
OVERVIEW AND SOFTWARE ARCHITECTURE OF THE COPERNICUS TRAJECTORY
DESIGN AND OPTIMIZATION SYSTEM

Jacob Williams 1 , Juan S. Senent2 , Cesar Ocampo3, Ravi Mathur 3 , and Elizabeth C. Davis4

1ERC, Inc. Engineering and Science Contract Group, Houston, Texas
2 Odyssey Space Research, Houston, Texas

3Department ofAerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, Texas
4Jacobs Technology, Engineering and Science Contract Group, Houston, Texas

ABSTRACT

The Copernicus Trajectory Design and Optimization Sys-
tem represents an innovative and comprehensive ap-
proach to on-orbit mission design, trajectory analysis and
optimization. Copernicus integrates state of the art algo-
rithms in optimization, interactive visualization, space-
craft state propagation, and data input-output interfaces,
allowing the analyst to design spacecraft missions to all
possible Solar System destinations. All of these features
are incorporated within a single architecture that can be
used interactively via a comprehensive GUI interface, or
passively via external interfaces that execute batch pro-
cesses. This paper describes the Copernicus software ar-
chitecture together with the challenges associated with its
implementation. Additionally, future development and
planned new capabilities are discussed.

Key words: Copernicus, Spacecraft Trajectory Optimiza-
tion Software.

1. INTRODUCTION

Copernicus [11, 12, 13] is a generalized spacecraft tra-
jectory design and optimization system. It is capable
of solving a wide range of trajectory design and opti-
mization problems such as planet or moon centered tra-
jectories, libration point trajectories, planet-moon trans-
fers and tours, and all types of interplanetary and aster-
oid/comet missions. Impulsive and finite burn (low to
high thrust) propulsion systems based on chemical, so-
lar electric, or nuclear powered engines can be modeled.
A unified architecture (shown schematically in Figure
1) allows the formulation and solution to many classes
of problems of practical interest. Unique aspects of the
Copernicus architecture include:

• Continuous feedback during the trajectory design and
optimization process.

• Generalized trajectory segment building blocks, with
which the user can construct a wide range of prob-

lems (e.g., simulation, targeting, and optimization),
and which can be combined and reused as needed to
solve new problems in the future.

• A modular design which allows for the inclusion of
new algorithms, models, and techniques as they be-
come available.

• The ability to be scaled from a single desktop computer
using the Graphical User Interface (GUI), to computer
clusters where no user interaction or graphical feed-
back is required.

• A batch processing library that can be incorporated
into user-created programs or invoked by other tools.

• Platform independence. Currently, Copernicus works
on both Linux and Windows platforms.

The Copernicus Project started at the University of Texas
at Austin in August 2001. In June 2002, a grant from the
NASA Johnson Space Center (JSC) was used to develop
the first prototype which was completed in August 2004.
In the interim, support was also received from NASA’s
In Space Propulsion Program [15, 8] and from the Flight
Dynamics Vehicle Branch of Goddard Spaceflight Cen-
ter. The first operational version was completed in March
2006 (v1.0). The initial development team consisted of
Dr. Cesar Ocampo and graduate students at the Univer-
sity of Texas at Austin Department of Aerospace Engi-
neering and Engineering Mechanics. Since March 2007,
primary development of Copernicus has been at the Flight
Mechanics and Trajectory Design Branch of JSC. The lat-
est version (v2.2.1) was released in November 2009.

2. TRAJECTORY BUILDING BLOCKS

The basic segment concept introduced in [12] is the fun-
damental building block of the trajectory optimization
problem in Copernicus. Any number of segments can be
defined in a mission, and can represent multiple space-
craft, multiple stages of a single spacecraft, or can simply
be computational segments used to obtain information
about selected states in the mission (for example to com-
pute orbital elements or altitude). Segments can be inde-

Figure 1. Overview of the Copernicus software architecture. The core of the program consists of the GUI, Visualization,
and Engine routines. The Toolkit and Batch libraries also provide services to the program (and can also be used in other
programs).

pendent, connected via inheritance in complicated ways,
or initially disconnected and constrained to be connected
during the optimization process. A segment can contain
impulsive maneuvers, finite burn maneuvers, and user-
defined force models including: high-order gravity and
pointmass gravity fields, atmospheric drag, and solar ra-
diation pressure. Additionally, segment definition param-
eters such as times, initial mass, mass discontinuities due
to staging, initial state, engine parameters, impulsive ma-
neuver and finite burn control law histories [13] can all be
optimization variables. Each segment can have a differ-
ent integration or propagation method (a variety of differ-
ent fixed and variable step size method are provided) and
segments can be propagated either forward or backwards
in time.

All of these building blocks can be combined to design
very complicated missions. The same problem can be
solved using different levels of complexity and fidelity
as needed within the same program. The user can start
with simplified models and can gradually build a more
complex and realistic solution to the problem. Some ex-
amples of this include:

• Solving a trajectory problem using simplified force

models (e.g., pointmass gravity), and then activating
a higher-fidelity force model (e.g., atmospheric drag,
high-order gravity, or solar radiation pressure) and re-
solving.

• A Ov maneuver can first be estimated using Lambert
targeting and then added to the optimization problem.

• Gravity assists can be modeled using a zero sphere of
influence patched conic model and then converted to
actual planetary flybys.

• A complex trajectory problem can be solved using op-
timized Ov maneuvers, which are then converted to
finite burn maneuvers.

3. USER INTERACTION VIA 3D GRAPHICAL
VISUALIZATION

The standard method used by Copernicus for presenting
trajectory data to the user is through the 3D Graphical Vi-
sualization window. This window presents the user with
a graphical representation of the system being simulated,
complete with planets, moons, spacecraft, trajectory seg-
ments, and other quantities useful to visualizing the com-

Figure 2. The Copernicus 3D Graphics Tab.

puted solutions. The user is able to interactively view the
scene using the mouse or keyboard, and can (in real time)
rotate around to view the scene from any angle, zoom in
on a particular area of interest, pan around to see a dif-
ferent area of the scene, and even instantly change the
simulation time to see where all bodies would be at any
given time.

The reference frame in which all visualization is pre-
sented is the visualization frame, defined using the stan-
dard Copernicus frame definition dialogs. This allows
the user to visualize the mission in a variety of frames
including rotating frames and frames attached to mov-
ing celestial bodies. One important aspect of the vi-
sualization frame is that it may be completely different
from the reference frames used to define the mission
segments. Changing the visualization frame allows the
user to quickly see the time evolution of bodies and tra-
jectories in the mission with respect to different refer-
ence frames. For example, the user can initially specify
the simulation to be viewed in an inertial Earth-centered
frame. If the user then changes the visualization frame
to a rotating Earth-Moon frame, the simulation can be
re-run and the newly computed trajectories can be seen
instantly.

Copernicus provides the user with several automatically
created views that can be selected to instantaneously
move the user’s point of view to a particular location. For
example, a spacecraft-centered view can be selected in
which the user will automatically follow the spacecraft
along a particular segment of the mission. Alternatively,
a planet-centered view can be selected in which the user’s
viewpoint will be constrained to a body-fixed frame re-
gardless of the motion of other planets and spacecraft.
These simple views allow the user to see how the simu-
lation evolves from the viewpoint of one of the simulated
objects.

The 3D graphics window is handled by three main 3rd
party Application Programming Interfaces (APIs). In
short, an API is a set of programming subroutines that can
be used to perform a defined set of tasks without resorting
to low-level operating system calls. All of the drawing

for the Copernicus 3D graphics window is done using the
OpenGL [19] graphics API. OpenGL is an open source,
widely accepted, and well supported API for rendering
3D scenes that is available for almost all mainstream
computing platforms and hardware configurations. In ad-
dition to OpenGL, the OpenSceneGraph [23] and Open-
Frames [10] APIs are used to define the scene to be visu-
alized. This scene consists of all objects to be displayed
(e.g. planets, spacecraft, trajectories, etc.) and specifies
the positions and orientations of each of the objects. The
benefit of using OpenFrames is that it eliminates the need
to have any specific computer graphics knowledge when
programming a scientific visualization, since such educa-
tion is generally not within the scope of most engineering
programs.

The relationship between these three APIs is as follows.
Copernicus interacts directly with OpenFrames, which
provides the ability to define which objects should be vi-
sualized and how those objects are positioned, and also
handles all user interactivity with the scene. OpenFrames
then interprets this scene and uses OpenSceneGraph to
create a data structure called a “scene graph”, which is a
tree-like representation of all objects in a scene. Open-
SceneGraph then uses this scene graph to draw each ele-
ment using OpenGL. Although such a level of abstraction
may initially seem to hinder application runtime speed, in
fact each of the APIs involved are highly optimized so as
not to intrude on the available processing resources for
the main simulation. In addition, both OpenFrames and
OpenSceneGraph are multithreaded to take advantage of
multiple-core architectures and minimize the graphics
performance overhead for Copernicus.

The OpenGL API comes standard with all major operat-
ing systems, and the OpenFrames and OpenSceneGraph
APIs are available free of charge (via an OpenSource li-
cense) from the internet and are included with Coperni-
cus. The OpenFrames API was developed with scientific
simulations in mind, and as such it greatly reduces the
effort required to add interactive 3D visualizations to sci-
entific simulations. It is fully integrated into Copernicus,
but can be disabled if the program is launched in batch
processing mode (i.e., with no graphical user interface).

4. COPERNICUS TOOLKIT

The Copernicus Toolkit was originally designed to pro-
vide a unified interface to the coordinate transforma-
tion and ephemeris manipulation routines in SPICE [20].
With time, some existing functionalities in Copernicus
(such as the Lambert targeter) were integrated into the
Copernicus Toolkit so that they could be used in other
tools. The Toolkit has been used to develop new trajec-
tory tools independent of Copernicus, e.g.: the Mission
Assessment Post Processor (MAPP) [26] and to support
various mission analysis tasks, e.g. calculation of Lunar
mission abort return trajectories. [21]

Currently, it is composed of a collection of routines that

provides a variety of services:

• A unified software architecture for the definition of fre-
quently used aerospace data. This scheme presents a
simple interface to the user for the definition of: ve-
hicle state (parameterizations of the state) and maneu-
vers, celestial bodies and coordinate frames. It uses
most of the capabilities of the SPICE toolkit and adds
new functionalities not available through SPICE. It
also provides a caching scheme that reduces the num-
ber of calls to the SPICE ephemeris routines and an
interpolation scheme that can eliminate most of these
calls.

• Numerical integration of ODEs with DLSODE [18]
(variable step-size, variable order) and rkf7-8 [4] (fixed
step-size) and non-gradient based optimization rou-
tines [17] and [3] for simple optimization problems.

• Definition of arbitrarily complex gravity fields with
any arbitrary number of celestial bodies and any high
order terms in the central body [14].

• A library of celestial mechanics-related routines. In-
cluding: routines to solve the Kepler and Lambert
problems [7], conic (two-body) propagator routines
based on Stumpff functions, orbital elements-related
routines, lighting models, etc.

• A library with common mathematical routines for ma-
trix and vector calculations in aerospace applications,
spline interpolation, etc.

• APIs for the generation of I/O data files in Comma
Separated Value (CSV) (text format) and in the Hierar-
chical Data Format 5 [22] (HDF5 binary format).

• Basic exception handling for common exceptions oc-
curred during run-time. This exception handling mech-
anism is integrated with the one provided by SPICE.

5. THIRD PARTY PACKAGES

The two main classes of third-party software and libraries
that are integrated into Copernicus are: (1) integration
and propagation methods, and (2) optimization and non-
linear equation (NLE) solver methods. This software is
seamlessly integrated in the GUI, so that the user can
select one optimization method, solve a problem, and
then switch to another method. Integration and propa-
gation methods are selected from a list, and each seg-
ment can use a different method. Internally, wrappers to
each routine are written which provide a common inter-
face to Copernicus for each of the third-party methods.
The third-party solution method packages incorporated
into Copernicus are: NS11AD, VG11AD, VG12AD,
and VF13AD from the HSL Archive [1], IPOPT [24],
SNOPT [6], SLSQP [9], and HYBRJ (from MINPACK)
[16]. In addition to DLSODE, the RKSUITE [2] integra-
tion package is also included. Various other open source
code is also used in the program. Some of these packages
did require modifications in order to be incorporated into
the Copernicus architecture. As an example, a modified
version of IPOPT was created to allow the stop button in

the GUI to terminate the optimization.

6. GRAPHICAL USER INTERFACE

The Copernicus GUI integrates the components of Coper-
nicus, described in previous sections, into a cohesive,
easy to use tool. The Copernicus program consists of one
executable, which contains the entire GUI, the interactive
3D graphics, capabilities for problem setup and tuning,
and control of data output and display. Copernicus was
designed with the user as an integral part of the solution
process, therefore the GUI and the visualization capabil-
ity were given high priority during the development.

The flexibility of the Copernicus GUI facilitates, via ex-
perimentation, the modeling of many types of trajectory
optimization problems and the generation of a method-
ology required to solve them. Though there are multi-
ple ways in which a trajectory optimization problem can
be modeled, there are some that will have better conver-
gence properties than others for a given choice of solution
method. Copernicus is not a “black box” to solve prob-
lems with little or no input from the user, but is a tool
to assist the user in designing and solving the problem.
Using Copernicus is a creative process, requiring the user
to decide how many segments are needed to model the
trajectory, how to parameterize the states and maneuvers,
which algorithms to use, etc. For problem setup, the GUI
provides fields and menus to enter data, dialogs for each
of the solution methods, and graphical tools to provide
visual adjustment of trajectory parameters. Through the
GUI, the user can define states and maneuvers in any ref-
erence frame that is provided by SPICE and the Toolkit.
Any planetary body available can be used in any context
(e.g. for display in the 3D window, to define a state using
orbital elements, to define a two-body rotating reference
frame, or to assign a gravity or atmosphere model). Also,
SPICE kernels which define the ephemeris models can be
loaded and modified from within the GUI.

Once the problem has been defined and the iteration pro-
cess has commenced, the user can stop it or pause it,
modify or tune optimization variables or scales, adjust
the orientation of the 3D graphic, and view the text-based
output. After the iterations have finished, the user also
has the option of reverting to any previous iteration (for
example, if the solution has diverged). A text-based grid
display of iteration and convergence data facilitates this
process, providing syntax highlighting for each iteration
to indicate how well the constraints are satisfied. In this
way, the GUI allows the user a great deal of control over
the optimization process. The design, setup, and solution
process using Copernicus is summarized in Figure 3.

7. EXTERNAL INTERFACE

Copernicus can interface with other tools and programs
in several ways. It can be called in batch mode from the

GUI Data Input
Initial Segment Setup

Iterations
Text and Graphical Feedback

Converged Solution

"'
°°"	

_

	

°w^aME	 ^ae'9

	

M	 A^a	 d a	 °„	 m°°.oz,

	

lLL	
^o

Graphical Tools for Tuning

Figure 3. When using Copernicus, the user is an integral part of the solution process. The GUI is used to setup and
tune the problem, and provides real-time feedback during the solution process. Graphical tools can be used to adjust
the optimization variables and maneuvers and the trajectory display is instantly updated. The 3D graphic display is
updated for each iteration as the optimization proceeds. Text-based output is also provided, and uses coloring to indicate
convergence of each constraint.

command-line or in-the-loop from within another pro-
gram to solve or just propagate an input file. An external
program can be used to change input variables, then call
Copernicus to solve the mission. Such a batch program
can also be used to incorporate data from other simulation
tools to populate input files which can be used as an ini-
tial guess for a Copernicus run. This is a powerful feature
which greatly extends the applicability of the tool. As an
application of this capability, databases used in the per-
formance evaluation of the Orion vehicle were generated
by calling Copernicus in batch mode [25].

A Fortran batch library has been developed which can
be used within other programs to read and manipulate
Copernicus input files. In addition, a program writ-
ten in any language could also be used for this purpose
(since Copernicus input files are simply text files) and call
Copernicus in batch mode. Copernicus also has an exten-
sive library of Matlab routines called the Copernicus Mat-
lab Toolkit (CoMaT). The CoMaT also includes routines
to read and plot data from Copernicus output files. This
allows the generated data to be quickly post-processed
and analyzed in Matlab. CoMaT routines also exist to
convert Copernicus generated data to a format readable
by other tools such as Satellite Tool Kit (STK). Addition-
ally, there are routines to check and compare data from
Copernicus runs, and generate Copernicus readable CSV
files. Most of the CoMaT routines are also compatible
with GNU Octave.

8. SOFTWARE DEVELOPMENT

Except for some third-party code, Copernicus (including
the Toolkit) is programmed in Fortran 95 with the incor-
poration of some Fortran 2003 features. Although the
object-oriented features of Fortran 2003 were not avail-
able when the project started, the design of the software
architecture followed an object-oriented approach. As
compilers implementing the full object-oriented capabil-
ities of Fortran 2003 become available, Copernicus will
be modified to take advantage of them. Most of the third-
party optimization methods are written in Fortran 77, and
the 3D graphics and IPOPT libraries are written in C++.
The program is developed using the Intel Fortran com-
piler and Microsoft Visual Studio. The Copernicus GUI
is designed using Winteracter, a modern GUI toolset for
the Fortran 90/95 programming language.

Figure 4. The 32-asteroid tour computedfor the GTOC-4
competition. The blue arcs are coast periods, and the red
arcs are low-thrust periods.

Observation and Sensing Satellite (LCROSS). Coperni-
cus has also been used extensively at numerous NASA
centers in support of Project Constellation. Additionally,
the system is being used as an educational tool to ex-
amine simple problems (such as impulsive transfers be-
tween two-body orbits) and complex problems (such as
low thrust transfers between circular restricted three body
orbits).

10. FUTURE DEVELOPMENTS

Copernicus is being actively developed at JSC in sup-
port of several NASA projects, and improvements are
being made continuously. New engine and maneuver
models are being added for low thrust and solar elec-
tric missions. New techniques and algorithms are con-
tinuously evaluated for possible incorporation into the
tool. These include evolutionary algorithms (a differ-
ential evolution method has already been included) and
other non-gradient based optimizers. Other orbit propa-
gation methods, collocation and pseudospectral methods
are also being considered. Eventually, Copernicus will
allow for collocation segments to be added to the opti-
mization problem, allowing even greater flexibility to de-
fine and solve complicated problems.

11. OBTAINING COPERNICUS

9. EXAMPLES

Just a few examples of the kinds of trajectories that have
been solved with Copernicus include: design of a 10 year
32-asteroid tour using a low-thrust propulsion system
(see Figure 4), free-return flybys of the Moon, trans-lunar
trajectories for Project Constellation [5], Orion trans-
Earth injection (TEI) return trajectories [25], Mars sam-
ple return missions, trajectory design for the Lunar Crater

The National Aeronautics and Space Act of 1958 and
a series of subsequent legislation recognized transfer of
federally owned or originated technology to be a national
priority and the mission of each Federal agency. In accor-
dance with NASA’s obligations under mandating legisla-
tion, NASA makes Copernicus available free of charge to
other NASA centers, government contractors, and univer-
sities with contractual affiliations with NASA. To obtain
a copy of Copernicus, contact the NASA Johnson Space
Center Innovative Partnership Program Office.

The authors would like to thank everyone who con-
[12]

tributed to the development of Copernicus at the Univer-
sity of Texas at Austin, and the Johnson Space Center,

	

especially Gerald Condon, Fady Morcos, David Lee, Vir- 	
[13]ginia Martin, and Robert Gottlieb.

REFERENCES

[1] HSL (2007). A collection of Fortran codes	
[14]

for	 large	 scale	 scientific	 computation.
http://www.numerical.rl.ac.uk/hsl.

[2] R. W. Brankin and I. Gladwell. Algorithm 771: rk-	 [15]
suite90: Fortran 90 software for ordinary differ-
ential equation initial-value problems. ACM Trans.
Math. Softw., 23(3):402–415, 1997.

[3] R.P. Brent. Algorithms for Minimization Without

	

Derivatives. Prentice-Hall, 1973. Englewood Cliffs,	 [16]
NJ.

[4] E. Fehlberg.	 Classical fifth-,	 sixth-,	 seventh-
and eighth-order runge-kutta formulas with step- [17]
size control. Technical report, George C, Marshall
Space Flight Center, NASA, 1968. NASA TR R-
287 NASA-Langly 1968 19 M524.

[5] M. Garn, M. Qu, J. Chrone, P. Su, and C. Karlgaard.
NASA’s Planned Return to the Moon: Global Ac-
cess and Anytime Return Requirement Implications [18]
on the Lunar Orbit Insertion Burns. In Proceedings
of the AIAA Guidance, Navigation and Control con-
ference, August 2008.

[6] P. E. Gill, W. M., and M. A. Saunders. 	 SNOPT:
[19]An SQP algorithm for large-scale constrained op-

timization.	 In Society for Industrial and Applied
Mathematics SIAM Review, volume 47, pages 99–
131, 2005.

[7] R.H. Gooding.	 A Procedure for the Solution of
[20]

Lambert’s Orbital Boundary Value Problem. In Ce-
lestial Mechanics and Dynamical Astronomy, vol-
ume 48, pages 145–165, 1990. [21]

12. ACKNOWLEDGEMENTS

[8] L. D. Kos, T. P. Polsgrove, R. C. Hopkins,
D. Thomas, and J. A. Sims. Overview of the de-
velopment for a suite of low-thrust trajectory anal-
ysis tools. In AIAA/AAS Astrodynamics Specialist
Conference, number AIAA 2006-6743, August 21-
24 2006. Keystone, CO.

[9] D. Kraft. A Software Package for Sequen-
tial Quadratic Programming. Technical Report
DFVLR-FB 88-28, DFVLR, 1988.

[10] R. Mathur and C.A. Ocampo. An Architecture for
Incorporating Interactive Visualizations into Scien-
tific Simulations. In Proceedings of the 57th IAC
Conference. paper IAC-06-D1.P.1.6, August 2006.

[11] C. Ocampo and J. Senent. The Design and Develop-
ment of Copernicus: A Comprehensive Trajectory
Design and Optimization System. In Proceedings

of the International Astronautical Congress, num-
ber IAC-06-C1.4.04, 2006.
C. A. Ocampo. An architecture for a generalized
trajectory design and optimization system. In Pro-
ceedings of the International Conference on Libra-
tion Points and Missions, June 2002. Girona, Spain.
C. A. Ocampo. Finite burn maneuver modeling
for a generalized spacecraft trajectory design and
optimization system. In Annals of the New York
Academy of Science, volume 1017, pages 210–233,
May 2004.
S. Pines. A uniform representation of the gravi-
tational potential and its derivatives for a rotating
non-spherical body. Technical report, NASA, 1971.
report No. 71-7, Contract No. NAS 1-9100.
T. Polsgrove, L. Kos, R. Hopkins, and T. Crane.
Comparison of Performance Predictions for New
Low-Thrust Trajectory Tools. In AIAA/AAS As-
trodynamics Specialist Conference, number AIAA
2006-6742, August 21-24 2006. Keystone, CO.
M. J. D. Powell. A hybrid method for nonlinear
equations. In Numerical Methods for Nonlinear Al-
gebraic Equations, 1970.
M.J.D. Powell. The BOBYQA algorithm for
bound constrained optimization without deriva-
tives. Technical report, Department of Ap-
plied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences, 2009.
http://plato.asu.edu/ftp/othersoftware/bobyqa.zip.
K. Radhakrishnan and A. C. Hindmarsh. Descrip-
tion and Use of LSODE, the Livermore Solver for
Ordinary Differential Equations. Technical Report
UCRL-ID-113855, Lawrence Livermore National
Laboratory, 1993.
M. Segal and K. Akeley. The OpenGL Graphics
System: A Specification. Technical Report Version
4.0 (Core Profile), The Khronos Group Inc, March
2010.
B. V. Semenov. SPICE Reference Frames. Tech-
nical report, Jet Propulsion Laboratory, APRIL 08
2009. http://naif.jpl.nasa.gov/pub/naif/toolkitdocs.
J.S. Senent. Partial-TLI and post-TLI abort options
for lunar missions. Technical report, NASA, 2006.
TDS-04-013/subtask 1a and 1b.

[22] The HDF Group. 	 HDF5 Tutorial.	 Tech-
nical report, The HDF Group, 	 2009.
http://www.hdfgroup.org/HDF5.

[23] OSG Community. 	 OpenSceneGraph, 2007.
http://www.openscenegraph.org/projects/osg.

[24] A. Wächter and L. T. Biegler. On the implementa-
tion of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25–57, 2006.

[25] J. Williams, E. Davis, D. Lee, G. Condon, T. Dawn,
and M. Qu. Global Performance Characterization
of the three burn trans-Earth injection maneuver se-
quence over the lunar nodal cycle. In Proceedings of
the 2009 Astrodynamics Specialist AAS/AIAA Joint
Conference, August 9-13 2009.

[26] J. Williams, S. M. Stewart, G. L. Condon, D. E. Lee,
E. C. D., J. S. Senent, and T. F. Dawn. The Mission
Assessment Post Processor (MAPP): A New Tool
for Performance Evaluation of Human Lunar Mis-
sions. In Proceedings of the 20th AAS/AIAA Space
Flight Mechanics Meeting, number AAS 10-191,
February 14-17 2010.

