, investigations into a variety of potential
correlations should continue as long as the engineering community makes use of
empirical correlations.

A brief summary of BLT prediction for the U.S. human spaceflight vehicles reveals a
fairly limited set of information from the Mercury and Gemini programs. Beyond
BLT affects upon the afterbody, it appears that not much detailed consideration was
given to BLT prediction. Engineers utilized wind tunnel data to gain insight, margin
was included in the design and then flight data provided validation of the design.
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Gemini followed a similar approach, but had the advantage of understanding
developed from Mercury. Similarly with Apollo, information and insight gained from
previous Mercury or Gemini flights were leveraged for the Apollo design. Additional
Apollo ground testing was performed to provide configuration specific data. And,
ultimately, flight data again provided validation of the design which enabled an
engineering level characterization of BLT in the flight regime (ref Apollo CR). This is
the heritage of approach that has benefited all entry vehicle design in the U.S.,
whereby actual flight experience informs each additional increment forward in
design. The Orion project is leveraging this heritage from Apollo. However, since the
Orion spacecraft is larger than Apollo and flies a different trajectory, Apollo flight
data does not provide a comprehensive picture. More details regarding boundary
layer transition data from these blunt configurations is identified in Schneider
(Wright 38). At this time, the Orion aerothermodynamics community is assuming
fully turbulent entry (Ref?) since the marginal weight benefits identifiable with
empirical BLT prediction techniques are small. However, the authors that as the
Orion design matures and the project begins considering how to improve the
capability of an existing design, higher fidelity BLT prediction capabilities will likely
be pursued. What capabilities are utilized will, in large part, depend upon the
development level and implementation maturity of the techniques available at that
time.

Application of empirical BLT prediction to the Orbiter has been consistent over the
three decades since this vehicle's conception. Although unlike Mercury, Gemini and
Apollo in that these blunt configurations had ablative TPS which was the primary
contributor to BLT, the Orbiter design and development team appears to have
invested the most significant effort on BLT for any entry vehicle of its day. BLT
concerns were extremely important for the Orbiter because of the silica tile based
TPS. Steps and gap between neighboring tiles had to be specified and controlled in
order to drive the occurrence of BLT to lower entry Mach numbers. Not only did
BLT need to be forced to lower Mach numbers for a typical reentry trajectory, but
also for the full suite of envisioned DoD and NASA nominal and abort trajectories.
Ultimately, the prime contractor (Rockwell International at the time) implemented
an empirical BLT correlation consistent with the work of Van Driest and Blumer
(Berry 14). Additional perspective on the prime contractor's approach to BLT
prediction and control/maintenance of the specification for tile steps and gaps can
be found in Haney, et al. (Berry 1). Additional efforts by NASA to utilize empirical
approaches can be found in the works of Bouslog, et al (Berry 2 and 4), Berry (Berry
3), Goodrich (??) and Bertin, et al (Berry 29). Efforts in the last several years by the
Orbiter engineering community were focused on baselining a state of the art
empirical BLT prediction capability (BLT v1 and V2 and King TP/TM) for the Shuttle
Program as a result of the Columbia accident on February 1, 2003. Although not
described herein in any detail, these historical Orbiter empirical BLT prediction
capabilities have been primarily focused on distributed and discrete BLT. The recent
Orbiter Return To Flight activities also included efforts to characterize BLT induced
by small tile damage due to ascent debris impacts, discrete BLT due to protruding
gap fillers or TPS repair hardware in addition to surface blowing due to localized
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ablative repairs. (v1 and v2 refs) One of the most recent efforts of the Orbiter
aerothermodynamics team involved defining an approach to better characterize the
suppression of wing leading edge turbulence at high Mach numbers due to an
upstream BLT event (King TP, Berry 2010 AIAA). Leveraging the work of Poll
(Reference), King, et al. implemented an Rbar approach which has been calibrated
with limited Orbiter flight and wind tunnel data.

One of the most significant aspects of the Orbiter RTF BLT prediction effort was an
emphasis was placed on establishing an experimental data set from which
quantitative statistical evaluations could be made using a variety of empirical
correlations. In the authors' opinion consideration of a set of experimental data
using only a single type or family of empirical correlations will lead to self-
reinforcing conclusions about adequacy, accuracy and effectiveness. For the Orbiter
RTF activity, the most appropriate and accurate empirical correlation was sought,
regardless of its origin. Another important consideration of this activity was its
reliance on a common analysis framework. This was done to avoid bias errors and
additional uncertainty that can be introduced as a result of using multiple analyses
approaches within a common activity, as concluded by Berry, et al (Berry 6).

The configurations discussed above are all U.S. human spaceflight vehicles that
became operational, there have obviously been other significant efforts that utilized
empirical BLT prediction techniques. Efforts to characterize nosetip transition as
part of the Passive Nosetip Transition (PANT) program (Berry 13) represent a
significant technical contribution. Stetson et. al (Berry 40) provides a valuable
perspective assembling information on blunt body configurations. Schneider
(Wright 38) provides an even more comprehensive survey of available BLT data
that was motivated in part by efforts to characterize blunt body transition for the
Orion crewed capsule. In addition, information on BLT for conical configurations is
available in Boudreau (Berry 31).

NASA efforts in the 1990's to develop and fly a variety of entry vehicles also relied
on the use of empirical BLT prediction. These include X-33 (Berry 6), X-38 (Berry 7)
and X-34 (Berry 20). A synthesis of data in the Re k family of correlations (Wright 33)
also represents an important contribution because of that work's effort to compile
multiple data sets into a common assessment. Other efforts to perform design
activities using a simple Ree criterion (Wright 39-40) reinforce the need for straight-
forward critical design values for vehicle development. In a recent work by Lin et. al
(entry vehicle approach) a very important set of information was provided in regard
to how empirical BLT prediction and design criterion have been utilized to improve
trajectory accuracy for spherically blunted cones. The weakness of using a simple
Ree criterion can be seen by reviewing the significant uncertainty demonstrated in
data obtained during the SWERVE flight test activity (SWERVE Reference Candler
1).
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Of particular note among U.S. efforts performed in the last several decades is the
National AeroSpace Plane (NASP) effort. This activity represents the only historical
activity that made used of BLT prediction techniques beyond empirical correlations.
Although the actual design selection utilized an Ree basis of prediction based on
flight Navier Stokes simulations, significant effort was also invested in using linear
stability analyses (Lau NASP, Malik ref from Cander). Although the NASP program
was the only historical effort to make use of stability modeling for BLT prediction, it
will most certainly not be the last program or project to do so. Recently, successful
application of Parabolized Stability Equation (PSE) methods have been used to gain
insight into wind tunnel and flight BLT for the Mars Science Lander (Wright 45, 46,
149). In addition, an even more recent effort to perform PSE modeling on the
Orbiter at flight conditions (Johnson 2010 Orlando) has been performed. This trend
is an encouraging one, as it represents extension of the theoretical framework first
defined by T. Herbert (Ref) an application framework that has potential for use by
the entry design and development community. Also of significant interest regarding
this trend are activities using high fidelity CFD analyses to better characterize
discrete protuberance boundary layer transition (other session refs). These efforts
are in part being motivated by the Orbiter BLT Flight Experiment, but are also an
additional indication that the multiple U.S. government agencies (e.g. DOE, Air Force,
NASA) are making investments in the BLT prediction arena.

This section seeks to summarize how empirical BLT prediction is ubiquitous in the
vehicle design community. As far as the authors have been able to ascertain, it
appears that every significant NASA entry vehicle has utilized some form of
empirical BLT approach. A word of caution is warranted in association with the
statement to avoid any potential misunderstanding. The conclusion to draw from
this statement is not that the BLT community should accept the status quo of
empirical BLT correlations. The appropriate conclusion to draw is that design and
operational engineers require simple and effective means to rapidly gain knowledge
regarding each scenario in order to inform the decision making process. This
informed knowledge will be based upon the capabilities currently in existence that
can provide answers in the allotted time frame. To put this in another context, a
perfect answer obtained after a critical design decision is made, after a vehicle
failure or worse yet, loss of a vehicle and crew is simply too late to influence
decisions. Engineers and decision makers have to choose a course of action based on
what is known at the time, based on the best information that is currently available.
By itself, hoping for an improved answer that will come in too late is not a strategy
to depend on. In the vernacular of project management, hope is not a management
tool. The BLT research and development community needs to strive for tools,
techniques and methods that can provide more accurate, high fidelity BLT
prediction in a timely and responsive manner. Historically, investment in
hypersonic BLT has been cyclical, and it appears that we are currently seeing
increasing national investments in this arena. However, if additional engineering
capabilities do not materialize in the current cycle of increased support, then the
next downturn in support is very likely to be at least as significant as the last cycle.
Therefore, one of our overall goals must be to not only perform research that
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develops understanding, but also to accomplish research and development that
provide capabilities which the engineering and design communities can use to
impact programmatic decisions. More consistent investment and forward progress
in BLT research and development depends upon delivering increased
understanding as well as providing engineering capabilities that can impact vehicle
design and operational decisions.

Quantitative Evaluation of BLT Correlation Accuracy

Engineering development and design seeks to utilize any method of sufficient
accuracy for guiding the decision making process. The methods utilized to guide
decisions will be more accurate in some instances and less accurate in others. The
importance of engineering approaches are not to be judged by how perfect they are,
but instead by their efficacy at impacting a design or operational decision based on
an appropriate level of confidence. In the case of BLT correlations, the efficacy, value
and utility of engineering correlations has been validated by decades of use. This has
been discussed in the previous section where it is pointed out that apparently every
U.S. human spaceflight vehicle and many other entry vehicles have made use of
empirical BLT prediction. Having the desire for more accurate and precise BLT
prediction capabilities must also be accompanied by substantiated accuracy and
practical implementations. The implementation selected for a given circumstance
must also then be responsive to the applied engineering time frame and cost
framework. It is the desire of the authors, and presumably, the hypersonic entry
BLT technical community to provide more accurate prediction capabilities. This is a
goal that the authors believe is shared across the engineering, research and
academic communities. Current engineering practice uses empirically based BLT
correlations, however, as embodied in the approach utilized in development and
application of the Orbiter entry RTF BLT prediction capability.

The Orbiter RTF entry aerothermodynamics community has implemented a state of
the art framework for discrete protuberance based empirical BLT predictions (REFS
V1, V2 Berry, King). In addition, using a philosophy and methodology similar to that
employed for discrete protuberances, the Orbiter team has also implemented small
cavity empirical BLT prediction (REFS) and suppressed wing leading edge or
attachment line BLT empirical BLT prediction (REFS). In an effort to communicate
more of the basis and philosophical approach behind the role and implementation of
these correlations, a review of the discrete protuberance BLT correlations evaluated
by the Orbiter team during RTF will be provided. To further clarify this approach,
several additional correlations will be assessed to illustrate a recommended process
for empirical correlation selection given a body of experimental and flight data.

Discrete protuberance BLT correlations identified and investigated for
implementation supporting the Orbiter project during RTF provide a reference for a
state of the art empirical framework. Key aspects of this approach involve the
following: a) development of a statistically significant experimental database across
multiple hypersonic facilities using scale models of the flight configuration, b)
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generation and inclusion of experimental data relevant to the variability of discrete
protuberance geometries of interest, c) utilization of flight data to define the effect
of ground to flight scaling, d) implementation of an appropriately accurate Navier
Stokes flow field database at ground and flight conditions with thermo-chemistry
modeling appropriate to the flow physics, and e) unbiased investigation of multiple
empirical correlations to define the most accurate correlation for the selected
vehicle configuration. Judicious implementation of each of these five tenets form a
necessary foundation for generating the results provided in Table 1, as adapted
from King TP ref.

The information provided in Table 1 summarizes several statistical values and best
fit coefficients for the discrete protuberance BLT empirical correlations investigated
by the Orbiter team. In the first row is an equation defining the power-law
relationship used to define each correlation. The statistical values provided include
the correlation parameter R, a non-dimensional metric of the variation between the
+95% and -95% bounds represented by ACgs/C, and a measure of the tunnel to
tunnel variation of the best fit coefficients specific to data from each facility Gc /C.
Also included are best fit coefficients of the ground plus flight data ensemble, flight
data only best fit coefficient and the ratio of these two. In cases that specific values
were not currently available, a (-) has been entered into Table 1.

Table 1. Power Law Protuberance BLT Correlations from Reference (KinLj TP1
Power Law Regression Ensemble Statistics

Ensemble Best Flight Best
Flight to Ensemble

Fit	 Correlation
Correlation Equation R AC95 / C oc / C Fit Coefficient Coefficient Coefficient Ratio
(Ree/Medge) (k/6) (H e/HJ 44 = C -0.92 1.05 15.5% 350.3 450.7 1.29

(Ree/Medge) (k/6) ( H e/HW )030 = C -0.91 1.10 19.9% 42.8 61.3 1.43

(Rek .6) [ ( Ree ) (4,/4k) 
]0_40 = C -0.84 1.30 35.0% 217.6 396.8 1.82

(Ree/Medge) (k/6) = C -0.88 1.25 21.2% 31.9 41.6 1.30

( Re o/Medge) (k/S*) = C -0.87 1.32 34.9% - - -

( Rep/M edge) (k/0) = C -0.86 1.36 23.3% - - -

( Ree/M edge) ( k/s ) (Te/TJ)"' = C -0.89 1.20 23.6% - - -
!
lPku k k/Pk) = C

t
-0.79 2.51 30.9% - - -

Development of the discrete protuberance BLT empirical correlations and results
listed in Table 1 was performed while utilizing the tenets a-e identified earlier in
this section. The experimental data acquired on the Orbiter configuration were
acquired in the NASA LaRC Mach 6 air, Mach 10 air and Mach 6 C174 facilities (Berry
AIAA, King TP, others). In addition, experimental data on the Orbiter configuration
were also obtained in the CUBRC LENS facility at Mach 10, 14 and 16. Discrete
protuberances were investigated for several protuberance configurations
representative of the geometries considered possible for Orbiter TPS (King REF for
TEI, Cassady TM). Orbiter flight data for protruding gap fillers were included in the
ensemble of experimental data. This flight data also provided the basis for a flight
best fit correlation result, hence the values tabulated in the sixth column of Table 1
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for several of the correlations. A Navier Stokes database of Orbiter configuration
ground test simulations and flight simulations was developed using thermo-
chemistry appropriate to the facility or flight environment. As demonstrated in
Table 1, multiple empirical correlations were investigated that span the potential
spectrum of boundary layer flow parameters. Additional correlations were also
investigated that are not identified in the RTF BLT team documentation, and are not
represented in Table 1. Open minded consideration of different correlations
suggested very recently by others in the community (Reshotko personal comm..
6/09) has resulted in other investigations (King TP) of several correlations which
utilize k/6 in the parameter set. It is also of interest to the authors to investigate
utilization of altitude in the correlation parameter set, because of perspective
provided by other individuals regarding the efficacy of empirical BLT correlations.
(Ref Reshotko - is Re-theta good enough paper) Each of the correlations
summarized in Table 1 utilized the statistically significant ensemble results for a
ground test program including over one-hundred discrete data points and ten
Orbiter flight data points from protruding gap fillers.

Table 1 loosely orders the correlations in accordance with their accuracy, as
interpreted by the authors. Of particular note are the second and third correlations
from the top, which are the methods baselined in the Orbiter RTF BLT V2 prediction
tool for Space Shuttle Program support. The first correlation listed in Table 1 is
fairly new and is being evaluated for potential use in support of the Space Shuttle
Program, due to its incremental improvement over the correlation in row 2 of Table
1. The accuracy of each correlation is evaluated by considering the three statistical
parameters included in Table 1. The range of correlation values range between 0.79
and 0.92. Considering that engineering practice considers correlation values higher
than approximately 0.5 of significance, all of these correlations can be of potential
utility to practicing design engineers. What is undesirable about these correlations
is the uncertainty values included in the third and fourth columns of Table 1. For an
Orbiter on entry, these uncertainty values lead to predictions of BLT onset that vary
by approximately plus/minus two in Mach number. Nonetheless, a ranking of
accuracy has been established by considering the three statistical measures
included in Table 1. Of additional information is the ratio of best fit correlation
coefficients for the ensemble of ground and flight data included in column five and
the best fit coefficient of the flight data shown in column six of Table 1. This ratio
provides insight that is very important to note. The magnitude of this ratio is
approximately two times the non-dimensional sigma value included in column six
for each correlation. These data imply that the ground to flight scaling affect is
approximately twice as large as the tunnel to tunnel variability. This scaling ratio
can also be assessed in relationship to the variability of the ensemble of data for the
second correlation in Table 1 by graphically examining the results shown in Figure
1. Note that the -95% correlation line, shown in red, has a value of 35.3. Also note
from Table 1, that the ensemble data best fit coefficient is 42.8. From this result one
can conclude that the flight scaling affect is almost as large as the difference
between the 95% and best fit correlation lines. At first glance, one might conclude
that this result means that the confidence of a flight scaling affect being the value
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provided in the last column of Table 1 is approximately 95 x/0. However, this is an
incorrect conclusion because there is uncertainty in the height determination of the
historical Orbiter protruding gap fillers that is comparable to the uncertainty of the
ensemble correlation. This effect is something that the Orbiter BLT Flight
Experiment team will seek to clarify by obtaining multiple Orbiter flight BLT onset
data points with a known geometry. Flight BLT onset data acquired from STS-119
and STS-128 as part of the Orbiter BLT Flight Experiment (Refs Campbell,
Anderson) are included in Figure 1. Additional details regarding the flight
experiment effort can be found in Anderson (ref) and Spanos (ref). This recent
flight data demonstrates good comparison with RTF BLT V2 predictions, with flight
BLT occurring well within one sigma uncertainty and at slightly earlier times than
predicted. Even with the existing data ensemble uncertainty, it is important to note
that all of the correlations included in Table 1 show a consistent trend where the
flight environment leads to BLT onset at higher Reynolds numbers or higher
discrete protuberance heights than a ground test based empirical correlation will
predict. Evaluating the statistical confidence of this observation that there is a flight
scaling effect will be important after two additional BLT FE flights are completed in
2010 before the Space Shuttle is retired.
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Figure 1. Graphical results for an Empirical BLT Prediction correlation of Orbiter
data for protuberances, adapted from Ref. King TP to include BLT Flight Experiment
results from STS-119 and STS-128.

There is also another important consideration regarding the magnitude and
confidence of a flight scaling effect, as discussed in the previous paragraphs. For an
engineer attempting to apply one of these empirically based correlations to a flight
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vehicle, it appears that ground to flight scaling is not insignificant. Thus, in concert
with correlation uncertainty and accuracy being critical to an engineer, a bias effect
due to flight scaling will also be a critical consideration. A conclusion to draw from
this examination of flight scaling is that application of empirical discrete
protuberance BLT prediction correlations established only with ground test data
will be inaccurate and conservative without sufficient flight data to accurately
characterize the flight scaling bias error. Once flight data is acquired, the magnitude
of the flight bias error can be evaluated. Depending on the conclusions established
from such an assessment, a lower flight bias error for an alternate correlation than
what was originally selected pre-flight may subsequently motivate operational
selection of a different empirical correlation. This should reinforce to the reader the
comments provided earlier in this paper regarding the goal of an engineer is to
provide the most reasonable and accurate information to guide decisions. An
engineering and technical community should be motivated to change their
prediction basis if an improved basis is identified because of new information,
whether the source is flight data or because a practical implementation of a new
method matures out of the research community. Diligent application of the open
minded investigation of alternate frameworks is also one of the tenets outlined
earlier that has guided the Orbiter RTF entry aerothermodynamics community,
which continues to be utilized by this community.

Let us shift gears now to expanding the characterization beyond power-law
correlations as utilized in developing the results provided in Table 1 and Figure 1. In
order to enhance the spectrum of correlations considered, results from linear
regression analyses of the Orbiter ground and flight data are included in Table 2.
These linear regression results will be used as an example to illustrate how
statistical function results can be used to quantitatively rank several possible
empirical correlations. The primary benefit of this approach is that it provides a
rational and quantitative basis to objectively evaluate options. In addition to using
these results as an illustration, several observations will be made regarding the
accuracy of the Ree and Rekk empirical correlation frameworks.

Several correlations have been selected for evaluation based on similar boundary
layer parameters as those utilized in the results included in Table 1. Since linear
regression potentially involves multiple correlation coefficients, the matrix of
regression coefficient established from linear regression results are included in
Table 2. Table 3 contains information similar in format and context to the results
included in Table 1. Figures 2 and 3 represent the linear regression results for the
first and third correlations included in Tables 2 and 3, and include the best fit
correlations for both the ensemble of combined ground and flight data as well as the
best fit result for only the flight data. Uncertainty in the linear regression results is
characterized by the A17 46/Fnlean, where AF 46 is four times the standard deviation of
the correlation, and Fn,ean is the mean value of the correlation function across all
data. Since the results included in Table 1 are based on power law correlations, and
the results in Tables 2 and 3 are based on linear regression, it should be noted that
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direct comparison of the uncertainty metrics represented by AC9s/C in Table land
A1746/17mean in Table 3 is not recommended.

Table 2. Linear ReLyression Protuberance BLT Correlations
Linear Regression Coefficients li ' f;

Correlation b	 mi FM edge (Mk/Bk) (Pk u k/Pe u e) (k/S)	 (H JHJ

Reg = m l ( M edge) + b 222.23	 -24.90

(Reg /M edge) = b 96.72	 - -

(P k u k k/µk ) = m 1 (M k/B k) + b 32.51 324.60 - -	 -

(P k u k k/µk )= b + m; f; 127.64 62.86 127.64 287.97	 2.94

46.39 141.05 -50.88 159.16	 -0.39

n jk gjk

- 46.39 -86.56	 -(M k/B k )

(Pku k/Pe ue)	 - _ _ 215.65	 -

(Pku k k/lak) = b + m; f; + n kf k (k/S) -

1 aDie .3. Linear Re pression YrOtUDerance BL l (-orrelation Statistics
Linear Regression Results Ensemble Statistics Ensemble Best Flight Best	 Fit Flight to Ensemble

AF4Q / Fit Slope / Slope / Ratio Slope
Correlation Equation R	 Fmean	 oc / C Intercept Intercept Intercept

Rea = m l ( M edge) + b 0.13	 1.08 -24.89 / 222.23 -84.25 / 505.25 3.38/2.27

/M edge) = m -	 2.16	 - 96.72/-	 191.34/-	 1.98/-

k k/P k ) = m 1 ( M k/B k) + b 0.67	 1.99	 - 324.60 / 32.51	 364.62 / 121.92	 1.12/3.75

k k/µk )= b + m; f; 0.88	 1.27 -/127.64 	 - / 1917.75*	 / 15.02*
k k/µk )= b + m; f; + n; j g;j 0.89	 1.23 -/46.39 	 - / -2572.19*	 / -55.45*

The reader will probably note upon examination of the correlation relationships in
Tables 2 and 3 that the parameter B k is not a typical boundary layer parameter to
include in BLT correlations. However, the authors have a specific motivation for
including this term. Since B k is the ratio of the mean thermal velocity to sonic
velocity, RekB k/M k is effectively the inverse of a Knudsen number. The reader can
confirm this by relating mean free path and viscosity in the Knudsen number and
Reynolds number to equations involving the mean thermal velocity and sonic
velocity. Inclusion of the B k value is thus intended to provide insight into the
potential significance that non-continuum effects have on discrete protuberance
incipient BLT.

By examining the results of the various Rek family correlations included in Tables 2
and 3, one can develop insight into the Knudsen number range that is important for
incipient BLT. The linear regression coefficients shown for (M k/B k) in Table 3
represent the Knudsen number range of significance for discrete protuberance BLT.
Since the regression coefficients for (M k/Bk) shown in Table 3 are actually the
inverse of the Knudsen number, we have (1/Kn k) z (324, 63, 141) for the third,
fourth and fifth correlations which are all Re k family correlations. Inverting these
values yields Knk z (0.003, 0.016, 0.007). It is commonly accepted that non-
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continuum effects can be assumed to begin playing a role in the physics of high
altitude fluid dynamics for Knudsen numbers greater than 0.01. At values larger
than approximately 0.05, the engineering community typically utilizes techniques to
adjust continuum based methodologies for integrated engineering parameters with
similarity parameters. In Navier Stokes simulations, slip wall boundary conditions
are presumed important when the Knudsen number begins exceeding
approximately 0.0113ased on the Knk values listed above, it appears that discrete
protuberance incipient BLT occurs at Knudsen numbers not far below conventional
values associated with non-continuum effects. Therefore, the results characterized
in Table 3 lead to a hypothesis that non-continuum effects play a role in incipient
discrete protuberance BLT onset at hypersonic conditions.

6.00E+02
Orbiter Flight Data
and Linear Regression

5.00E+02	 All Orbiter Data
and Linear Regression

4.00E+02

0.00E+00

1.0	 1.5	 2.0	 2.5	 3.0
	

3.5

Medge

Figure 2. Orbiter Discrete Protuberance BLT Correlation of Ree vs Medge.
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Figure 3. Orbiter Discrete Protuberance BLT Correlation of Re kk vs MkBk.

Let us now proceed on to making more general observations regarding the various
correlations included in Tables 2 and 3. Note first that the simple Ree /Meage mean
value basis, shown in the first row of Tables 2 and 3, has the largest correlation non-
dimensional uncertainty metric, AF4o/F,nean, of any result included herein. An
improved correlation uncertainty can be obtained by performing a linear regression
with Ree versus Medge, yielding roughly one-half the uncertainty. However, the
regression coefficient is very low with a magnitude of 0.13, even though the
uncertainty metric has a value better, 1.08, than many others represented in this
paper. A more accurate correlation basis that falls in the Ree family is included in
row 1 of the power law regression results in Table 1. That Ree family power law
correlation has a correlation coefficient of 0.92, and an uncertainty metric of 1.08.

An important observation can be made at this juncture regarding accuracy of the
single parameter correlations Ree and Rekk. Results included in Tables 2 and 3 for
these two single parameter correlations are included. A simple mean for Ree and
Rekk (not included in Tables 2 and 3) yield AF4o/ Fmean magnitudes of 2.16 and 2.68,
respectively. Therefore, in regard to discrete protuberance BLT prediction for the
Orbiter, a simple mean of Ree is superior to a simple mean of Rekk. Additional
comparisons can be made between the various Reo and Rekk based correlations
included in Tables 1, 2 and 3. Let us proceed toward evaluating the best Ree and Rekk
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based correlations evaluated herein. The most accurate Rekk correlation on the
Orbiter data ensemble is defined in the bottom row of Tables 2 and 3. This multi-
parameter linear regression of Rekk using boundary layer parameters has a
regression coefficient of 0.89 and a O17 9s/Fmean magnitude of 1.23. This result is
slightly better than the best power-law correlation of Re kk included in Table 1 which
has a OC 95/C magnitude of 1.30. However, the difference in correlation forms (e.g.
linear versus power law) perhaps makes this small difference less significant. The
best Rea based correlation is identified in the first row of Table 1, and is also a
power-law correlation. The best Rea based correlation of the Orbiter data ensemble
has a regression coefficient of 0.92 and a OC 95/C magnitude of LOS. Therefore, the
statistical evaluation values for the Rea basis are better than for the Re k basis. The
conclusion is that the Rea family correlation frameworks are superior to the Rek
family correlations on the Orbiter configuration whether a simple mean, single
parameter linear regressions or power-law correlations are utilized. Care should be
takend in applying this conclusion to other vehicles, however. Configurations other
than the Orbiter may yield accuracy and uncertainty trends that result in different
conclusions, conclusions which can only be established by open minded
consideration of multiple correlation parameters.

The information provided earlier in this section has been used to illustrate an
example of how quantitative evaluations of statistically significant BLT onset data
can be used to draw concrete conclusions regarding the accuracy and uncertainty of
different correlations. The primary conclusion of this assessment is that Rea family
empirical correlations for Orbiter configuration discrete protuberance BLT
prediction are superior to Rek family correlations. For the Orbiter configuration, this
conclusion is true whether a simple mean or power-law regressions form the
correlation basis. The authors recommend that this conclusion be carefully
considered with respect to current and future efforts, as well as efforts involving
study of historical data sets. Consideration should also be given to application of the
tenet utilized by the Orbiter RTF team that developed BLT correlations for the Space
Shuttle program whereby multiple parameter spaces be considered and
quantitatively evaluated in order to obtain the most accurate empirical correlation
possible. Adherence to a focus on correlating BLT onset data with a single
parameter space, which would be contrary to a tenet practiced by the Orbiter team,
would deny the broader community and the programs providing support to an
effort the option of understanding which empirical correlations are the most
relevant to a given situation.

Before moving on to a brief discussion summarizing the results presented in this
paper and looking to the future, a few more observations regarding the engineering
role of empirical BLT correlations shall be provided. It should be noted that it is not
necessarily sufficient as an engineer to establish the most accurate prediction basis
able to support a decision in the allotted time. For example, earlier in this section, a
conclusion has been made that Rea based empirical correlations are superior to Rek
correlations for the prediction of discrete protuberance BLT on the Orbiter
configuration. Because these correlations are, after all, regression based curve fits of
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relevant data we lack the ability to gain detailed physical insight into the
mechanisms and processes that are at work. When faced only with methods that
lack a detailed physical rationale, it is prudent engineering practice to have more
than one independent method to support a decision making process. This is
particularly true in the case of human spaceflight missions and designs. For this
reason, the Orbiter RTF entry aerothermo dynamics team implemented both Rea and
Rek based discrete protuberance BLT correlations to support the Space Shuttle
program.

Discussion

Reference other paper session topics, AF/ARMD Hypersonic Center at Texas S&M,
AF/ARMD-FAP Foundational Research Plan all these being indication of interest and
recent investments. Hopeful future, one that if successful will provide higerh fidelity
capabilities for BLT prediction that are practical and provide more accurate and
more precise BLT prediction capabilities.

Summary and Conclusions
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