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Both of these missions were instrumental in the lunar 
ice question. In particular, the Lunar Prospector 
Mission (LP) neutron measurements indicated elevated 
hydrogen signatures in permanently-shadowed craters 
on both the North and South poles of the Moon. In 
light of these data, the science community wondered if 
these elevated hydrogen signatures could be an 
indication of the presence of water-ice, trapped just 
beneath the regolith surface of the crater floors.  
 
If water does exist on the Moon, it could have arrived 
the same way water did on Earth - through billions of 
years of bombardment by meteors and comets. 
However, because the Moon’s gravity is less than one 
fifth of Earth’s gravity, the Moon retains practically no 
atmosphere and any deposition on the moon's surface 
would be subject to direct exposure to both the vacuum 
of space and daylight temperatures that reach up to 
250° Fahrenheit. 
 
In the North and South polar regions, however, the sun 
never rises above certain crater rims so sunlight never 
reaches the crater floor. With temperatures estimated to 
be near -328° Fahrenheit (-200° C), these craters can 
'cold trap' or capture most volatiles, such as water. 
 
 
 

 

 

 

Fig. 3. ½ litre of water 
 
Given the expense of bringing water from Earth to the 
surface of the moon (from $15K to $50K for the 
equivalent of a ½ litre bottle (Fig. 3)), finding water-ice 
in sufficient quantities in these permanently shadowed 
craters could result in a compelling rationale for 
locating lunar outposts in the vicinity of this valuable 
resource. An in-situ resource like water that could be 
converted to consumable water, breathable oxygen, 
rocket fuel, and potentially even used as a means for 
construction when combined with regolith, or as a 
shielding means from solar radiation, would make 
inhabitation and exploration of the Moon a much more 
achievable future reality.  
 

4. THE LCROSS MISSION  
 
LCROSS proposed to conduct a low-cost, fast-track 
companion mission to launch with the LRO that would 
confirm if, and in what form, water might exist in a 
permanently shadowed lunar crater.  

 
With a mass constraint of 1000 Kg, LCROSS proposed 
to use the upper stage of the Atlas-V rocket (the 
“Centaur”), normally space junk after delivering a 
payload, to effectively triple the size of its working 
payload. By repurposing the spent Centaur to 
LCROSS, mission planners were able to stay within 
the 1000 Kg mass budget allotted to the secondary 
payload while gaining another approximately 2300 Kg 
of mass “for free”.  
 
Proposing the use of the Centaur as a lunar kinetic 
impactor, LCROSS would “drop” the 2300 Kg rocket 
(about the weight of a large sports utility vehicle) into a 
permanently-shadowed crater, at a speed of 1.5 
miles/second (2.5 km/s) or three times the speed of a 
bullet, to kick-up a plume of material from the crater 
floor. The 1000 Kg LCROSS “Shepherding 
Spacecraft” would then collect and transmit data about 
the impact and plume back to LCROSS mission 
control using nine on-board science instruments before 
impacting the surface itself, about 4 minutes after the 
Centaur. 
 
The Atlas launch vehicle used for the LRO mission 
consists of a booster stage and the Centaur upper stage. 
The LCROSS spacecraft would be mounted atop the 
Centaur with the LRO spacecraft mounted atop 
LCROSS (Fig. 4).  

 

Fig. 4. The LRO/LCROSS launch vehicle stack 
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5.1  LCROSS Science 

As the impact debris plume rises above the target 
crater’s rim, it is exposed to sunlight and any water-ice, 
hydrocarbons or organics are vaporized and break 
down into their basic components. These components 
are primarily monitored by the visible and infrared 
spectrometers. The near-infrared and mid-infrared 
cameras determine the total amount and distribution of 
water in the debris plume. The spacecraft’s visible 
camera tracks the impact location and the behaviour of 
the debris plume while the visible photometer 
measures the flash created by the Centaur impact. 
Finally, to gather all this instrument data together 
LCROSS employs a Data Handling Unit (DHU) for 
transmission back to LCROSS Mission Control.  
 
These instruments were selected to be low-cost, 
rugged, commercially available components…. in an 
Earth environment. However, to ensure survival in 
both space and launch environments, the LCROSS 
payload team needed to put the individual instruments 
though rigorous testing to simulate launch and the 
conditions in space. When that testing revealed 
weaknesses, the team worked with the manufacturers 
to strengthen their designs for satisfactory use in the 
LCROSS mission. 
 

6. NASA CLASS D MISSIONS 
 
A key enabling factor for LCROSS success was its 
designation by the ESMD Associate Administrator as a 
risk-tolerant Class D mission. 
 
NASA classifies all spaceflight missions into one of 
four categories based on risk tolerance: Class A, B, C, 
and D. This classification system has origins in the 
Department of Defense (DoD) Military Standards (Mil-
STDS) documents which NASA has tailored into a 
Safety and Mission Assurance (S&MA) NASA 
Procedural Requirement (NPR 8705.4) [3]. 
 
Class A missions, at the risk intolerant end of the 
spectrum, tend to be large, expensive missions, and/or 
manned spaceflight missions where human lives are 
put in harm’s way. Class A missions are typically 
formulated with generous technical margins, schedule 
slack and reserve dollars to address the need for 
redundant systems and extensive testing to assure 
requirements satisfaction with reliability – all of which 
lead to elevated cost. 
 
Class D missions, at the other end of the risk spectrum, 
are the most risk-tolerant missions in NASA. While 
safety concerns are treated no differently for a Class D 
mission than a Class A mission, Class D missions are 

allowed to be “single strung”, which means there is no 
redundancy required. In fact, as it states in NPR 
8705.4, “Medium or significant risk of not achieving 
mission success is permitted”, so this type of mission 
can fail. Class D designation is typically applied to 
small missions that are constrained in some way 
making it harder to assure mission success. For 
LCROSS, the Agency Class D designation was in 
place to improve the likelihood it could make the LRO 
launch date, within budget. 

7. LCROSS AS A CLASS D MISSION 
 

When LCROSS was cast as a Class D mission, 
technical risk officially became part of the mission 
trade space. Because the mission was cost-capped, cost 
maintenance was essential. The Project cost cap had to 
be maintained even if at the expense of technical 
requirements as the mission could be cancelled if the 
cost cap was exceeded. LCROSS was also schedule-
constrained since it had to make the LRO launch date. 
As a result, LCROSS was permitted to waive 
performance requirements or take additional risk as 
necessary to fit into the schedule and cost constraints.  
 
The Program Office handled the Level 2 (L2) 
requirements levied on the LCROSS Project in a 
similar vein, establishing “Minimum” and “Full 
Success Criteria” to set priorities if requirements trades 
had to be made. (Sec. 9) The L2 requirements 
document specifically listed, by number, the 
requirements which were Minimum Success criteria, 
leaving the rest to be Full Success criteria and able to 
be traded if required. This document effectively told 
LCROSS Project Management, “if you are forced to 
start dumping some of your requirements, here’s how 
we’d like you to prioritize them”. Achieving 
concurrence up-front on acceptable ways to make 
contingency trades saved time and heartache as the 
mission progressed. 
 
7.1  Class D Challenges 

As a Class D mission, LCROSS quickly discovered 
that although the designation was adequately defined in 
the cited NPR, there was little or no reference to this 
risk classification in other NASA policy documents. 
Further, approaches that the LCROSS team had the 
latitude to execute, may not have been permitted by 
other NPRs, effectively driving the mission class 
higher. As pioneers for the Class D mission 
designation, LCROSS Project Management soon found 
that internal contradictions and discontinuities between 
policy documents were their problems to resolve. 
 
Another issue associated with the Class D risk 
designation was its extensibility to the spacecraft 
contractor, Northrop-Grumman. The NASA Class D 



designation established a performance standard for the 
execution of the Project, but it was not necessarily in 
alignment with how the spacecraft contractor could 
operate. The NG part of the LCROSS team started the 
process of finding their own equivalent of a Class D 
approach within their existing, approved corporate 
processes. Although they were able to find an existing 
approach that streamlined oversight and approval 
processes to helped them to come into Class D 
alignment, it required them to address two important 
issues: 1) Is a corporate entity willing/able to take the 
same risks of failure defined by the NASA Class D 
mission designation and 2) Does this work within their 
own framework of shareholders? In the end, the 
answers were the same for NG and ARC. Neither 
organization came together to manage the LCROSS 
Project just to see it fail, regardless of mission class. So 
the LCROSS team had to find ways to keep risk in 
check while staying within the cost and schedule caps. 
 
One of the burdens being a pathfinder for the Class D 
mission construct was the need to advocate for new 
approaches with stakeholders. For NASA stakeholders, 
LCROSS advocated for approaches that involved 
tailoring existing policies rather than waiving policies 
altogether. This approach avoided time-consuming 
resistance to waiving which leads to stakeholder 
questions such as, “This procedural requirement is in 
place because past experience shows that this 
requirement is a wise thing to do… so justify why you 
do not feel it is wise for your project”? For NG 
corporate stakeholders, both tailoring and waiving 
existing processes had to be employed to gain 
acceptance, particularly from NG mission assurance 
organizations. In fact, the NG Project Manager for 
LCROSS once said, “We had to create a waiver to the 
waiver process”, since he had to overcome the same 
difficulties as the ARC Project Manager did with 
NASA stakeholders. 
 
Finally, there was the challenge of integrating the Class 
D LCROSS mission with the Class B/C LRO and the 
Class A Atlas launch vehicle. In the end, the lowest 
common denominator, i.e., least risk-tolerant approach, 
prevailed, which was counter to the LCROSS context. 
For example, in the case of structural margins, 
LCROSS had done some analysis calculations which 
showed generous margins on natural frequencies of the 
propulsion tank and the secondary structure. Atlas and 
LRO concurred that the computed frequencies were 
good numbers, but wanted additional verification of 
those numbers which were based only on analysis. 
Because this level of additional verification was in 
alignment with the mission risk position for LRO, 
LCROSS was forced to conduct testing on the structure 
and propellant tank to verify the analysis. Because the 
monies expended to satisfy another mission’s risk 

position exceeded the LCROSS cost cap, Project 
Management successfully advocated for the Program 
Office to pay for the cost of enhanced LCROSS 
testing. 
 

8. MANAGING THE LCROSS RISK 
EQUATION  

 
Managing the mission success risk equation for 
LCROSS involved management of the three traditional 
elements – cost, schedule, and technical capabilities. 
Because cost and schedule were constrained, technical 
capability was the only element that could be actively 
managed.  
 
Cost Risk + Schedule Risk + Technical Risk = Mission Risk
 
Although LCROSS had Class D mission designation 
allowing a higher-than-normal mission risk, it was in 
everyone’s interest to keep that risk as low as possible 
to increase the chances of success. By definition then, 
the technical capability risk also had to be kept as low 
as possible, primarily by keeping the complexity level 
as low as possible.  
 
8.1 Lowering Complexity Lowers Risk 

If a system is designed to be low in complexity, extra 
margin is effectively added to the technical risk 
element – margin that can be traded if developmental 
difficulties are encountered later on in the project. For 
example, if procurement is taking longer than planned, 
thereby increasing schedule risk in this schedule-
capped mission, that risk can be reduced by reducing 
the unit-level testing that was originally planned. While 
not testing at a unit level runs the risk of problems not 
emerging until box-level testing occurs, if the system is 
of low-complexity, the risk of that occurring might be 
worth the trade. If that unit-level device has been 
proven on a previous mission and is being re-used in 
the same way as on that previous mission, the risk may 
be small. If the card in which testing is reduced is 
easily removed/replaced from the avionics box, making 
a later discovery of a problem would not represent a 
large problem and thus, may be worth the trade. 
Alternately, you might continue with all the unit and 
subsystem level testing, but reduce the degree of 
integrated systems testing to a minimum to recover 
schedule. A lot of judgment is required to make these 
trades, and there is technical risk. The key is to find 
ways to keep that risk in check, even in a risk-tolerant 
environment. 
 
8.2 Capabilities-Driven Missions Lower Risk 

Keeping technical risk in check meant the LCROSS 
mission was not about pushing the limits of technology 
and performance. This particular mission was about 
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Minimum Success Requirements were met and impact 
took place in a targeted, permanently shadowed crater.  
 

10. MANAGING CAPABILITIES-DRIVEN 
MISSIONS 

 
With the list of mission requirements clearly 
prioritized, LCROSS implemented the previously 
discussed Design-to-Cost process using existing 
capabilities. COTS instruments were sought for 
payloads. Although flight-proven instruments were 
preferred (the visible camera was flight-proven), well-
established instruments from the commercial or 
industrial world that were already ruggedized to 
improve the feasibility of use in a space and launch 
environment were accepted. Those instruments were 
subsequently tested in relevant environments (vacuum, 
temperature extremes, vibration, etc.) to see if the units 
could withstand anticipated mission conditions. 
Instrument vendors, interested in opening new markets 
for their products and happy that such rigorous use-
testing was being funded by the government, were 
cooperative in upgrading their products when issues 
were discovered. For example, one instrument failed 
because a screw came loose during vibrational testing. 
It was discovered that no adhesive had been applied to 
the screw threads to help secure the screws in a 
dynamic load environment. Once adhesive was 
applied, the device passed testing and was accepted for 
use. In another case, a cable came loose inside an 
instrument because the cable was not staked-down to 
help reduce the length of unsupported cable 
experiencing the loads of a launch environment. This, 
too, was easily remedied. 
 
The final suite of LCROSS instruments included a 
thermal camera (MID-IR1) used in motorsports 
applications, Near-IR spectrometers (NSP1 & NSP2) 
used in beer-making and carpet fiber analysis for 
assessing recyclability, UV visible spectrometers 
(UVS) used in standard bench-top laboratory 
equipment, a visible camera routinely used in shuttle 
launch imagery, and Near-IR cameras (NIR-cam) used 
in fiber optic communications applications. All of these 
were existing hardware that was repurposed for the 
LCROSS space mission. 
 
To employ existing capabilities for the LCROSS 
spacecraft, well-proven, flight-demonstrated hardware 
was chosen, some of which was even re-purposed. The 
best example of this was the previously described 
ESPA ring, originally designed to mount between a 
launch vehicle and spacecraft it is carrying, but used by 
LCROSS as a spacecraft structure. Avionics, batteries, 
propellant tank, thrusters, transponder, and other 
equipment - all proven on other missions – reduced the 
risk/uncertainty of performance on LCROSS. Along 

with proven capabilities came improved cost risk. By 
using existing hardware, cost risk remained in check. 
When existing designs are altered, development risk - 
and the cost for covering that risk - increases. 
 
By employing capabilities-driven management, 
LCROSS adhered to the Design-to-Cost process and 
was able to meet all cost, schedule, and technical 
capability mission requirements.  
 

11. DESIGNING-TO-COST USING RESERVE 
MANAGEMENT 

 
If design risk can be combated by applying quantified 
“reserves”, then assessing a design’s heritage is critical 
in understanding how the reserve position should look. 
[5] 
 

! Existing designs: 5-15% reserve. This choice 
covers the residual risk associated with any 
particular instantiation of the design. It may 
be used exactly as it was in another 
application, but it is still is a new application.  

! Modified designs: 15-50% reserve. This 
choice accepts that the design is charting new 
territory. While the basis for the design may 
be proven, uncertainty and new risk is being 
introduced with the modification. 

! New designs: 50%-100% reserve. This choice 
the most difficult to assess because there is 
little to no basis for the design. It is largely a 
new construct, and depending how complex 
the system, could be carrying moderate to 
significant cost and schedule risk. 

 
The LCROSS Project, at selection, carried a starting 
reserve position of ~15%, which is small by NASA 
metrics, but well-aligned with the “existing design” 
category – an approach LCROSS wholeheartedly 
adopted. By choosing this risk reserve category, the 
LCROSS team understood that tackling a new design 
would be an unacceptably risky venture.  
 
It is important to note, however, that while the project 
is carrying reserves to address risk, it is not there to 
support requirements creep or design enhancement. 
Risk reserves exist to address unknowns in the risk 
position so unanticipated risks that emerge during the 
project can be accommodated without adversely 
affecting either cost or schedule.  
 
Mission risk reserve can be monitored throughout the 
project by determining the “Cost-to-Go” (CTG) at any 
given time. The CTG is the amount of reserve 
remaining compared with anticipated reserve 
expenditure. There are many different standards to 



manage to, but 10% - 30% were the thresholds 
LCROSS employed to strike a good balance between 
financial concern and reserve expenditure opportunity. 
The strength of using a CTG metric for making 
decisions is that it is derivate, so problems can be 
anticipated in time to change a risk position.  
 
LCROSS grew its CTG reserves position in the first 
half of the project lifecycle by refraining from dipping 
into the reserves which automatically makes the CTG 
reserve position grow over time. When the CTG 
exceeded 30%, additional activities that would buy-
down risk somewhere were considered, such as 
performing additional spacecraft testing, but only as 
the schedule margin position would allow. Near the 
end of the project, the CTG was allowed to hover in the 
teens because a fair amount of risk had been retired by 
then getting through spacecraft Integration and Testing 
(I&T), but was never allowed to drop below 10% until 
the endpoint was in sight. The history of LCROSS 
CTG management can be seen in Fig 10. 
 

 
 

Fig. 10. LCROSS Cost-To-Go chart 
 
At the end of a project where the remaining work is 
getting small and the reserves position is also getting 
small, the CTG calculation becomes less useful. The 
denominator in the calculation starts to become a small 
number which can cause the CTG% to vary widely. At 
this point, LCROSS simply managed the remaining 
work, assigned values/liens to that work, and then 
carefully managed the remaining reserve to a declining 
percent through project close. Using the CTG% chart 
(Fig. 10) was a very powerful way to understand where 
the project stood, financially, on a monthly basis. 
 

12. LCROSS PROGRAMMATIC SUMMARY 
 
The key to capabilities-driven, cost-capped missions 
like LCROSS is to keep it simple and to manage the 
risk equation. It is not about eliminating risk, which is 
very costly. It is about managing risk to a level 

commensurate with project programmatic constraints. 
LCROSS did this by making use of existing 
investments by the Agency, existing commercial 
hardware, and being sufficiently creative to see 
opportunities to buy-down risk.   
 
Ultimately, LCROSS succeeded because the 
individuals and organizations in the LCROSS team, 
walked a shared road on a mission to the Moon and 
worked together to make it succeed. Each party on this 
team had both mutual and self-interests for why they 
wanted to participate. The Agency wanted to show that 
there was an effective way to make use of excess 
launch capability and to work cheaply; NASA ARC 
wanted to show it was able to run small, fast-paced, 
lightweight missions; NG wanted to show that it could 
be nimble and carve out a new market for itself; and 
the commercial sector found an onramp to space and 
lunar applications which could propel their businesses 
into a new market. One of the great successes of 
LCROSS was aligning each the team member’s needs 
into a common purpose which benefited everyone in a 
win-win-win scenario. 
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