

Towards a Framework for Evaluating and Comparing Diagnosis Algorithms

Tolga Kurtoglu*, Sriram Narasimhan**, Scott Poll***, David Garcia****, Lukas Kuhn
†
,

Johan de Kleer
†
, Arjan van Gemund

‡
, Alexander Feldman

†,‡

* Mission Critical Technologies @ NASA Ames Research Center

** University of California, Santa Cruz @ NASA Ames Research Center

*** NASA Ames Research Center

**** Stinger Ghaffarian Technologies @ NASA Ames Research Center
† Palo Alto Research Center

‡ Delft University of Technology

Abstract: Diagnostic inference involves the detection of anomalous system behavior and the identification

of its cause, possibly down to a failed unit or to a parameter of a failed unit. Traditional approaches to

solving this problem include expert/rule-based, model-based, and data-driven methods. Each approach

(and various techniques within each approach) use different representations of the knowledge required to

perform the diagnosis. The sensor data is expected to be combined with these internal representations to

produce the diagnosis result. In spite of the availability of various diagnosis technologies, there have been

only minimal efforts to develop a standardized software framework to run, evaluate, and compare different

diagnosis technologies on the same system. This paper presents a framework that defines a standardized

representation of the system knowledge, the sensor data, and the form of the diagnosis results – and pro-

vides a run-time architecture that can execute diagnosis algorithms, send sensor data to the algorithms at

appropriate time steps from a variety of sources (including the actual physical system), and collect result-

ing diagnoses. We also define a set of metrics that can be used to evaluate and compare the performance of

the algorithms, and provide software to calculate the metrics.

1. INTRODUCTION

Fault Diagnosis in physical systems involves the detection of

anomalous system behavior and the identification of its

cause. Key steps in the diagnostic inference are fault detec-

tion (is the output of the system incorrect?), fault isolation

(what is broken in the system?), fault identification (what is

the magnitude of the failure?), and fault recovery (how can

the system continue to operate in the presence of the faults?).

Expert knowledge and prior know-how about the system,

models describing the behavior of the system, and sensor data

from system during actual operation are used to develop di-

agnostic inference algorithms. This problem is non-trivial for

a variety of reasons including:

• incorrect and/or insufficient knowledge about system be-

havior

• limited observability

• presence of many different types of faults (system/super-

visor/actuator/sensor faults, additive/multiplicative

faults, abrupt/incipient faults, persistent/intermittent

faults)

• non-local and delayed effect of faults due to dynamic na-

ture of system behavior

• presence of other phenomena that influence/mask the

symptoms of faults (unknown inputs acting on system,

noise that affects the output of sensors, etc.)

Several communities have attempted to solve the diagnostic

inference problem using various methods. Some typical ap-

proaches have been:

• Expert Systems – These approaches encode knowledge

about system behavior into a form that can be used for

inference. Some examples are rule-based systems (Kos-

telezky, 1990) and fault trees (Kavcic and Juricic, 1997).

• Model-based Systems – These approaches use an explicit

model of the system configuration and behavior to guide

the diagnostic inference. Some examples are “FDI” me-

thods (Gertler, 1998), statistical methods (Basseville and

Nikorov, 1993), “AI” methods (Hamscher et al., 1992).

• Data-driven Systems – These approaches use only the

data from representative runs to learn parameters that can

then be used for anomaly detection or diagnostic infer-

ence for future runs. Some examples are IMS (Iverson,

2004), Neural Networks (Sorsa and Koivo, 1998), etc.

• Stochastic Method – These approaches treat the diagno-

sis problem as a belief state estimation problem. Some

examples are Bayesian Networks (Lerner et al., 2000),

Particle Filters (de Freitas, 2001), etc.

Despite the development of such a variety of notations, tech-

niques, and algorithms, efforts to evaluate and compare the

different diagnosis algorithms (DA) have been minimal (dis-

cussed in Section 2). One of the major deterrents is the lack

of a common framework for evaluating and comparing diag-

nosis algorithms. The establishment of such a framework

would accomplish the following objectives:

• Accelerate research in theories, principles, modeling and

computational techniques for diagnosis of physical sys-

tems

• Encourage the development of software platforms that

promise more rapid, accessible, and effective maturation

of diagnosis technologies

• Provide a forum that can be utilized by algorithm devel-

opers to test and validate their technologies

• Systematically evaluate different diagnosis technologies

by producing comparable performance assessments

Such a framework would require the following:

• Define a standard representation format for the system

description, sensor data, and diagnosis result

• Develop a software run-time architecture that can run

specific scenarios from actual system, simulation, or oth-

er data sources such as files (individually or as a batch),

execute DAs, send scenario data to the DA at appropriate

time steps, and archive the diagnostic results from the

DA.

• Define a set of metrics to be computed based on the

comparison of the actual scenario and diagnosis results

from the DA

In this paper, we present a framework that attempts to address

each of the above issues. Section 2 presents the motivation

for this effort and some related work in other problem do-

mains like planning and prognosis. Section 3 presents our

framework, and describes each component in detail. Section

4 lists the assumptions that we had to make and the limita-

tions of this framework. Finally, Section 5 presents our con-

clusions and the future of the proposed framework.

The framework discussed in this paper, examples, XML

schemas, and other related materials can be downloaded from

the DXC website1.

2. MOTIVATION & RELATED WORK

The DX community meets every year at the International

Workshop on the Principles of Diagnosis2 to discuss the latest

developments in the field of model-based diagnosis. One

common point of discussion at every meeting concerns the

establishment of a means to evaluate and compare diagnosis

algorithms. The ISCAS85 digital circuit benchmarks became

an informal test suite for one subset of the MBD community,

but here was no agreement on either the form of the bench-

mark or the metrics. At DX’06 the community decided to es-

tablish a common set of diagnostic benchmarks – but that ef-

fort did not take root. When NASA Ames Research Center

presented an Electrical Power System hardware testbed

1 http://dx-competition.org/
2 http://www.isy.liu.se/dx09/

(ADAPT) at the Workshop in 2007 (Poll et al., 2007), the

system and the run-time architecture it used to execute DAs

was well received. NASA was encouraged to generalize this

framework. In searching for similar frameworks and talking

to people from other diagnosis communities, we realized that

there was a need for a common framework to execute differ-

ent DAs and evaluate and compare their performance.

The use of benchmark models and algorithms has played an

important role in advancing the state-of-the-art in fields such

as SAT, planning, multi-agent systems, and recently prognos-

tics.

Beginning in 1998, the international planning community has

held a biennial event to support the direct comparison of

planning systems on a changing collection of benchmark

planning problems. At the time the organizers had several ob-

jectives: to allow meaningful comparison of programs, to

provide an indication of the overall progress in the field, to

present a set of benchmark problems, and to focus attention

on more realistic problems. Although not intended, the adop-

tion of PDDL as a common representation language for plan-

ning was a very important outcome of the first competition.

Overall the benefits of this series of competitions have been

significant: over ten years, planning systems have been de-

veloped that are capable of solving large and complex prob-

lems, using richly expressive domain models, and meeting

advanced demands on the structure and quality of solutions.

The competition series has inspired many advances in the

planning research community as well as an increasingly em-

pirical methodology and a growing interest in the application

of planners to real problems.

The Prognostics and Health Management (PHM) community

held its first prognostics data challenge as part of the

PHM’08 conference (Saxena et al., 2008). The challenge was

an initial step in addressing the lack of publicly available run-

to-failure sets. Fault progression data sets are typically time

consuming and expensive to acquire or may be withheld due

to proprietary or competitive reasons. The lack of common

data sets is seen as impeding progress in the prognostics

community as there is no mechanism for a meaningful, direct

comparison of algorithms. The PHM data challenge required

competitors to estimate the remaining useful life (RUL) of an

unspecified system using historical data only. For this com-

petition no framework was required, since the evaluation was

with respect to one parameter representing the prognostic

output, which did not depend on timing, the CPU type, mem-

ory usage, or other measures making the comparison of algo-

rithms more straightforward.

In contrast, the diagnosis community has suffered a distinct

lack of similar benchmarks, and it has been difficult to per-

form a comparative analysis of inference algorithms or model

representations. Several researchers have attempted to dem-

onstrate benchmarking capability on different systems.

Among these, (Orsagh et al., 2002) provided a set of 14 met-

rics to measure the performance and effectiveness of prog-

nostics and health management algorithms for US Navy ap-

plications (Roemer et al., 2005). (Bartys et al., 2006) pre-

sented a benchmarking study for actuator fault detection and

identification (FDI). This study, developed by the DAMAD-

DAMADICS Research Training Network, introduced a set of

18 performance indices used for benchmarking FDI algo-

rithms on an industrial valve-actuator system. Izadi-

Zamanabadi and Blanke (1999) presented a ship propulsion

system as a benchmark for autonomous fault control. This

benchmark has two main elements. One is the development

of an FDI algorithm, and the other is the analysis and imple-

mentation of autonomous fault accommodation. Finally,

(Simon, et al., 2008) introduced a benchmarking technique

for gas path diagnosis methods to assess the performance of

engine health management technologies.

The framework presented here adopts some of its metrics

from the literature (SAE, 2007; Orsagh et al., 2002; Bartys et

al., 2006) and extends prior work in this area by 1) defining a

number of benchmarking indices, 2) providing a generic, ap-

plication independent architecture that can be used for ben-

chmarking different monitoring and diagnosis algorithms,

and 3) facilitating the use of real process data on large-scale,

complex engineering systems. Moreover, it is not restricted to

a single fault assumption and enables the calculation of ben-

chmarking metrics for systems in which each fault scenario

may contain multiple faults.

3. DIAGNOSIS ALGORITHM EVALUATION

FRAMEWORK

For our proposed diagnosis algorithm evaluation framework

we first defined formats for the system catalog, sensor data

message, and the diagnosis result (described in detail later in

this section). The process of setting up the framework for a

selected system is as follows:

• The system is formally specified in an XML file called

the System Catalog. The catalog includes the system’s

components, connections, components’ operating modes,

and a textual description of component behavior in each

mode.

• The set of sensor points is decided and sample data for

nominal and fault scenarios are generated.

• DA developers use the system catalog and sample data to

create their algorithms with an appropriate interface to

the run-time architecture (described later in this section)

to receive sensor data and send the diagnosis results.

• A set of test scenarios (nominal and faulty) is selected to

evaluate the DA.

• The run-time architecture is used to run the DA on the

selected test scenarios in a controlled experiment setting,

and the diagnosis results are archived.

• Selected metrics are computed by comparing actual sce-

narios and diagnosis results from DAs. The metrics can

then be used to compute secondary metrics (a ranking

score if a competition is being conducted for example)

In the following subsections we describe the constituent piec-

es of our framework in more detail.

3.1 System Catalog

We realize that it is impossible to avoid bias towards certain

diagnostic algorithms and methodologies when providing

system descriptions. Despite attempts to create a general

modeling language (for examples cf. (Feldman, Provan, &

van Gemund, 2007) and the references therein), there is no

widely agreed way to represent models and systems. Fur-

thermore, DXC is not a pure algorithmic competition, a DA

includes its own system representation (for example a Baye-

sian net or a system of Qualitative Differential Equations).

On the other hand, designing a diagnostic framework which

is fully agnostic towards the system description is impossible

as there would be no way to communicate components or

system parts and to compute diagnostic metrics. As a com-

promise, we have chosen a minimalistic approach, providing

formal descriptions of the system topology and component

modes only. This is done in the XML system catalog. The

rest of the system description (e.g., nominal and faulty func-

tionality of components) is not regulated by DXC, i.e., the

organizers may provide any textual, programmatic or other

description of the systems. In the future we may try to extend

our XML schema in yet another attempt of providing a com-

plete modeling language beyond interconnection topology.

The XML system catalog format is primarily intended to pro-

vide a common set of identifiers for components and their

modes of operation within a given system. This common lan-

guage is necessary to enable exchange of meaningful sensor

data and diagnoses. Additionally, basic structural information

is provided in the form of component connections. Behav-

ioral information is limited to a brief textual description of

each component and its modes, leaving DA developers to de-

duce behavior from the system’s sample data. This is done to

prevent biasing towards any one diagnostic approach.

Table 1: Top-level system description

Item Description

System Name Unique Identifier

Artifact De-

scription

Brief text summary of the system and

pointers to documentation, forums, mail-

ing lists, and other resources

Component

Catalog

List of component identifiers, with refer-

ence to component type and commands

that affect the component

Interconnection

Diagram

Each node of the graph contains a com-

ponent identifier/instance identifier pair,

and there is an edge for any two (physi-

cally) connected components

Almost any diagnosis technology today uses some kind of

graph-like structure for describing the system structure.

Hence we chose a graph-like representation to specify the

physical connectivity of the system. This graph is not anno-

tated: for example there is no directional information. Sup-

plemental information can be extracted from the repository of

documents describing the system, if available.

This is an example XML system description:

<system xsi:type="Digital Circuit”>

 <systemName>polycell</systemName>

 <description>

 A familiar circuit. Contact: dekleer@parc.com.

 Publications: [dW87]

 </description>

 <components>

 <component xsi:type="Probe”>

 <name>A</name>

 <description>

 Probes a point in circuit

 </description>

 </component>

 <component xsi:type="Multiplier”>

 <name>M1</name>

 <description>

 Multiplies its inputs

 </description>

 </component>

 <component xsi:type="Adder”>

 <name>A1</name>

 <description>Adds its inputs</description>

 </component>

 </components>

 <connections>

 <connection>

 <c1>A</c1>

 <c1>M1</c1>

 </connection>

 <connection>

 <c1>M1</c1>

 <c1>A1</c1>

 </connection>

 </connections>

</system>

3.1.1 XML Component Type Descriptions

Next, specifications for all component types mentioned in the

system description are provided.

Table 2: Component description data

Item Description

Component

Type Name

Unique Identifier

Component De-

scription

Brief summary of the component type and

pointers to documentation, forums, and

other resources

Modes Reference to a mode group

Component

Specific Info

Examples: sensor min/max, load wattage,

circuit breaker rating

Consider the “Circuit Breaker” component type (referenced,

for example, by a component with unique ID CB180):

<componentType xsi:type="circuitBreaker">

 <name>CircuitBreaker4Amp</name>

 <description>

 4 Amp CircuitBreaker

 </description>

 <modesRef>CircuitBreaker</modesRef>

 <rating>4</rating>

</componentType>

Or an “AC Voltage Sensor” component type:

<componentType xsi:type="sensor">

 <name>ACVoltageSensor</name>

 <description>AC voltage sensor.</description>

 <modesRef>ScalarSensor</modesRef>

 <sensorValue xsi:type="numberValue">

 <dataType>double</dataType>

 <rangeMin>0</rangeMin>

 <rangeMax>150</rangeMax>

 </sensorValue>

 <engUnits>VAC</engUnits>

</componentType>

As part of a more abstract example we can consider a de-

scription of an and-gate, part of a digital circuit:

<componentType xsi:type="ANDGate">

 <name>AND2</name>

 <description>AND gate.</description>

 <modesRef>AndGate</modesRef>

</componentType>

3.1.2 XML Mode Catalog

Component operating modes are organized by Mode Groups.

More than one component can refer to the same group. The

Mode Group format is described in Table 3. The mode cata-

log organizes nominal and faulty behavior of under generic

component types. As an example, the allowable modes for

the Circuit Breaker component from the preceding section are

given below:

Table 3: Mode group description

Item Description

Modes Group Name Unique identifier for each mode group

Mode Names Names of the possible modes

Mode Descriptions Text descriptions

<modeGroup>

 <name>CircuitBreaker</name>

 <mode xsi:type="mode">

 <name>Nominal</name>

 <description>

 Transmits current and voltage.

 Trips when current exceeds threshold.

 </description>

 </mode>

 <mode xsi:type="mode">

 <name>Tripped</name>

 <description>

 Breaks the circuit and must be

 manually reset.

 </description>

 </mode>

 <mode xsi:type="faultMode">

 <name>FailedOpen</name>

 <description>

 Trips even though current is

 below threshold.

 </description>

 <faultSource>Hardware</faultSource>

 <parameters/>

 </mode>

</modeGroup>

The mode catalog and the specific mode definitions serve as

a requirements document for diagnosis algorithm developers.

This is intended to establish a common ground for different

approaches by guiding the modeling of physical systems to

use a standardized nomenclature.

3.2 Message Format

Messages are exchanged as ASCII text over TCP/IP. API

calls for parsing, sending, and receiving messages are pro-

vided with the framework, but developers may choose to

send and receive messages directly through the underlying

TCP/IP interface. This allows developers to use their pro-

gramming language of choice, rather than being forced into

the languages of the provided APIs.

Every message contains a millisecond timestamp indicating

the time at which the message was sent.

Though there are additional message types, the most impor-

tant messages for the purpose of benchmarking are the sensor

data message, command message, and diagnosis message,

described below.

3.2.1 Sensor/Command Data

Sensor data are defined broadly as a map of sensor IDs to

sensor values (observations). Sensor values can be of any

type; currently the framework allows for integer, real, boo-

lean, and string values. The type of each observation is indi-

cated by the system’s XML catalog.

Commandable components contain an additional entry in the

system catalog specifying a command ID and command val-

ue type (analogous to sensor value type). The command mes-

sage represents the issuance of a command to the system. In

the ADAPT system, for example, the message (EY144_CL,

true) signifies that relay EY144 is being commanded to close.

“EY144_CL” is the command ID, and “true” is the command

value (in this case, a boolean value).

Table 4: Sensor and command messages

SensorMessage

+timestamp

+sensorValues: Map<sensorIds->sensorValues>

CommandMessage

+timestamp

+commandID: string

+command: commandValue

3.2.2 Diagnosis Result Format

The diagnosis algorithm’s output (i.e., estimate of the physi-

cal status of the system) is standardized to facilitate the gen-

eration of common data sets and the calculation of the ben-

chmarking metrics, which will be introduced in Section 3.5.

The resulting diagnostic message is summarized in Table 5

and contains:

- timestamp: A value indicating when the diagnosis has been

issued by the algorithm.

- candidateSet: A candidate fault set is a list of candidates an

algorithm reports as a diagnosis. A candidate fault set may

include a single candidate with a single or multiple faults; or

multiple candidates each with a single or multiple faults. It is

assumed that only one candidate in a candidate fault set can

represent the system at any given time.

- detectionSignal: A boolean value as to whether the diagno-

sis system has detected a fault.

- isolationSignal: A boolean value as to whether the diagno-

sis system has isolated a candidate or a set of candidates.

In addition, each candidate in the candidate set has an associ-

ated weight. Candidate weights are normalized by the frame-

work such that their sum for any given diagnosis is 1.

Table 5: The diagnosis message

DiagnosisMessage

+timestamp

+candidateSet: Set <Candidate>

+detectionSignal: Boolean

+isolationSignal: Boolean

+notes: string

Candidate

+faults: Map<componentIds->componentState>

+weight: double

3.3 Run-time Architecture

The key component of our framework is the run-time archi-

tecture for executing and evaluating diagnosis algorithms.

The architecture has been designed with the following con-

siderations in mind:

1. The overhead of interfacing existing diagnosis algo-

rithms should be reduced by supplying minimalistic

APIs

2. Inter-platform portability should be provided by al-

lowing clients to interface C++ and Java APIs or by

implementing a simple ASCII based TCP messaging

protocol

To facilitate algorithm development and testing we intend to

make available all software in source form and binary pack-

ages for Windows™ and Linux platforms. Our framework

will contain a very simple diagnosis algorithm and a few ex-

amples.

3.3.1 Software Components

Figure 1 shows an overview of the software components and

the primary information flow the framework. All communi-

cation is ASCII based and all modules communicate via TCP

ports by using a simple message-based protocol which we

will describe in more detail below.

• Scenario Loader (SL): This is the main entry point for

running the diagnosis algorithms. The Scenario Loader

(SL) executes the Scenario Data Source (SDS), the Sce-

nario Recorder (SR), and all Diagnosis Algorithms (DA).

SL ensures system stability and cleanup upon scenario

completion. Note that SL is the only long living process.

SDS, SR, and all DAs are spawned for each scenario and

the DA is forcibly killed if it does not terminate after a

predetermined time-out.

• Scenario Data Source (SDS): SDS provides scenario

data from previously recorded datasets. The provenance

of the data (whether hardware or simulation) depends on

the system in question. A scenario dataset contains sen-

sor readings, commands (note that the majority of classi-

cal MBD literature does not discern commands from ob-

servations), and fault injection information (to be sent

exclusively to SR). SDS publishes data following a wall-

clock schedule specified by timestamps in the scenario

files.

• Scenario Recorder (SR): SR receives fault injection da-

ta and diagnosis data, and compiles it into a Scenario Re-

sults File. The results file contains a number of time-

series which will be described later. These time-series

are used by the Evaluation module for scoring and can be

supplied to the participants for detailed analysis of the

algorithmic performance. The Scenario Recorder is the

main timing authority, i.e., it timestamps each message

upon arrival before recording it to the Scenario Results

File.

• Diagnosis Algorithm (DA): This is the component im-

plemented by the external participants for evaluation.

DA implementations use the diagnostic framework mes-

saging interface to receive sensor and command data,

perform their diagnosis, and send the results back.

• Evaluator: Takes Scenario Results File and applies met-

rics to evaluate Diagnosis Algorithm performance. The

metrics and evaluation procedures are detailed in Section

6.

3.3.2 Diagnostic Session Overview

The diagnosis algorithms are tested against a number of diag-

nostic scenarios. From the viewpoint of the scenario player, a

diagnostic scenario is a series of observations (sensor read-

ings, commands) A = {!1, !2,…, !n}, taken within an interval

of time. A is computed for each scenario with the help of a

physical testbed, a simulator, or other methods for creating

observations (it is not necessary for all available sensor val-

ues to be reported to the diagnosis engine). The aim should

be to provide scenarios with varying levels of difficulty. The

diagnostic scenarios are kept secret from the participants, ex-

cept those provided as training and test data.

We will analyze the progression of one diagnostic scenario.

Each diagnostic session defines some standard key points and

intervals which are best illustrated by Figure 2.

Figure 2 splits the diagnostic session into three important

time intervals: "startup, "injection, and "shutdown. During the first

interval "startup, the diagnosis algorithm is given time to ini-

tialize, read data files, etc. Note that this is not the time for

compilation; compilation-based algorithms will compile their

models beforehand. Though sensor observations may be

available during "startup, no faults will be injected during this

time. Fault injection will take place during "injection. Finally,

the algorithms will be given some time post-scenario to send

final diagnoses and gracefully terminate during "shutdown. Af-

ter this time, live diagnosis processes will be killed and the

system will be recycled for the next diagnostic experiment.

Below are some notable points for the example diagnostic

scenario from Figure 2:

• tinj – A fault is injected at this time;

• tfd – The diagnosis algorithm has detected a fault;

• tffi – The diagnosis algorithm has isolated a fault for the

first time;

• tfir – The diagnosis algorithm has modified its isolation

assumption;

• tlfi – This is the last fault isolation during "injection.

A sequence diagram of an example diagnostic session is

shown in Figure 3. After Scenario Loader spawns the Sce-

nario Data Source, Scenario Recorder, and Diagnostic Algo-

rithm, the three spawned processes send messages indicating

they are prepared to start the scenario. Scenario Loader noti-

fies Scenario Data Source that it should commence sending

sensor data, command data, and fault injection information.

Scenario Recorder receives all three kinds of data; the DA

only sensor and command data. The DA in turn sends its di-

agnoses to the Scenario Recorder.

Fig. 1. Run-time architecture

At the end of the diagnostic session the scenario player has

collected the following time-series and (actual and hypothe-

sized) fault data to be used in the metrics computation:

• Fault injection signal; (from Scenario Data Source)

• Fault detection signal; (from DA)

• An actual fault set (once all faults are injected); (from

Scenario Data Source)

• A (possibly empty) set of candidate diagnoses; (from

DA)

In addition, the scenario loader collects the following diagno-

sis engine session performance data (to be used for the com-

putation of performance metrics):

• Total computation time; (from Operating System)

• Peak amount of allocated memory; (from Operating Sys-

tem)

3.4 Metrics and Evaluation

The metrics for evaluating diagnostic algorithms depend on

the particular use of the diagnostic system, the users in-

volved, and their objectives. In this paper, we have chosen to

highlight some common requirements for the development of

diagnostic systems. The metrics measuring the performance

on these requirements need to be defined separately depend-

ing on the specific diagnostic application at hand. For the

proposed framework, we make a distinction between tempo-

ral, technical, and computational performance and highlight

metrics for each category.

The temporal metrics measure how quickly an algorithm re-

sponds to faults in a physical system. The technical metrics

measure non-temporal features of a diagnostic algorithm in-

cluding accuracy, resolution, sensitivity, and stability. Fi-

nally, computational metrics are intended to measure how ef-

ficiently an algorithm uses the available computational re-

sources. An extensive survey on these user requirements and

associated metrics can be found in Kurtoglu et al. (2008).

In addition we divide the metrics into 2 main categories:

• Detection metrics which deal with temporal, techni-

cal and computational metrics associated with only

detection of the fault.

• Isolation metrics which deal with temporal, techni-

cal and computational metrics associated with isola-

tion of the fault.

Table 6: Metrics summary

Name Description Class/Category

“Per System Description” Metrics

False Positives Rate Spurious faults rate Technical / Detec-

tion

False Negatives Rate Missed faults rate Technical / Detec-

tion

Detection Accuracy Correctness of the de-

tection

Technical / Detec-

tion

“Per Scenario” Metrics

Fault Detection Time Time for detecting a

fault

Temporal / Detec-

tion

Fault Isolation Time Time for last persistent

diagnosis

Temporal / Isolation

Fault Isolation Accu-

racy

Correctness of Isola-

tion

Technical / Isola-

tion

CPU Load CPU time spent Computational /

Detection & Isola-

tion

Memory Load Memory allocated Computational /

Detection & Isola-

tion

In general several other classes of metrics are possible includ-

ing cost/utility metrics, effort (in building systems for exam-

ple) metrics and also other categories like fault identification

and fault recovery metrics. The expectation is that as this

framework evolves a comprehensive list of desired metric

classes and categories will be developed to aid framework

users in choosing the performance criteria they want to meas-

ure.

tlfitfirtffi

fault 2
signal

· · ·· · ·· · ·· · ·· · ·

low

high

1 2 tnn − 1

∆shutdown∆injection∆startup

detection
signal

isolation
signal

signal
fault 1

tfdtinj
Fig. 2. Key time points, intervals, and signals

For the first implementation of the evaluator (Figure 1) we

included 8 metrics which are summarized in Table 6. These

metrics are based on extensive survey of literature and talking

to experts from various fields (Kurtoglu et al., 2008). The de-

finitions for the eight metrics are provided in (Kurtoglu et al.,

2009).

4. ASSUMPTIONS, ISSUES, AND EXTENSIONS

In developing this framework, we made a few simplifying as-

sumptions and identified some limitations, which form the

scope for future extensions.

The system catalog was intentionally defined as a general

XML format to avoid committing to specific modeling or

knowledge representations (e.g., equations). It is expected

that the sample training data and pointers to additional docu-

mentation would be sufficient for DA developers to learn the

behavior of the system. We will continue to look for ways to

extend the system catalog representation to provide as much

general information about the system as possible.

The diagnosis result format is defined to be a set of candi-

dates with a weight associated with each candidate. Each

candidate reports faulty modes of 0 (all nominal) or more

components. Obviously this is a simplistic representation

since it does not allow reporting of intermittent faults, para-

metric faults, among others. Also in some cases it may be de-

sirable to report a belief state (a probability distribution over

component states) as opposed to a set of candidates. We ex-

pect to be continuously updating the diagnosis result format

to support a variety of diagnostic output.

The run-time architecture was also defined such that no as-

sumptions were made regarding the actual operational envi-

ronments in which the diagnostic algorithms may be run. We

acknowledge that the true test of diagnostics is in robustness

of performance in the target environment, however, building

an effective evaluation framework in an operational environ-

ment is prohibitive for almost all application domains.

The set of metrics we chose are based on literature survey

and expert opinion on what measures are important to assess

the effectiveness of DAs. However we realize that this set is

by no means exhaustive. Different sets of metrics may be ap-

plicable depending on what the diagnosis results are support-

ing (abort decisions, ground support, fault-adaptive control,

etc.). In addition there might be a set of weights associated

with the metrics depending on their importance (for abort de-

cisions the fault detection time is of utmost importance). We

expect to add more metrics to the list in the future (with sup-

port tools to compute those metrics).

5. CONCLUSIONS & FUTURE WORK

We presented a framework for evaluating and comparing

DAs under identical conditions. The framework is general

enough to be applied to any system and any kind of DA. The

run-time architecture was designed to be as platform inde-

pendent as possible. We defined a set of metrics that might be

of interest when designing a diagnosis algorithm and the

framework includes tools to compute the metrics by compar-

ing actual scenarios and diagnosis results.

We identified some of the limitations of this framework in

Section 4. Our goal is to continue extending this framework

to address those limitations. One of our immediate future

goals is to augment the presented framework with Internet

accessible data files that would enable testing of various ap-

proaches and strategies in a web-based, distributed fashion.

In addition, we plan to extend the framework to make it com-

patible and interoperable with industry standard representa-

tions and diagnostic information models including AI-

ESTATE (Sheppard and Kaufman, 1999) and Hybrid System

Interchange Format3 (HSIF).

3 http://w3.isis.vanderbilt.edu/Projects/mobies/downloads.asp#HSIF

Fig. 3: Session sequence diagram.

Finally, in a related effort, we used this framework to imple-

ment a Diagnosis Competition (DXC’09) (Kurtoglu et al.,

2009). The Diagnostic Competition is the first of a series of

international competitions that will be hosted at the Interna-

tional Workshop on Principles of Diagnosis (DX). The over-

all goal of the competition is to systematically evaluate dif-

ferent diagnostic technologies and to produce comparable

performance assessments of different diagnostic methods.

ACKNOWLEDGMENTS

We extend our gratitude to Peter Struss (Technical University

Munich), Gautam Biswas (Vanderbilt University), Ole

Mengshoel (Carnegie Mellon University), Serdar Uckun

(PARC), Kai Goebel (University Space Research Associa-

tion), Gregory Provan (University College Cork), and many

others for valuable discussions, criticism and help.

REFERENCES

Bartys, M., R. Patton., M. Syfert, S. de las Heras, and J.

Quevedo (2006). Introduction to the DAMADICS

Actuator FDI Benchmark Study, Control

Engineering Practice, 14, pp.577-596.

Basseville M. and I. Nikiforov (1993). Detection of Abrupt

Changes, Prentice-Hall, Inc., Englewood Cliffs, NJ.

de Freitas N. (2001). Rao-Blackwellised Particle Filtering for

Fault Diagnosis. In: IEEE Aerospace Conference.

Feldman, A., G. Provan, and A. van Gemund (2007).

Interchange formats and automated benchmark model

generators for model-based diagnostic inference. In:

Proc. DX'07, pp. 91-98.

Gertler, J. and NetLibrary Inc. (1998). Fault detection and

Diagnosis in Engineering Systems. New York: Marcel

Dekker.

Hamscher, W., L. Console and J. de Kleer (1992). Readings

in model-based diagnosis. Morgan Kaufmann, San

Mateo, CA.

Iverson, D., Inductive System Health Monitoring (2004). In:

Proc. ICAI’04.

Kavcic, M. and D. Juricic (1997). A prototyping tool for fault

tree based process diagnosis. In: Proc. DX'97.

Kostelezky, W., et al. (1990). The Rule-based Expert System

Promotex I. Sttutgart. ESPRIT Project #1106.

Kurtoglu T., O. J. Mengshoel, and S. Poll (2008). A

Framework for Systematic Benchmarking of Monitoring

and Diagnostic Systems, In: Proc. PHM’08.

Kurtoglu T., S. Narasimhan, S. Poll, D. Garcia, L. Kuhn, J.

de Kleer, A. van Gemund, A. Feldman (2009). First

International Diagnosis Competition – DXC’09. In:

Proc. DX’09.
Lerner, U., R. Parr, D. Koleer, G. Biswas (2000). Bayesian

Fault Detection and Diagnosis in Dynamic Systems. In:

Proc. AAAI’00, pp. 531-537.

Orsagh R., Roemer, M., Savage, C., and Lebold, M., (2002).

Development of Performance and Effectiveness Metrics

for Gas Turbine Diagnostic Techniques. Aerospace

2002 IEEE Conference Proceedings, 6, pp. 2825-

2834.

Poll, S., A. Patterson-Hine, J. Camisa, D. Garcia, D. Hall, C.

Lee, O. J. Mengshoel, C. Neukom, D. Nishikawa, J.

Ossenfort, A. Sweet, S. Yentus, I. Roychoudhury, M.

Daigle, G. Biswas, and X. Koutsoukos (2007).

Advanced Diagnostics and Prognostics Testbed. In:
Proc. DX’07.

Roemer, M, J. Dzakowic, R. Orsagh, C. Byington, and G.

Vachtsevanos (2005). Validation and Verification of

Prognostic Health Management Technologies. In: Proc.

AEROCONF’05.

Roozbeh I., M. Blanke, A ship propulsion system as a

benchmark for fault-tolerant control, Control

Engineering Practice, 7(2), pp. 227-239.

SAE (Society of Automotive Engineers) E-32, 2007, Health

and Usage Monitoring Metrics, Monitoring the Monitor,

February 14, 2007, SAE ARP 5783-DRAFT.
Saxena, A., K. Goebel, D. Simon, and N. Eklund (2008).

Damage propagation modeling for aircraft engine run-to-

failure simulation. In: Proc. PHM’08.
Sheppard, J. and M. Kaufman (1999), IEEE Information

Modeling Standards for Test and Diagnosis. In: Proc.

5-th Annual Joint Aerospace Weapon System

Support, Sensors and Simulation Symposium.

Simon L., J. Bird, C. Davison, A. Volponi, R. E. Iverson,

(2008). Benchmarking Gas Path Diagnostic Methods: A

Public Approach, Proceedings of the ASME Turbo

Expo 2008: Power for Land, Sea and Air,

GT’08.

Sorsa, T. and H. Koivo (1998). Application of artificial

neural networks in process fault diagnosis.

Automatica, 29(4), pp. 843–849.

