Lunar Commercialization Workshop

Gary Martin
Ames Research Center

Lunar Commercialization Workshop Agenda

- Overview and workshop description
 - 40 minutes
- Development of Business Plans
 - 120 minutes
- Presentation of business plans to panel
 - 40 minutes split evenly among the teams
- Wrap-up and discussion
 - 10 minutes

Lunar Commercialization Workshop Description

Goals

 Explore viability of using public-private partnerships to open space frontier

Rules

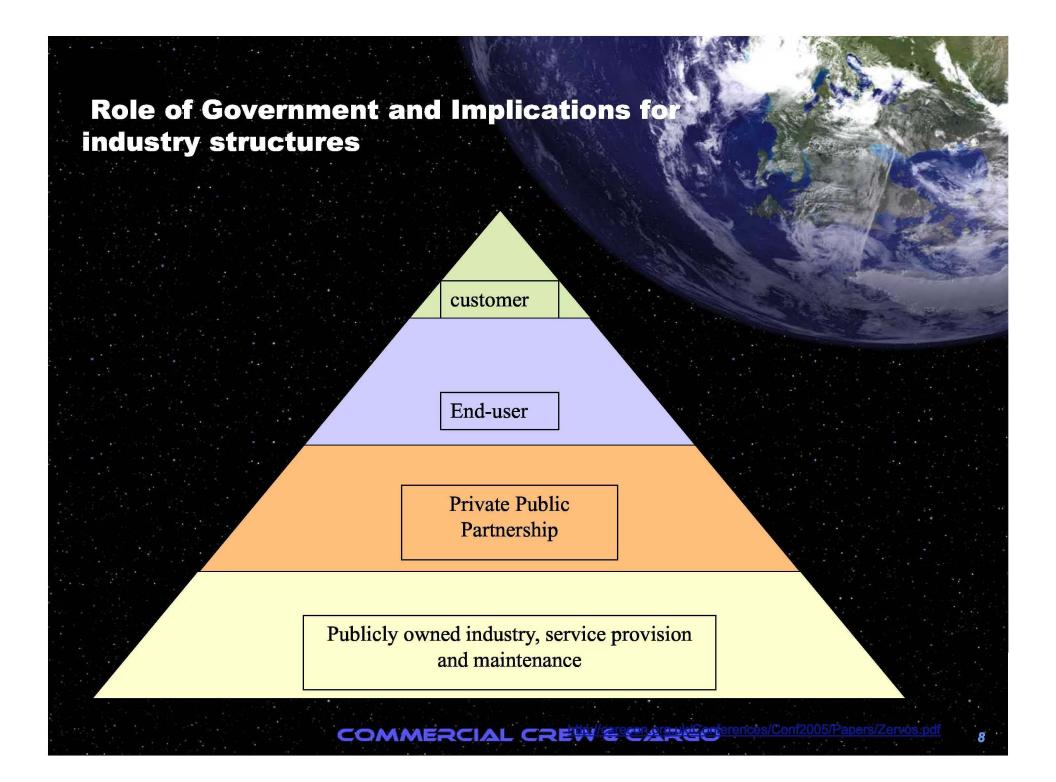
- Form teams each team represents a space entrepreneurial company
- Create innovative business plans for commercialization of the Moon
 - Business concept description, market strategy
 - Return on investment, pricing, schedule
 - Competition and other impediments
 - Operations and management plan
- Present plan to panel scored against each of the four elements
- Best plan awarded prize

Lunar Commercialization Workshop - Scoring

- Create an innovative business plan
 - Business concept description, market strategy
 - Describe the product/service
 - Describe the customer profile
 - What is your marketing strategy?
 - What is your business model?
 - Return on investment, pricing, schedule
 - What services would you provide and what are their cost to you
 - What do you charge for the services?
 - What is your return on investment over what time period?
 - Competition and other impediments
 - Who is your competition?
 - What are your major risk areas?
 - Operations and management plan
 - What facilities/infrastructure needs?
 - Who is your management team and what is their experience?

Public-Private Partnerships

- Government procures what it needs from private industry instead of developing and operating the mission on its own
- Benefits to Government
 - Usually cheaper over the life cycle
 - Government does not have to conduct operations and maintain infrastructure
 - Ability to leverage resources with commercial sector
- Benefits to Industry
 - Gain expertise, helps develop new sector
 - Develop infrastructure and retire risk
 - Commercial success is critical to opening the space frontier



Partnership success...

- Have suitable and well-defined inputs and outputs to the partnership
- Workable agreement on sharing of burden (costs) and benefits
- Keep in mind strategic environment when choosing partners; from the agency perspective a company might simply want to undermine the position of another, rather than care about the success of the partnership
- Have clear organization structures in place that avoid conflict between and within partners
- The requirements of flexibility and safety nets make partnership success much dependent on culture and luck!

New Partnerships by default are used to

- Test the water...
- Private sector experience:
 - Equity-based partnerships (joint-ventures)
 - Non-equity partnerships (strategic alliances)
- If partnership succeeds then possible mergers & acquisitions, or spin-off companies follow
- Different model to public-private partnerships, as equity-based partnerships are more difficult to form, 'barter' arrangements are also quite common especially across agency-partnerships
- Usually program-specific partnerships are formed between government agencies and the private sector, which if successful lead to spin-off companies...

Open Architecture: Infrastructure Open for Potential External Cooperation

- Lander and ascent vehicle
- EVA system
 - CEV and Initial Surface capability
 - Long duration surface suit
 - Power
 - Basic power
 - Augmented
- Habitation
- Mobility
 - Basic rover
 - Pressurized rover -
 - Other; mules, regolith moving, module unloading
- Navigation and Communication
 - Basic mission support
 - Augmented
 - High bandwidth
- ISRU
 - Characterization
 - Demos
 - Production

Robotic Missions

- LRO- Remote sensing and map development
- Basic environmental data
- Flight system validation (Descent and landing)
- Lander
- Small sats
- Rovers
- Instrumentation
- Materials identification and characterization for ISRU
- ISRU demonstration
- ISRU Production
- Parallel missions
- Logistics Resupply
- Specific Capabilities
 - Drills, scoops, sample handling, arms
 - Logistics rover
 - Instrumentation
 - Components
 - Sample return

** US/NASA Developed hardware

Implementing the Vicion

Lunar Commercialization

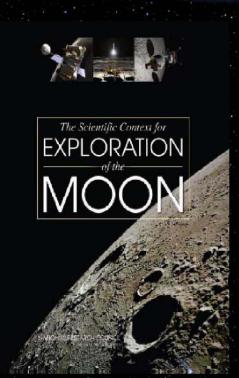
- Lunar Commercialization complements national Lunar objectives
 - Early, small scale Lunar transportation enabled by private sector
 - Commercial delivery system -- "FedEx Lunar"
 - Near-term technology demonstrations on the Lunar surface
 - Constellation technology risk reduction
 - Early start to Lunar science campaign
 - Enable more commercial opportunities relative to the moon
 - Commercial Lunar communications, navigation

Possible Lunar Commercializati Elements

- Utilize emerging commercial capability to land payloads on the Moon
- Includes lunar data purchase and/or agency lunar instrument delivery
- Cost to agency that is less than a dedicated NASA robotic mission (\$100M+ if conducted by Agency)
- Operations could begin in 2010 timeframe
- Small payloads (\$100M or less)
- Frequent, multiple flights
- Commercially-leveraged: Open Competition for lunar transportation services
- Fixed price service
- Industry provides the "Fed-Ex" to the surface

Lunar Commercialization

Exploration Demand


- The Constellation Program Office has identified lunar data needs, of which a subset would require in-situ measurement
 - Dust characterization & mitigation
 - Landing site reconnaissance
 - Lunar model validation (tie to ground truth)
 - Local radiation measurement
 - Spacecraft charging evaluation
 - Regolith handling/site preparation
 - ISRU characterization and demonstration
 - Hydrogen form and location characterization
 - Lighting perspective (permanent low incidence at poles)
- Technology demonstration
 - Communications (surface mobile comm)
 - Mechanisms (1/6G performance, dust impact on lifetime)
 - Materials (dust compatibility)
 - Thermal (surface influence, radiator dust exposure)
 - Navigation and guidance (Precision Landing)
 - Propulsion (system performance, plume interaction)
 - Mobility (traction, dust impact)
 - Power (Re-charging mobile robotic assets, fuel cell tech)
 - Avionics (Open architecture, Rad hard)
 - Cryo handling & storage (test demo)
 - ECLSS (water loop performance in 1/6g, dust filters)

Lunar Commercialization

- Science Demand
 - Exploration of the South Pole-Aitken Basin remains a priority
 - Diversity of lunar samples is required for major advances
 - The Moon may provide a unique location for observation and study of Earth, near-Earth space, and the universe

Commercial Capability

- Market <u>Supply</u> side transportation
 - Google Lunar X-Prize (GLXP):
 Astrobotic Tech, Odyssey Moon, others
- Individual instruments delivered near term at an estimated cost on order of \$1M to \$3M dollars per kilogram
- Launch is clearly a large expense, and a significant portion of the total mission costs
 - Falcon 9 / Minotaur V class
 - > \$25M \$35M
 - > TLI: 465 kg (1025 lbm)
 - Possible to fly as secondaries
 - Secondary payload adapter (ESPA)
 - > 180kg
 - > ~\$2M

Good Luck

