ERWG Data Collection NASA's Inputs

ISECG Workshop Montreal March 25, 2010

Agenda

• Mars Design Reference Architecture 5.0

Bret Drake/ Lee Graham

- Robotic Precursors targeting Near Earth Objects
 Rob Landis
 for Human Exploration
- Notional Human Exploration of Near Earth Objects

Bret Drake/ Lee Graham

 Low Earth Orbit Refueling to Augment Human Exploration Andy Thomas/ Pat Troutman/ Chris Culbert

Human Exploration of Mars Design Reference Architecture 5.0 (NASA Mars Architecture Study – 2007)

Bret Drake/Lee Graham

Mission Scenario Information, Mars DRA 5.0

_	
	-
	ISECG

	Primary	Secondary
Mission Scenario	M6	M8, M9
Reference	Human Exploration of Mars Design Reference Architecture (DRA) 5.0 (NASA Mars Architecture Study - 2007) <u>http://www.nasa.gov/exploration/library/esmd_documents.html</u>	
Destination	Mars Surface	
Estimated Date	No earlier than 2030	
Objectives/Goals	See subsequent slides	
Mission Operational Drivers	See subsequent slides	
Key Technology Needs	See subsequent slides	
Key Capability Needs	See subsequent slides	
Mission Profile	See subsequent slides	

Mars DRA 5.0 Objectives/Goals, p 1 of 4

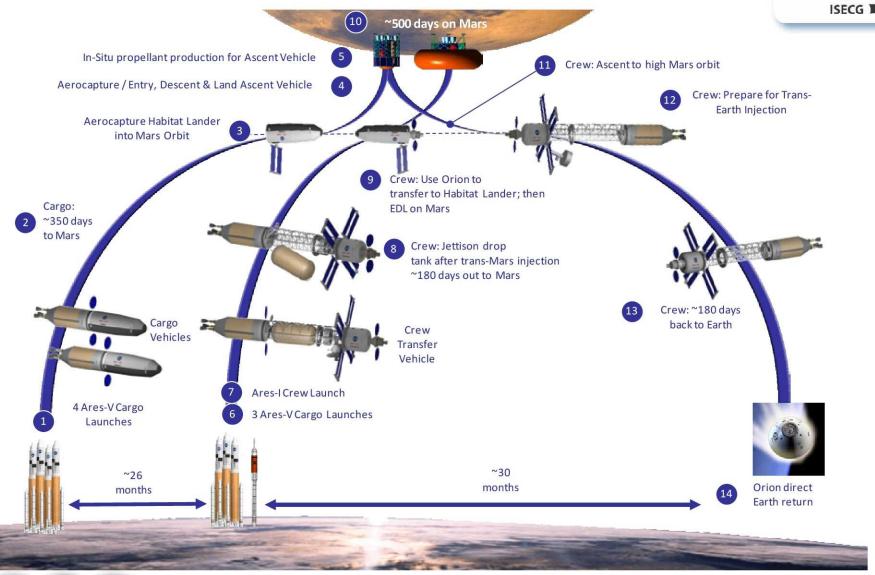
Theme	Exploration Objective	
Goal I: Life	Assess past and present habitability potential of Mars	
	Characterize carbon cycling in its geochemical context (including its origin and distribution)	
	Test for life (identify and determine the spatial distribution of biosignatures)	
Goal II: Climate	Characterize the atmosphere and present climate and processes	
	Characterize Mars' ancient climate and climate processes	
	Atmospheric state and processes of critical importance for the save operation of spacecraft	
Goal III: Geology	Determine the nature and evolution of the geologic processes that have created and modified the martian crust and surface	
	Characterize the structure, composition, dynamics, and evolution of the martian interior	
Goal IV: Preparation	Obtain knowledge of Mars sufficient to design and implement a human mission with acceptable cost, risk, and performance	
	Conduct risk and / or cost reduction technology and infrastructure demonstrations in transit to, at, or on the surface of Mars	
Goal IV+:Preparation for sustained human presenceDemonstration of Mars human habitability, exploration systems development, and long-duration mission operations for missions beyond the first three.		
Goal V: Ancillary	Understanding the fundamental processes that control Mars' space environment	
	Understanding the influence of planetary magnetic fields	
	Maximizing safety and productivity of human explorers	

Mars DRA 5.0 Objectives/Goals, p 2 of 4

Theme	Exploration Objective
Geologic: Determine the nature	1. Determine the present state, three-dimensional distribution, and cycling of water on Mars.
and evolution of the geologic processes that have created and modified the martian crust and	2. Evaluate fluvial, subaqueous, pyroclastic, subaerial, and other sedimentary processes and their evolution and distribution through time, up to and including the present.
surface	3. Calibrate the cratering record and absolute ages for Mars.
	4. Evaluate igneous processes and their evolution through time, including the present.
	5. Characterize surface-atmosphere interactions on Mars, including polar, Aeolian, chemical, weathering, mass-wasting, and other processes.
	6. Determine the large-scale vertical structure and chemical and mineralogical composition of the crust and its regional variations; this includes, for example, the structure and origin of hemispheric dichotomy.
	7. Document the tectonic history of the martian crust, including present activity.
	8. Evaluate the distribution and intensity of hydrothermal processes through time, up to and including the present.
	9. Determine the processes of regolith formation and subsequent modification, including weathering and diagenetic processes.
	10. Determine the nature of crustal magnetization and its origin.
	11. Evaluate the effect of impacts on the evolution of the martian crust.
Geophysics: Planetary Scale	1. Characterize the structure and dynamics of the interior.
	2. Determine the origin and history of the magnetic field.
	3. Determine the chemical and thermal evolution of the planet.

Mars DRA 5.0 Objectives/Goals, p 3 of 4

Theme	Exploration Objective	
Geophysics: Local Scale	1. Evaluate fluvial, subaqueous, pyroclastic, subaerial, and other sedimentary processes and their evolution and distribution through time, up to and including the present.	
	2. Characterize the composition and dynamics of the polar layered deposits.	
	3. Evaluate igneous processes and their evolution through time.	
	4. Characterize surface-atmosphere interactions on Mars, including polar, aeolian, chemical, weathering, mass-wasting, and other processes.	
	5. Determine the large-scale vertical and horizontal structure and chemical and mineralogical composition of the crust. This includes, for example, the structure and origin of hemispheric dichotomy.	
	6. Determine the present state, three-dimensional distribution, and cycling of water on Mars.	
	7. Document the tectonic history of the martian crust, including present activity.	
	8. Evaluate the distribution and intensity of hydrothermal processes through time, up to and including the present.	
	9. Determine the processes of regolith formation and subsequent modification, including weathering and diagenetic processes.	
	10. Determine the nature of crustal magnetization and its origin.	
	11. Evaluate the effect of impacts on the evolution of the martian crust.	


Mars DRA 5.0 Objectives/Goals, p 4 of 4

Theme	Exploration Objective	
Atmosphere and Climate:	Surface-atmosphere interactions: dynamics, heat and mass balance, non-equilibrium trace gases	
	Search for sources of volatiles and trace gases	
	Baseline chronology and characterization of the climate history of the north polar dome (deep core)	
	Horizontal sampling of the North Polar Layered Deposits (NPLD)	
	Long-term climatic evolution of the planet (billion-year temporal scale); implications of early climatic conditions in the emergence of early potential habitats and/or life, which includes inference in the atmosphere chemical state	
	Sampling of Noachian to Amazonian deposits through soft drilling (~1 meter deep) along outcrops, or deep drilling to capture information in the sedimentary record	
Deep Drilling	Deep core and baseline chronology and characterization of major climatic events in past 5 million years	
	Polar cap mass and energy balance for current climate state and seasonal cap formation processes	
	Shallow cores to investigate heterogeneity	
	Emplacement of geophysical sensors	

Mars DRA 5.0 Mission Profile

Mars DRA 5.0 Innovation Requirements, p 1 of 3

Functional Capability	Elements	Innovation Requirement		
		Critical	Important	Desirable
Crew Transportation	 Heavy lift launch (x3) Crew launch (x1) In-space propulsion Earth return capsule Mars habitat lander Mars descent / ascent vehicle 	 Nuclear Thermal Propulsion or advanced chemical Zero-boiloff cryo fluid management High-speed (12 km/s) Earth entry Automated rendezvous and docking (Low Earth Orbit) Entry, Descent and Landing of large payloads Methane lander propulsion ISRU Propellants 		
Cargo Transportation	 Heavy lift launch (x4) In-space propulsion 	 Nuclear Thermal Propulsion or advanced chemical/ aerocapture Zero-boiloff cryo fluid management Automated rendezvous and docking (Low Earth Orbit) Entry, Descent and Landing of large payloads Methane lander propulsion 		
In-space Habitation	 In-space habitat to support 6 crew for 400 days (nominal) + 500 days (contingency) 	 Radiation protection Closed-loop life support 		

Mars DRA 5.0 Innovation Requirements, p 2 of 3

Functional Capability	Elements	Inr	novation Requirement	
		Critical	Important	Desirable
On-surface Habitation	Surface habitat to support 6 crew for 540 days	 Inflatable modules Radiation protection Closed-loop life support 		
Extra Vehicular Activity	Surface suit	Dust mitigation		
In-space Power	Solar arrays			
On-surface Power	Fission Power System	Nuclear fissionRobotic emplacement		
Surface Mobility	 Pressurized rovers for 100- 500 km range 	LightweightLow maintenance		
Servicing		Advanced maintenance and repair		
ISRU	 Locally produced propellants (oxygen) and crew consumables ISRU integrated with ascent vehicle 	 Oxygen extraction from the atmosphere Generation of oxygen, water, and buffer gases 		

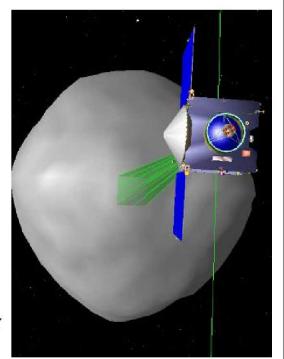
Mars DRA 5.0 Innovation Requirements, p 3 of 3

Functional Capability	Elements	Innovation Requirement		
		Critical	Important	Desirable
Communication & Navigation				
Human Health & Performance		 Zero-gravity countermeasures for 180 day transits Partial-gravity countermeasures for 540 days Radiation protection Advanced medical care 		

Key Risks and Challenges for Humans to Mars

- Launch Campaign
 - 7+ Heavy Lift Launches within 26-month Mars injection opportunity (800 1,200 t total mass in Low Earth Orbit)
 - Large payload volume
- Entry Descent and Landing
 - The ability to land large (40 t) payloads on the surface of Mars. Current limit is ~ 2 t
- Human Support
 - Radiation protection (400 days deep space, 500 days on Mars)
 - Hypo-gravity (Mars surface) countermeasures
 - Reliable closed-loop life support (air and water)
- In-Situ Resource Utilization
 - Generation and use of oxygen produced from the atmosphere
- System Reliability, Maintenance, and Supportability
 - Lack of logistics and just-in-time supply necessitates highly reliable, maintainable systems
- Advanced In-space Propulsion
 - Nuclear Propulsion Thermal Propulsion
 - Advanced chemical with Aerocapture at Mars
 - Zero-boiloff cryogenic storage of hydrogen, oxygen, and methane
 - LO₂/CH₄ propulsion for descent and ascent
- Surface Nuclear Power
 - 40 kWe continuous power with demonstrated long-life reliability
- Mobility and Exploration
 - 100+ km roving range
 - Light-weight, dexterous, maintainable EVA
 - In-situ laboratory analysis capabilities

Robotic Precursor Missions Targeting NEOs for Human Exploration


Rob Landis (and the NASA NEO Team from JSC, GSFC, LaRC, ARC, HQ, JPL)

Hayabusa

Philae lander

Slide 14

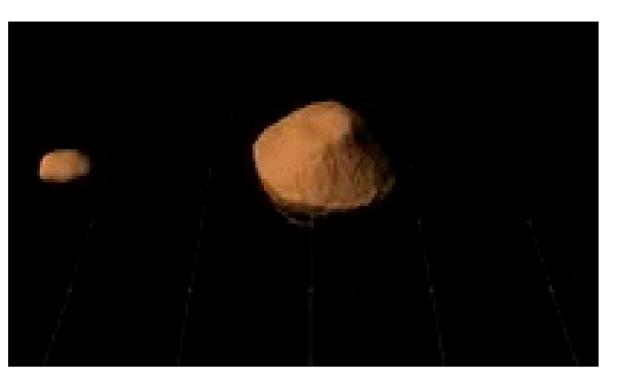
OSIRIS REx

Robotic Precursors to NEOs

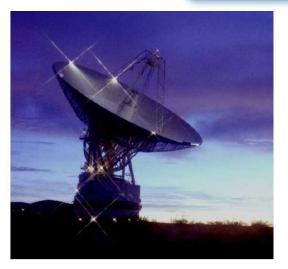
	Primary	Secondary
Mission Scenario	NEO reconnaissance	Science
Reference	See previous page	
Destination	Human accessible NEOs	
Estimated Date	No earlier than 2013	
Objectives/Goals	Further characterization of NEO; obtain basic reconnaissance [see subsequent slides]	
Mission Operational Drivers	Assess surface for future activities to be conducted by human crew (improve mission ops efficiency for piloted mission)	
Key Technology Needs	Key Technology Needs Automated proximity ops and rendezvous flight techniques	
Key Capability Needs	Launch vehicle (EELV, Proton M + Briz M, H2-A, Ariane 5, Soyuz FG, Falcon 9) and necessary deep space delta v (Δ v)	
Mission Profile	Launch from Earth \rightarrow direct TNI burn to NEO.	

ISECG

Robotic Precursors to NEOs: Objectives/Goals



Theme	Exploration Objective
Goal I: Basic Reconnaissance	Additional characterization of NEO prior to human mission
	Obtain basic recon that may pose hazard to spacecraft & crew (i.e., binary bodies, non-benign surface morphologies, rapid rotators and non-primary axis rotators, gravitational field structure, shape model, mass/density estimates, general mineral composition, etc.)
	Assess the surface for future activities to be conducted by crew to maximize surface operations (i.e., proximity ops, surface ops, and macroscopic sample collection by crew).
Goal II: Piloted mission operations	Aid in the navigation of the crewed vehicle stack to the NEO.
support	Provide additional data coverage while crew is operating to/from and at the surface of the NEO (akin to the port and starboard cameras on the ISS truss during shuttle-ISS EVAs).
	Monitor NEO over time after crew departs; relay data from surface instruments left behind by the crew.
Goal III: Science	Determine nature, origin, evolution, and collisional processes of the target NEO.
	Characterize the structure, composition, dynamics, and evolution of the NEO's interior (some are rubble piles while others may be coherent monoliths or metallic or combinations there of).
Goal IV: Preparation	Obtain knowledge of a variety of NEOs sufficient to design and implement a human mission with acceptable cost, risk, and performance
	Reduce risk for other asteroid robotic missions (i.e., OSIRIS REx, Hayabusa 2, etc.)
Goal V: Ancillary	Applicability to other robotic (and eventual human) small body exploration (i.e., NEOs that also cross Mars' orbit, Main Belt asteroids and beyond).
	Understanding of the fundamental processes of planet-building in our Solar System
	Extensive (and proper) mapping of the meteorite record to parent NEO (and Main Belt) bodies
	Planetary defense



Robotic Precursors to NEOs: Ground-Based Observations

~2-km primary body losing material to a $\frac{1}{2}$ -km moonlet. Rotation rate of primary body ~2.5 hours.

70-m Goldstone Antenna

305-m Arecibo Observatory

Robotic Precursors to NEOs: Mission Profile

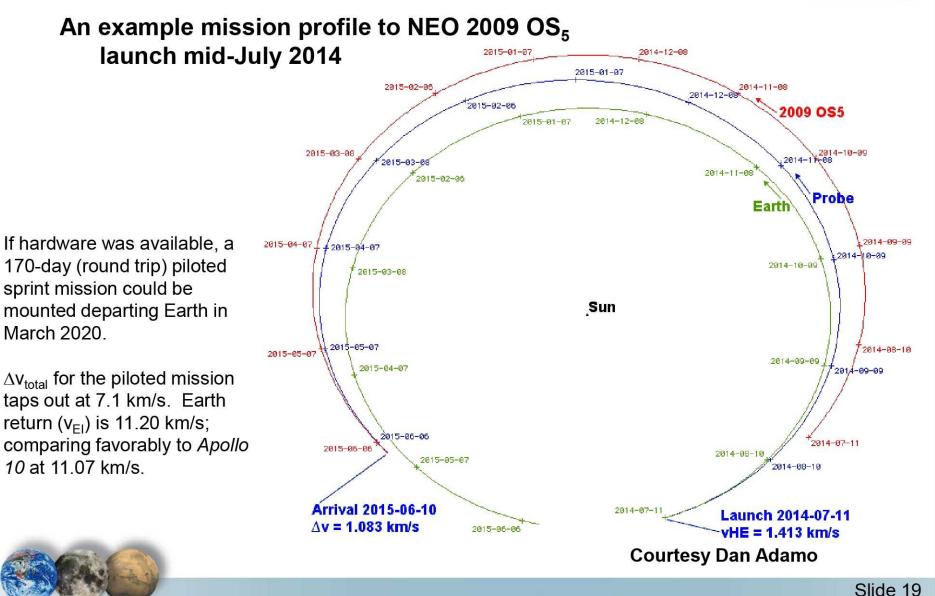
3

Cruise phase (1 to 24 months, depending on target NEO)

Operations and reconnoiter of NEO (1 - 3 + years)

- No new technology requirements
- Refinement of current capabilities
- NEO campaigns could begin as early as 2013
- Remarkable opportunities for int'l engagement
- The 'Big 6' currently include:

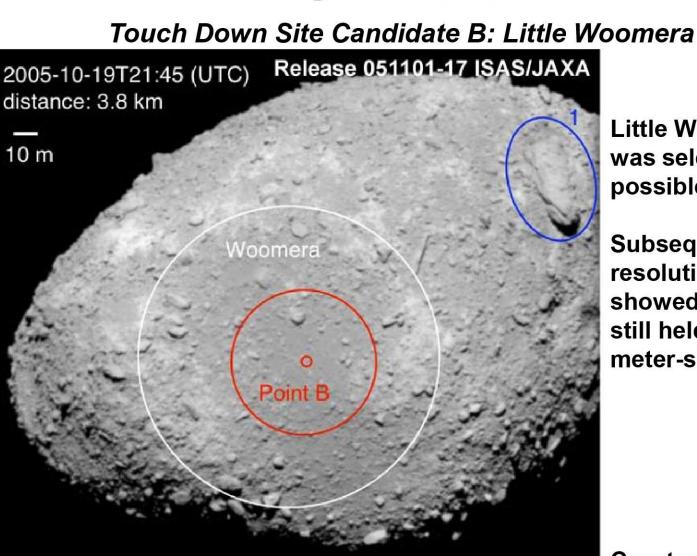
Shortly after launch - critical deployments; Direct to TNI


Launch from Earth

(launch vehicles could be: Proton M + Briz M; Soyuz Fregat; EELV; H-2A; Ariane 5; Falcon 9) $\begin{array}{cccc} - 1998 \ \text{HG}_{49}^{*} & [143 \ \text{m}] \\ - 2001 \ \text{BB}_{16} & [104 \ \text{m}] \\ - 2003 \ \text{SM}_{84} & [100 \ \text{m}] \\ - 2000 \ \text{AE}_{205} & [\ 90 \ \text{m}] \\ - 2001 \ \text{QJ}_{142} & [\ 72 \ \text{m}] \\ - 2009 \ \text{OS}_{5} & [\ 70 \ \text{m}] \\ - 1999 \ \text{AO}_{10} & [\ 60 \ \text{m}] \end{array}$

*Based on Ares V single launch, 1998 HG₄₉ is at the cusp of being accessible for human exploration. Depending on how the new heavy lift vehicle will develop, other targets that might fall into the realm of human exploration include 2001 CC₂₁ at 726 meters across; or, 2008 EV₅ at ~ 540 meters. None of these targets are well-characterized. Approximate sizes are based on albedo; could be larger [or smaller] by a factor of two.

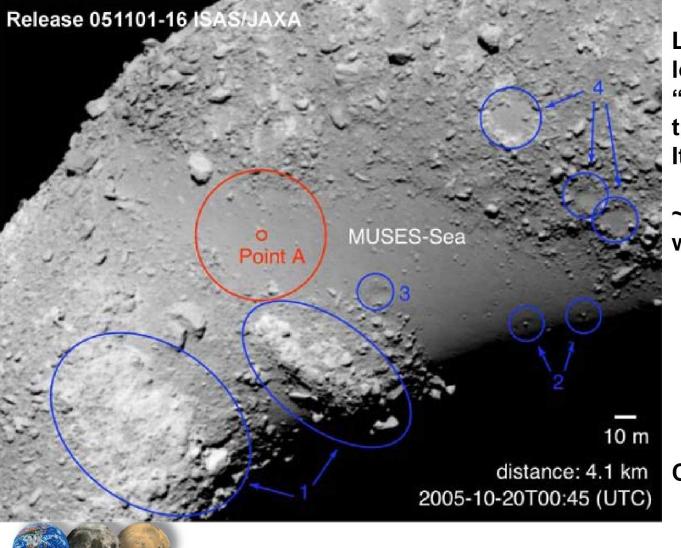
Robotic Precursors to NEOs: Mission Profile


Robotic Precursors to NEOs: Requirements

-	
	ISECG

	Functional Capability	Elements/Instruments			
	Deep Space ∆v	Upper stage storable prop	Fregat	Breeze M (Бриз M)	NRL Upper Stage
	Mapping	High-res optical camera system	Surface identification	Navigation	characterization
		Hyperspectral camera			
		LIDAR	Topography	Gravitational survey	Shape modeling
	NEO Composition	Visible & IR spectrometer	Surface mineralogy		
Small lander package APXS, Mössbauer, microscopic imager, solar wind collector, dust			or, dust detector, radiomete	r	
	Radiation	γ-ray spectrometer (GRS)	Measure gamma radiation as a function of photon energy (feed forwark human missions to NEOs)		
	Communication & Navigation	X-, S-, and Ku-band	Op navs; ∆DOR nav	Data comm	Piloted mission support

Note: '1st Stage Innovative Technology' is not required for the first robotic precursors to reach and explore NEOs. The first step to explore NEOs could be accomplished via conventional means, buying us time to develop cryo-coolers; new technology propulsion units (i.e., refinements to SEP; VASIMR); human tissue equivalent radiation counter; optical comm (first demonstration will be on LADEE); etc. Another key element for success of a precursor series of missions will be a common spacecraft bus.


Little Woomera was selected as a possible landing site.

Subsequent high resolution images showed that this area still held too many meter-sized boulders.

Courtesy JAXA

ISECG

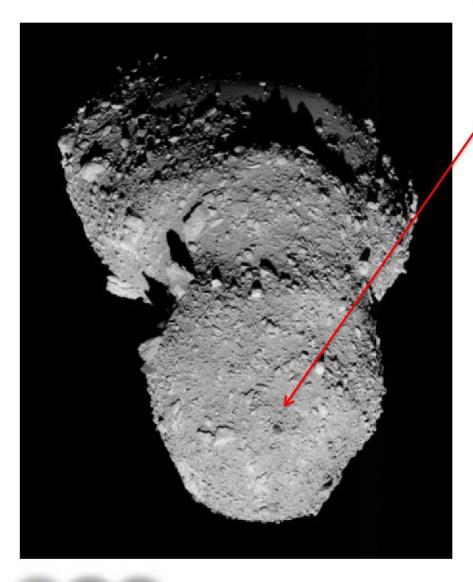
Touch Down Site Candidate A: Muses Sea (smooth terrain)

Largest smooth terrain located between the "Head" and "Body" of the Otter-like [shape of ltokawa]

ISECG

~60 m across at its widest point.

Courtesy JAXA



ISECG

Black Boulders on Itokawa!

Note the large boulders, steep upand down-sloping terrain, lighting conditions, etc.

Several large black boulders have been imaged on the surface of Itokawa.

Largest of these is located on the "Head" of Itokawa.

Possible material from another object.

Courtesy JAXA

Notional Human Exploration of Near-Earth Objects

Bret Drake/Lee Graham

Mission Scenario Information, Human Exploration of NEOs

	ISECG
-	ISECO -

	Primary	Secondary	
Mission Scenario	M2	M8	
Reference	See reference list, plus various unpublished NASA internal studies		
Destination	Near Earth Objects		
Estimated Date To be determined			
Objectives/Goals	See subsequent slides		
Mission Operational Drivers	See subsequent slides		
Key Technology Needs	See subsequent slides		
Key Capability Needs	See subsequent slides		
Mission Profile	See subsequent slides		

Human Exploration of NEOs References

Abell, Paul A. *et al.*. "Scientific Exploration of Near-Earth Objects via the Orion Crew Exploration Vehicle." *Meteoritics and Planetary Science* **44**:1825-1836 (2009).

Adamo, Daniel R., Jon D. Giorgini, Paul A. Abell, Rob R. Landis, "A Survey of Asteroid Destinations Accessible for Human Exploration." *Journal of Spacecraft and Rockets* (2010: in peer review).

Davis, Donald R. *et al.*, "The Role of Near-Earth Asteroids in the Space Exploration Initiative," SAIC-90/1464, Study No. 1-120-232-S28 (1990).

Griffin, Michael, Owen K. Garriott, et al., Extending Human Presence into the Solar System: An Independent Study for the Planetary Society on the Proposed U.S. Space Exploration Policy. The Planetary Society, Pasadena, (2004).

Jones, Thomas D. *et al.*, "The Next Giant Leap: Human Exploration and Utilization of Near- Earth Objects," in *The Future of Solar System Exploration 2003-2013 ASP Conference Series* **272**:141-154 (2002).

Jones, Thomas D. *et al.,* "Human Exploration of Near-Earth Asteroids," in *Earth Hazards Due to Comets and Asteroids*, University of Arizona Press, Tucson, Arizona (1994). 683-708.

Landis, Rob R., et al., "Piloted Operations at a Near-Earth Object (NEO)." Acta Astronautica 65:1689-1697 (2009).

Nash, Douglas B. et al., Science Exploration Opportunities for Manned Missions to the Moon, Mars, Phobos, and an Asteroid NASA Office of Exploration, Doc No. Z-1.3-001 (1989).

Human Exploration of NEOs Objectives/ Goals

ISECG

Theme	Exploration Objective		
Human Exploration	Expand human exploration of space beyond Earth orbit		
Risk Reduction	Gain operational knowledge and system performance for longer durations beyond low-Earth orbit (90 – 360 days away from Earth)		
Mars Demonstration	Mars in-space flight demonstration. Puts humans demonstrably on the way to Mars while producing exciting new science		
Geologic Context	Supports NEO characterization for planetary defense		
	Sample return from solar system bodies radically different from Moon/Mars. Samples from known geologic context.		
	Study the internal structure of asteroids		
	Knowledge of NEO internal strength refines physics models		
Participation	Unprecedented deep space voyages with dramatic perspective of Earth-Moon system		
	Point to continued exploration progress using Constellation investment		
	Cultivate and maintain public support by taking on dramatic new, relevant challenges		
	Provide opportunities for international and commercial participation		

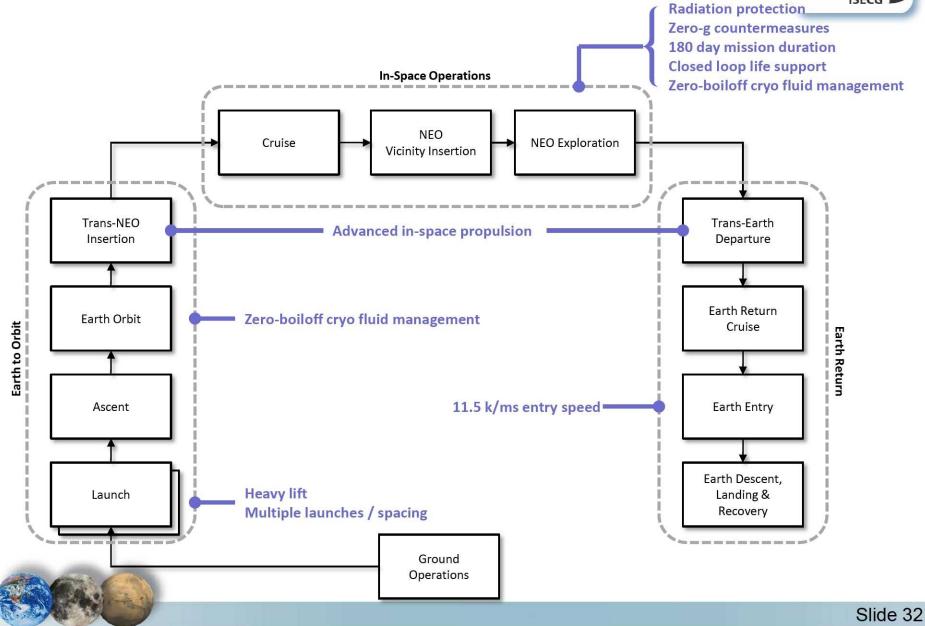
Example NEO Mission Sequence ISECG NEO Rendezvous, Proximity Operations, Exploration **NEO Departure** ΔV varies km/s NEO NEO Arrival $\Delta V \sim varies km/s$ Earth Orbit TBDkm TNI Prop. Stage, $\Delta V \sim varies m/s$ SM, Hab Expended EDS Expended In-Space Stage Transit Habitat Extended SM Orion CM Crew Direct Entry Water Landing Note: Direct launch and hyperbolic rendezvous cases eliminated due to performance limitations and risk

Slide 29

Human NEO Missions Innovation Requirements, p 1 of 2

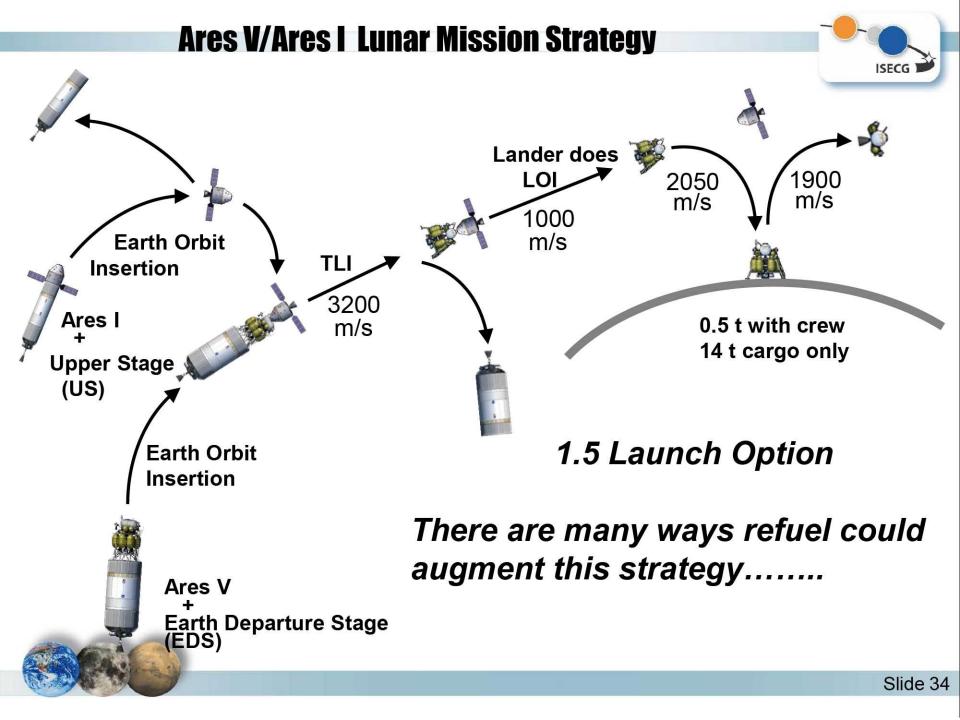
Functional Capability	Elements	Innovation Requirement		
		Critical	Important	Desirable
Crew Transportation	 Heavy lift launch Crew launch (x1) In-space propulsion Earth return capsule In-space habitation 	 Advanced in-space propulsion Zero-boiloff cryo fluid management High-speed (11.5 km/s) Earth entry 		
Cargo Transportation				
In-space Habitation	 In-space habitat to support 6 crew for 180-360 days 	Radiation protectionClosed-loop life support		

Human NEO Missions Innovation Requirements, p 2 of 2



Functional Capability	Elements	Innovation Requirement		
		Critical	Important	Desirable
On-surface Habitation				
Extra Vehicular Activity	 Zero-g EVA NEO vicinity proximity operations 			
In-space Power	 Solar arrays 			
On-surface Power				
Surface Mobility				
Servicing				
ISRU				
Communication & Navigation		High bandwidth deep space communication		
Human Health & Performance		 Zero-gravity countermeasures for 180 - 360 day transits Radiation protection Advanced medical care 		

Human Exploration of NEOs Key Challenges and Risks

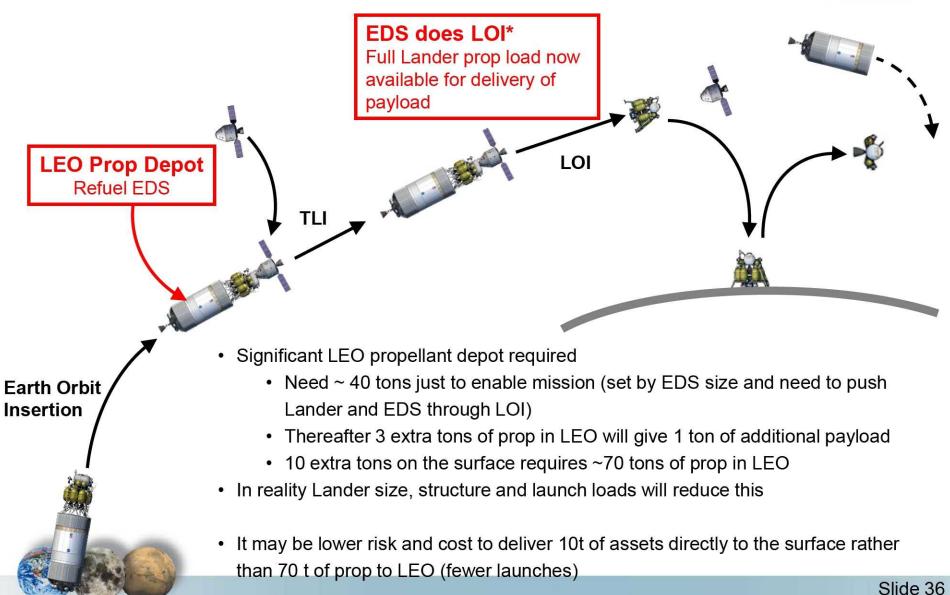


LEO Refueling to Augment Lunar Exploration

Andy Thomas/Pat Troutman/ Chris Culbert

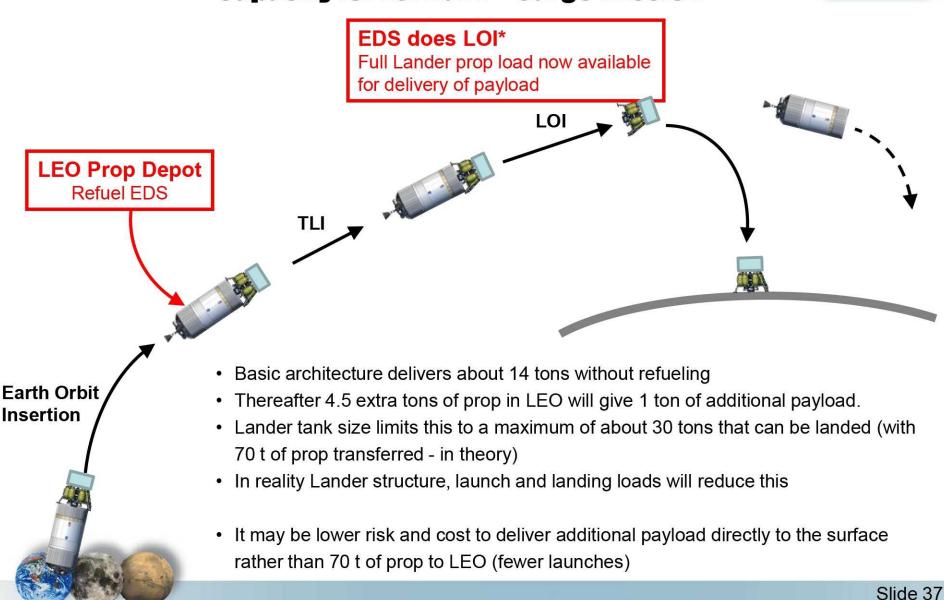
Refueling Ares V Class Missions in LEO Refueling Delta/Atlas V Class Missions in LEO

Present Crew Mission Strategy – Ares V Class. and Opportunities for Refueling ISECG Fuel Lander in LLO, either from EDS or Depot LOI **Refuel EDS in LEO** Fuel Lander in LEO **Fuel Lander** on Surface TLI

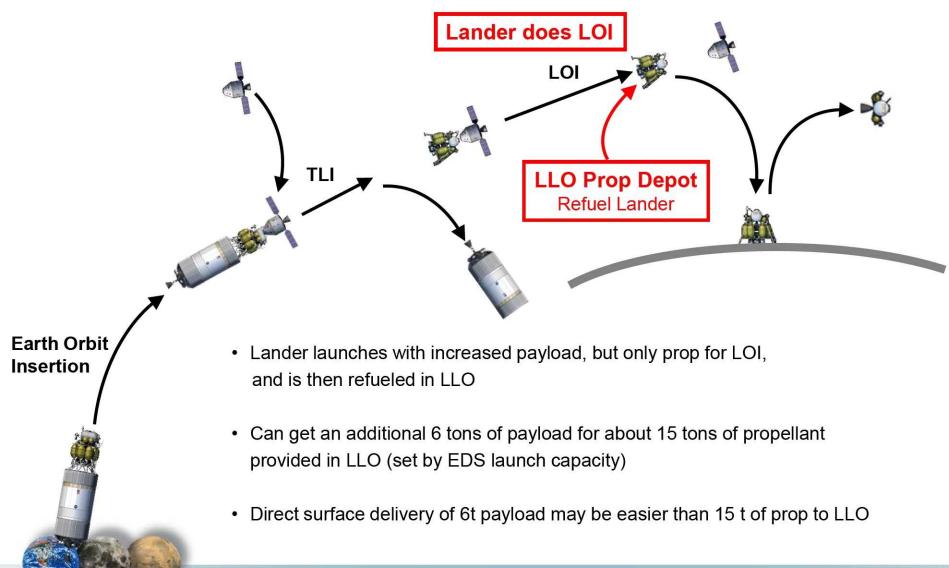

Earth Orbit Insertion Refueling EDS is delivered payloa Fueling Lander possibly more p Fueling Lander surface access Refueling Lander reuse or hopper

Refueling EDS in LEO allows LOI capability on EDS giving larger delivered payload, or greater surface access, Fueling Lander in LEO reduces launch loads, allows lighter structure, possibly more payload

Fueling Lander in LLO allows larger payload, Lander reuse or greater surface access

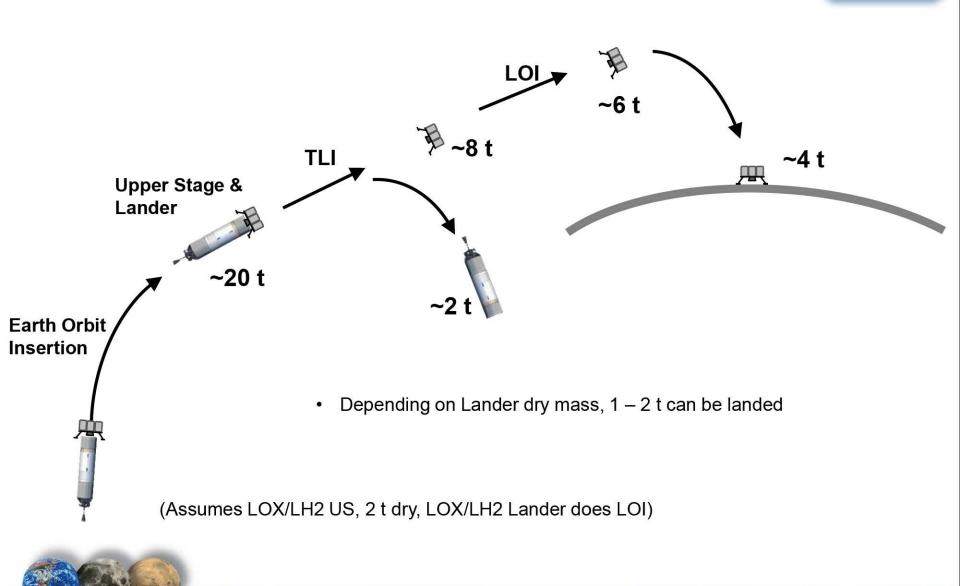

Refueling Lander on the surface allows larger payload, Lander reuse or hopper flights

Example 1: EDS Refuel in LEO, and Use Extra EDS Capacity for LOI Burn – Crew Mission



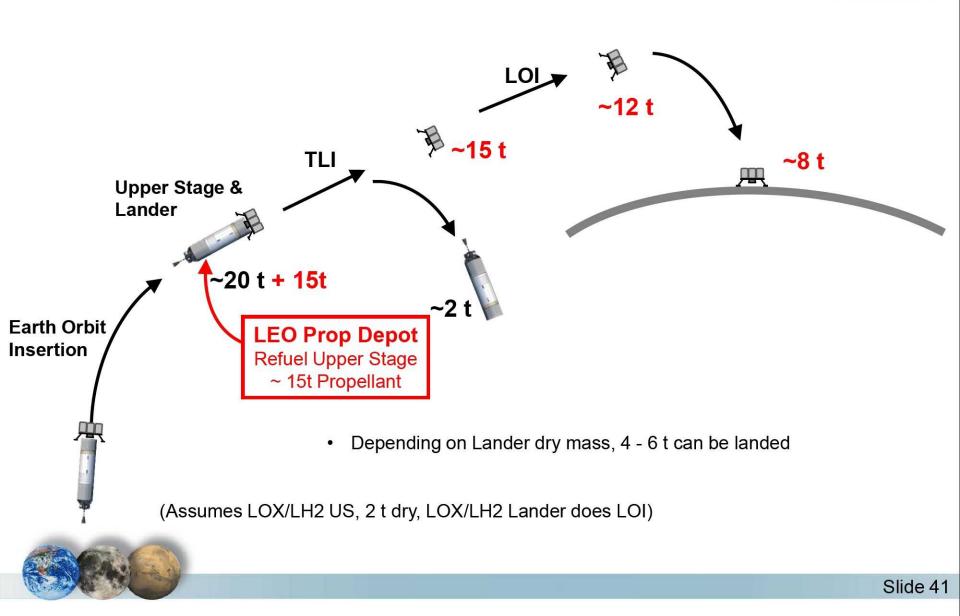
* A dedicated LOI stage would probably be preferable

Example 2: EDS Refuel in LEO, and Use Extra EDS Capacity for LOI Burn – Cargo Mission


Example 3: Launch Lander with LOI Load Only, Add Additional Fuel Post-LOI for Descent

Summary – Refueling Ares V/Ares I Class Missions

- Refueling transportation elements in flight can augment architecture
 - Larger payload mass to the surface
 - Much smaller 'bone yard' because of improved delivery
 - Greater surface access
 - Expanded mission options e.g. longer surface stays
- Assessment of impacts on architecture needed (cost, PLOC, PLOM)
- But substantial amounts of LEO propellant are needed (70 ton range to get around 10 tons of additional payload, ~7:1 ratio)
- Cost effectiveness of resupplying a large depot versus sending assets directly to the lunar surface needs assessment
- Refueling not easy to retrofit into an existing approach better to optimize the architecture around refueling by designing it in from the start, even if not initially used
- An additional benefit is that refueling may allow the Lander to be reused and flown repeatedly to and from the surface (Lunar Taxi see later slides)


Current Atlas or Delta Class Mission Capability

ISECG

Current Atlas or Delta Class Mission Capability With LEO Refueling

ISECG

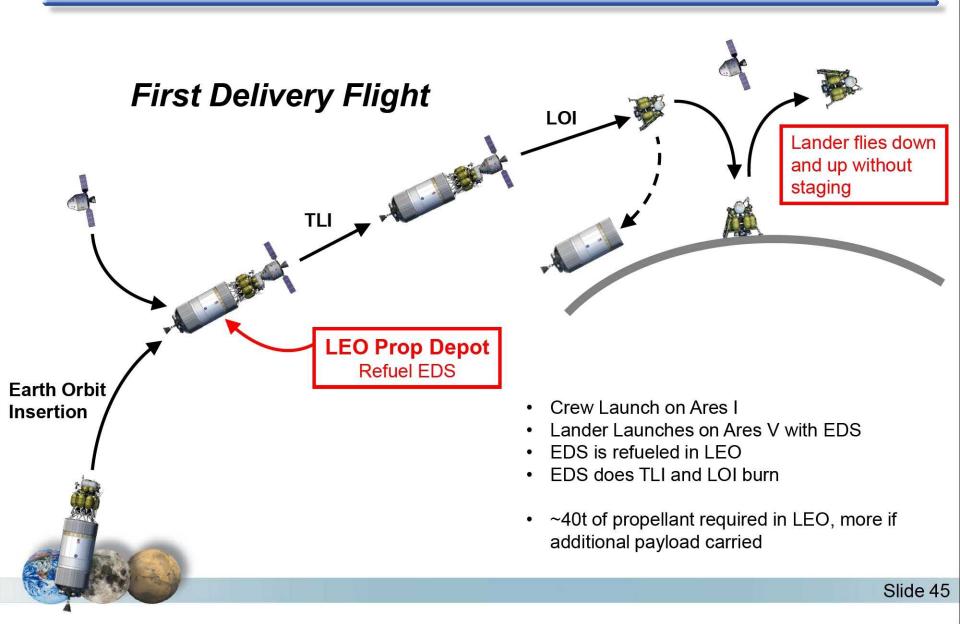
Summary – Refueling Atlas or Delta Heavy Class Missions

- Refueling in LEO can significantly improve payload delivered to lunar surface for this class of launch vehicle
 - Major surface elements can potentially be delivered (e.g. ISRU, LER)
 - Surface access can also be improved
 - Could provide propellant for reflight of the Lander (Lunar Taxi)
- Provides better leveraging of refueling less propellant transfer gets significant payloads to the lunar surface than required for Ares V class missions (3:1 versus 7:1 ratio)
- If any exploration strategy is to exploit this, it is better to implement it up front

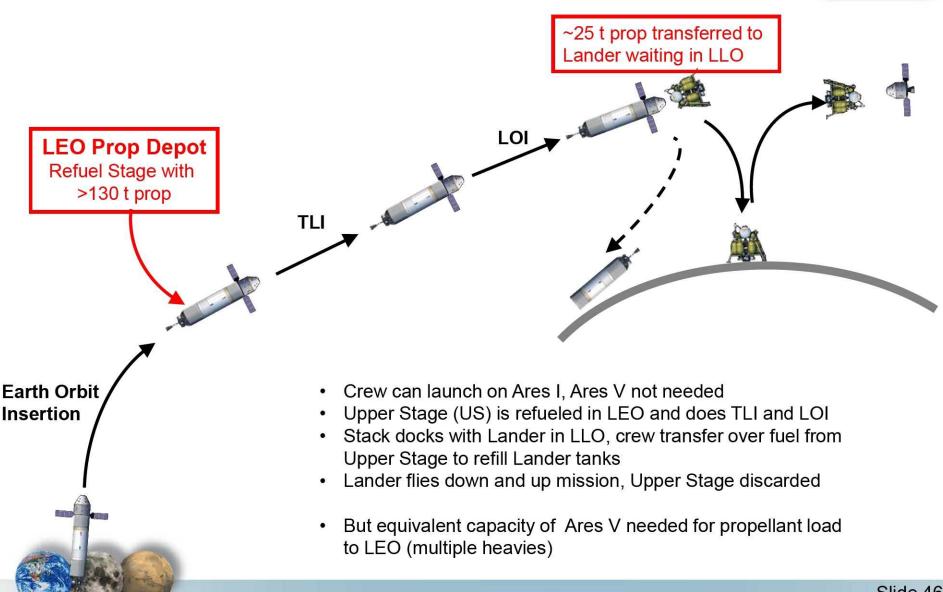
Candidate Depot Locations – Pros and Cons

• LEO

- Easy access, serviceable site
- Poor thermal environment
- Discontinuous illumination
- L1
 - More difficult to reach, but allows greater surface access
 - Imposes additional delta-V on transportation elements
 - Good thermal environment for cryo storage
 - Continuous illumination
- LLO
 - Difficult to reach
 - Places constraints on TLI opportunities and restricts surface sites
 - Poor thermal environment
 - Discontinuous illumination
- Surface
 - Poor thermal environment
 - Discontinuous illumination
 - Best suited for ISRU at an Outpost site


Propellant Resupply and Depot Technologies

Technology advancements are needed in the following areas to realize a working, sustainable, in-space propellant resupply infrastructure:


- 1. Thermal Control
 - Passive storage
 - Active storage (refrigeration)
 - MMOD protection
 - Sub-cooling
- 2. Liquid Acquisition
- 3. Mass Gauging
- 4. 0-g Liquid Transfer
- 5. Transfer Couplings

- 6. Pressure Control
- 7. Tank Pressurization
- 8. Leak Detection
- 9. Integrated Depot Design
- 10. Autonomous Rendezvous and docking

Example 4: LEO Refuel to Allow Lander Re-flight

LEO Refuel, Lander Re-flight - Subsequent Flights

Re-flight Enabled Through Refueling - Advantages

- Do not discard high-dollar items (Descent and Ascent Stage) every time
- Much smaller bone yard, old Landers parked on surface for spares and storage, rather than crashed in (swap Landers on the surface, not in LLO).
- Pre-ascent vehicle failure can be mitigated with backup ascent capability
- Abort capability on both ascent and descent.
- Allows (and significantly benefits from) smaller Crew and Cargo Landers, facilitating unloading, pressurized mating to LER, etc.

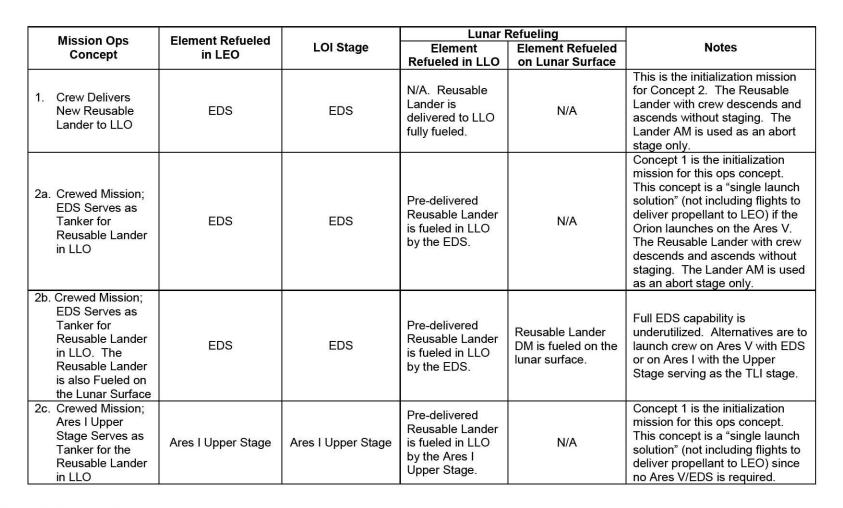
Lander Reflight – Technologies Needed

- Propulsion System
 - Need reliable cryogenic propellant transfer
 - Need multi start engine with long operating time
 - Engine health monitoring and reuse qualification criteria
 - Thermal management of engine for extended periods on the surface and in LLO will be an issue (valve lifetimes, seal integrity, wetted lines)
 - He resupply may also be needed to support tank pressures for engine start and He actuated valves
 - Contamination of engine due to dust impingement during landing and launch
 - Control of cryogenic boil-off control will be important for long surface stays
- Power Subsystem
 - May need to also transfer reactants for fuel cells
 - System must be sized to maintain vehicle thermal health for extended periods
- Spacecraft Thermal Management
 - Will need extended and untended LLO thermal management capability, e.g. transfer additional water if sublimator used
- Structures and Mechanisms
 - Significant landing gear design impacts to allow multiple landings

Re-flight Enabled Through Refueling - Key Risks and Challenges

- Needs additional transportation element (In-Space Tanker Vehicle) of significant capability (possibly providing up to 100's of tons of prop)
- Need additional Flight Operations (rendezvous, docking, fuel transfer)
- In addition to fuel transfer capability on vehicles, probably also need transfer of pressurants and other consumables
- Firing an engine, then maintaining it for months at a time, followed by certifying for restart, and doing this repeatedly is a challenge
- LOM and LOC need assessment:
 - No lifeboat for serious CEV system failure in transit (Apollo 13)
 - Cumulative risks may be the driver
- A reusable vehicle is very different from a one-time use vehicle

Refueling Options Backup



Mission Operations Concepts Altair-Class, Single-Use Lander

Mission Ops	Element Refueled		Lunar Refueling		Lunar Refueling	
Concept	in LEO	LOI Stage	Element Refueled in LLO	Element Refueled on Lunar Surface	Notes	
1. Cargo Lander Launches Empty and Tanks in LEO	Cargo Lander	Cargo Lander	N/A	N/A	Launching the Cargo Lander unfueled minimizes launch loads and may enable a lower mass primary structure.	
2. Global Sortie with LEO Top-Off of the EDS	EDS	EDS	N/A	N/A	This concept enables global access without the need for post- LOI extended loiter.	
3. Dual Mission Operations: Outpost-Based Sortie	EDS	EDS	N/A	N/A	The original concept of dual, sequential missions utilizing a common crew and a single Ares I/Orion (developed during LAT 2) is enhanced with EDS top-off in LEO.	
4. Dual Mission Operations: Dual Sortie Missions	EDS	EDS	N/A	N/A	The original concept of dual, sequential missions utilizing a common crew and a single Ares I/Orion (developed during LAT 2) is enhanced with EDS top-off in LEO.	

Mission Operations Concepts Altair-Class Refuelable, Reusable Lander, p 1 of 3

Mission Operations Concepts Altair-Class Refuelable, Reusable Lander, p 2 of 3

Mission Ops Element Refueled			Lunar Refueling		
Mission Ops	in LEO	LOI Stage	Element	Element Refueled	Notes
Concept	IN LEO		Refueled in LLO	on Lunar Surface	
3. Reusable Cargo Lander Delivers Crew and Cargo	EDS	EDS	N/A. Reusable Cargo Lander is delivered to LLO fully fueled.	N/A	This is the initialization mission delivering a Reusable Cargo Lander to the lunar surface for Concept 4. The fully fueled Ascent Module is mounted on an SSU/PUP and is removed by an ATHLETE providing Ascent Module mobility on the lunar surface and allowing the Reusable Cargo Lander to return to LLO.
4a. Reusable Cargo Lander Delivers Cargo to the Lunar Surface	EDS with Cargo Pallet	EDS	Pre-delivered Reusable Cargo Lander is fueled in LLO by the EDS.	N/A	Concept 3 is the initialization mission for this ops concept. In this concept, the EDS-mounted Cargo Pallet is transitioned to the Reusable Cargo Lander in LLO prior to descent to the lunar surface. After cargo is delivered to the lunar surface, the Reusable Cargo Lander returns to LLO for refueling and reuse.
4b. Reusable Cargo Lander delivers cargo to the lunar surface	EDS with Cargo Pallet	EDS	N/A.	Pre-delivered Reusable Cargo Lander is fueled on the lunar surface prior to return to LLO for cargo transfer.	This is a variation on Concept 4a with refueling occurring on the lunar surface.

Mission Operations Concepts Altair-Class Refuelable, Reusable Lander, p 3 of 3

	Mission One	Element Refueled		Lunar Refueling		
	Mission Ops Concept	in LEO	LOI Stage	Element	Element Refueled	Notes
	Concept		259	Refueled in LLO	on Lunar Surface	
5.	Crewed Mission Delivers Reusable, Refuelable Ascent Module to LLO after Surface Stay	EDS	EDS	N/A. The Reusable, Refuelable Ascent Module is fueled during follow-on crewed missions.	N/A	This is the initialization mission for Concept 6. In this concept, only the Ascent Module is reused and refueled in LLO.
6.	Crewed Mission with Reusable, Refuelable Ascent Module	EDS	EDS	Pre-delivered Ascent Module is fueled in LLO by the EDS.	N/A	The EDS delivers the CEV, single use Lander Descent Module, and propellant to LLO. The CEV, Descent Module, and Reuseable, Refuelable Ascent Module mate in LLO prior to descent to the lunar surface.
7.	Dual Mission Operations: Outpost-Based Sortie	EDS	EDS	Pre-delivered Reusable Lander is fueled in LLO by the EDS.	N/A	This dual mission concept utilizes a common crew, a single Ares I/Orion, and a pre-delivered Reusable Lander to maximize performance, cost, and risk benefits across both missions.
8.	EDS performs TLI and LOI with No Refueling	N/A	N/A	N/A	N/A	This is a special case concept with no pre-defined lander. The purpose of this operations concept is to determine the maximum landed mass possible for both crew and cargo landers if LOI is offloaded to the EDS. This is a "no lander LOI" mission concept.

Mission Operations Concepts Optimized Refuelable, Reusable Lunar Taxi, p 1 of 2

Mission Ops	Element Refueled		Lunar Refueling		
Concept	in LEO	LOI Stage	Element Refueled in LLO	Element Refueled	Notes
1a. Crewed Delivery of New Lunar Taxi to LLO	N/A	Modified CEV SM (20 klb- class LOX/CH4	Refueled in LLO N/A. Lunar Taxi is delivered to LLO fully fueled.	on Lunar Surface N/A	This is the initialization ops concept for Concept 2. The propellant tanker is used to fuel the CEV SM prior to TEI. The
		engine)	Lunar Taxi is		Lunar Taxi loiters in LLO until the next crewed mission. This is the initialization ops
1b. Uncrewed Delivery of New Lunar Taxi to LLO	N/A	Lunar Taxi	fueled in LLO on subsequent crewed mission.	N/A	concept for the crewed mission ops concepts. Lunar Taxi loiters in LLO until the next crewed mission.
1c. Large Cargo Lander Delivery of Lunar Taxi to LLO	N/A	Large Cargo Lander	Lunar Taxi is fueled in LLO on subsequent crewed mission.	N/A	Large Cargo Lander delivers unfueled or partially fueled Lunar Taxi to LLO and cargo to the lunar surface.
2. Crewed Mission with Propellant Tanker	N/A	Modified CEV SM (20 klb- class LOX/CH4 engine)	Pre-delivered Reusable Lunar Taxi loitering in LLO is fueled by propellant tanker	N/A	Concept 1 is the initialization mission for this concept. Propellant tanker is used to fuel LOX/CH4 Lunar Taxi loitering in LLO and the CEV SM prior to TEI.

Mission Operations Concepts Optimized Refuelable, Reusable Lunar Taxi, p 2 of 2

Mission Ops	Element Refueled in LEO	LOI Stage	Lunar Refueling		
Concept			Element Refueled in LLO	Element Refueled on Lunar Surface	Notes
3a. Large Cargo Lander Mission to Support Lunar Taxi-Based Campaign	N/A	Large Cargo Lander	N/A	N/A	The Large Cargo Lander is assumed to be a single-use vehicle.
3b. Lunar Taxi- Derived Cargo Lander Mission to Support Lunar Taxi-Based Campaign	N/A	Lunar Taxi-Derived Cargo Lander	N/A	N/A	The Lunar Taxi-Derived Cargo Lander is assumed to be a single-use vehicle.
4. Large Cargo Lander Delivery of Lunar Taxi to the Lunar Surface	N/A	Large Cargo Lander	Lunar Taxi is fueled in LLO on the subsequent crewed mission.	N/A	Lunar Taxi is delivered to the lunar surface with ascent propellant load only.

