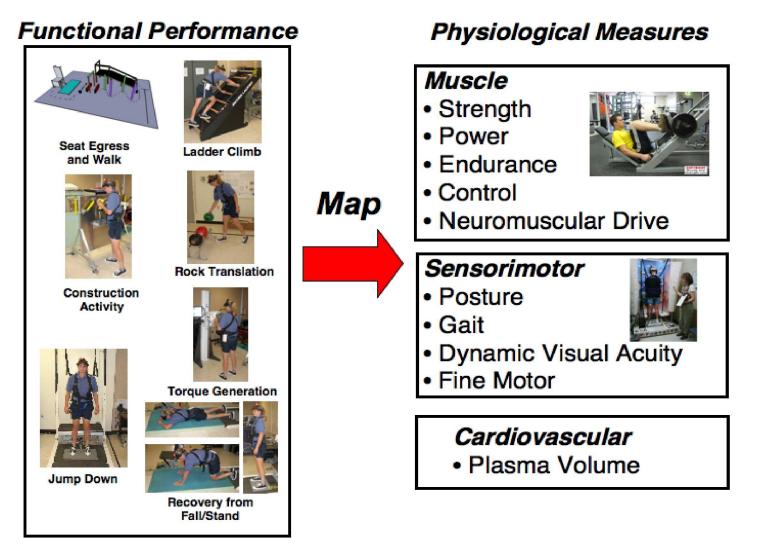


Reliability of a Test Battery Designed for Quickly and Safely Assessing Diverse Indices of Neuromuscular Function

Barry A. Spiering^{1,2}, Stuart M.C. Lee¹, Ajitkumar P. Mulavara³, Jason R. Bentley¹, Roxanne E. Buxton⁴, Emily L. Lawrence¹, Joseph Sinka¹, Mark E. Guilliams¹, Lori L. Ploutz-Snyder³, Jacob J. Bloomberg⁵

¹Wyle Integrated Science and Engineering Group, Houston, TX; ²California State University, Fullerton, CA; ³Universities Space Research Association, Houston, TX; ⁴University of Houston, Houston, TX; ⁵National Aeronautics and Space Administration Lyndon B. Johnson Space Center, Houston, TX


Introduction

- Spaceflight affects nearly every physiological system
- Spaceflight-induced alterations in physiological function translate to decrements in functional performance

Introduction

- Challenge:
 - How do we develop countermeasures to offset the plethora of physiological decrements?
- Solution:
 - Identify the physiological factors most critical for functional outcomes
 - Develop countermeasures <u>targeted</u> toward the most critical factors

Introduction

What "Neuromuscular Performance Variables" Do We Assess?

- Reduced strength is a hallmark consequence of spaceflight
 - Strength is strongly associated with functional performance (Visser et al. 2000)
 - "Neural factors" (e.g., central activation) clearly contribute to unloadinginduced strength loss (Clark et al. 2006)
- Power is perhaps the strongest predictor of functional performance (Puthoff et al. 2008)
- Force steadiness might relate to functional performance (Seynnes et al. 2005; Manini et al. 2005)

Purpose

- To develop a test battery for <u>quickly</u> and <u>safely</u> assessing <u>diverse indices</u> of neuromuscular performance
 - Quickly:
 - Battery of tests must be completed in ~30 min
 - Safely:
 - Increased susceptibility to muscle damage after spaceflight
 - Impaired postural stability post-spaceflight
 - Diverse indices:
 - Strength
 - Central activation
 - Power
 - Endurance
 - Force steadiness

Methods

- Subjects
 - 10 healthy volunteers (5 women, 5 men)
 - Age: 31 ± 5 y
 - Height: 173 ± 11 cm
 - Weight: 73 ± 14 kg

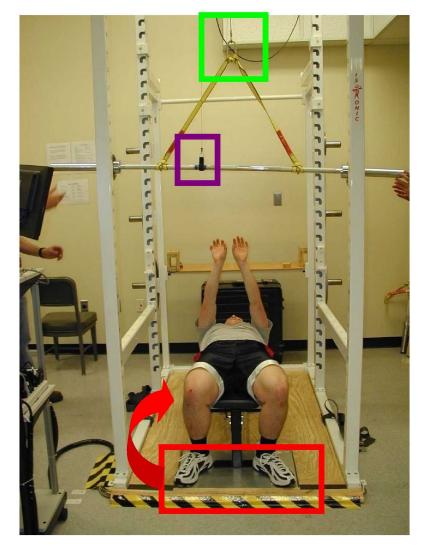
Procedures

 Completed a battery of neuromuscular performance tests on 3 occasions separated by at least 48 h

Knee Extension Tests

Test #1: Interpolated Twitch Test -Central Activation

<u>Test #2:</u> Force Steadiness Test –With and without Visual Feedback


Leg Press Tests

<u>Test #3:</u> Maximal Isometric Force Test -Maximal Strength -Rate of Force Development

Test #4: Power Endurance Test -Maximal Power -Fatigue Index -Total Work

Bench Press Tests

<u>Test #5:</u> Maximal Isometric Force Test Maximal Strength -Rate of Force Development

<u>Test #6:</u> Force Steadiness Test -With and without Visual Feedback

<u>Test #7:</u> Power Endurance Test -Maximal Power -Fatigue Index -Total Work

Statistical Analyses

- Reliability of each test was assessed via
 - Standard error of the measurement (SEM)
 - SEM reported as percent of the mean
 - Intraclass correlation coefficient (ICC)
- The required to set up and conduct each test is reported as mean ± SD

Results: Knee Extension Tests

Test	Dependent Variable	SEM	ICC
Interpolated Twitch	Central Activation Capacity (%)	3%	0.87
Force Steadiness	Force Steadiness with Visual Feedback (CV)	35%	0.20
	Force Steadiness without Visual Feedback (CV)	35%	0.28

Results: Leg Press Tests

Test	Dependent Variable	SEM	ICC
Maximal Isometric Force	Maximal Isometric Force (N)	4%	0.99
	Rate of Force Development (N/ms)	9%	0.94
Power Endurance	Maximal Power (W)	3%	0.99
	Fatigue Index (%)	18%	0.36
	Total Work (J)	4%	0.99

Results: Bench Press Tests

Test	Dependent Variable	SEM	ICC
Maximal Isometric Force	Maximal Isometric Force (N)	3%	0.99
	Rate of Force Development (N/ms)	14%	0.93
Force Steadiness	Force Steadiness with Visual Feedback (CV)	20%	0.60
	Force Steadiness without Visual Feedback (CV)	33%	0.26
Power Endurance	Maximal Power (W)	9%	0.97
	Fatigue Index (%)	16%	0.62
	Total Work (J)	4%	0.99

Results: Time Requirements

Testing Device	Test	Session 1	Session 2	Session 3
Knee Extension	ITT Current Optimization	11 4	93	9 2
	Interpolated Twitch	7 2	6 2	7 3
	Force Steadiness	4 2	5 2	5 2
Leg Press	Maximal Isometric Force	8 4	6 1	7 2
	Power Endurance	3 1	2 1	2 0
Bench Press	Maximal Isometric Force	5 2	4 1	4 1
	Force Steadiness	6 3	5 2	5 1
	Power Endurance	2 1	2 1	3 1
	Total	46 6	39 5	40 6

Conclusions

- Purpose: To develop a test battery for <u>quickly</u> and <u>safely</u> assessing <u>diverse</u> indices of neuromuscular performance
 - Quickly:
 - Battery of tests can be completed in ~30-40 min
 - Safely:
 - No eccentric muscle actions or impact forces
 - Tests present little challenge to postural stability
 - Diverse indices:
 - Strength: Excellent reliability (ICC = 0.99)
 - Central activation: Very good reliability (ICC = 0.87)
 - Power: Excellent reliability (ICC = 0.99)
 - Endurance: Total work has excellent reliability (ICC = 0.99)
 - Force steadiness: Poor reliability (ICC = 0.20 0.60)

Acknowledgments

- This work was supported by the Exercise Physiology and Countermeasures Project of the National Aeronautics and Space Administration
- We thank Brent Crowell, Kirk English, Jamie Guined, Mark Leach, Peggy Lynn, and Leah Stroud for invaluable assistance during data collection

