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Abstract 
Recently we have revisited the traditional probability density function (PDF) equations for the 

velocity and species in turbulent incompressible flows. They are all unclosed due to the appearance of 
various conditional means which are modeled empirically. However, we have observed that it is possible 
to establish a closed velocity PDF equation and a closed joint velocity and species PDF equation through 
conditions derived from the integral form of the Navier-Stokes equations. Although, in theory, the 
resulted PDF equations are neither general nor unique, they nevertheless lead to the exact transport 
equations for the first moment as well as all higher order moments. We refer these PDF equations as the 
conservational PDF equations. This observation is worth further exploration for its validity and CFD 
application. 

1.0 Introduction 
To explore the turbulence modeling employed in the PDF method, we revisited the constructions of 

the traditional PDF equations for turbulent velocity and species, which were described by several 
researchers in great details, for example, by Pope (Ref. 1). In those constructions, a Delta function (which 
is referred as the fine grained PDF) was extensively used, together with a few impressive mathematical 
techniques to invoke the Navier-Stoke equations into the identity relationship developed from the Delta 
function. Since the entry point for the Navier-Stokes equations was through the “conditional mean”, two 
or three conditional means appeared in the velocity PDF equation and additional two conditional means 
appeared in the species PDF equation. In these traditional PDF equations, all the conditional means were 
considered as unknowns and modeled empirically. 

In the present study, we started out by taking the statistical mean directly on the Navier-Stokes 
equations to form an integral equation, from which a PDF equation is then constructed. Depending on the 
way of taking mean on some particular terms, especially the pressure gradient ∇P and the molecular 
diffusions , , the resulted PDF equation can end up with different forms. Briefly speaking, 
if we treat, for example, the molecular diffusion term  as a separate random variable from Ui, then 
its mean 

2 iUν∇ 2
iΓ∇ Φ

2 iUν∇
2 iUν∇  will be expressed as an integration of the product of the velocity PDF and the 

conditional mean, i.e.,  

 2 iUν∇  = ( )2 ; ,iU f t dν ∇∫ V V x V , 

where the conditional mean 2 iU Vν∇  is a new unknown. However, if we take the mean based on the 
definition and the commutation rule between mean and differentiation, then we have 

 ( ) ( )
2

2 2 2 ; , ; ,i i i i
fU U V f t d V f t d

f
⎛ ⎞∇

ν∇ = ν∇ = ν∇ = ν⎜ ⎟
⎝ ⎠∫ ∫V x V V x V ,  
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which is in closed form. The former way will lead to the traditional PDF equations (see Sections 3.3 and 
4.2). The latter way will lead to the closed equations for the velocity PDF (see Section 3.4) and the joint 
species-velocity PDF (see Section 4.3). Since a sufficient but not necessary condition was involved in 
their construction, the resulted PDF equations are neither general nor unique. Nevertheless, we observed 
that they can lead to the exact transport equations for not only the first moments (i.e. mean velocity and 
species, etc.) but also all higher order moments deduced from the Navier-Stokes equations. This feature is 
referred as the conservation of the PDF equations.  

Later, we also found that, for the traditional way of utilizing the “fine grained PDF”, all the 
conditional means (e.g., 2 iUν∇ V , 2 iν∇ Φ ψ , etc.) can also be systematically modeled through  
similar sufficient condition, hence the traditional PDF equations can be closed exactly as the PDF 
equations proposed in the present study. The details are described in the Appendix A.  

Section 2.0 introduces the basic definition of probability density function of turbulent velocity, 
species, other turbulent quantities and their joint PDF; the relationships between the marginal PDF, the 
joint PDF and the conditional PDF; and the relationship between the mean and the conditional mean. 
Section 3.0 demonstrates how to construct the velocity PDF equation starting directly from the Navier-
Stokes equations. Section 4.0 demonstrates the construction of the transport equations for the species PDF 
and the joint species-velocity PDF.  

2.0 PDF of Turbulent Variables 
2.1 PDF of Turbulent Velocity fU(V; x,t)  

Turbulent velocity  is a random vector variable, its probability density function PDF at a 
single point (in space and time) is denoted as 

( , )i iU x t
( ) ( )1 2 3 1 2 3; , , , ; , , ,U Uf t f V V V x x x t≡V x , where 

 is the sample space coordinates of Ui, and ( 1 2 3, ,V V V≡V ) ( )1 2 3, , ,x x x t≡x  are the location coordinates 
and the time. Formally, ( ;U , )f tV x

, 2, 3

 is a scalar function of V and x,t, but its arguments have different 
physical meaning and mathematical transformation. The V represents a point in the velocity sample space 
( ) at which the probability density fU of Ui is defined. The x,t indicate that fU is a 
field and a process. It is important to note that V is independent of x and t. The probability density 
function 

, 1=

, )

iV i−∞ < <∞

( ;Uf tV x  itself is not random and is fully defined at each V for every single point x,t, it is a 
differentiable (hence continuous) function of V, x, t. Furthermore, its integration over the whole sample 
space V at every single point x,t must be equal to one, because the total probability for all events must be 
100 percent, i.e.,  

 
1 2 3 1 2 3 1 2 3( , , ; , , , ) 1Uf V V V x x x t dV dV dV

∞ ∞ ∞

−∞−∞−∞

=∫ ∫ ∫ . (1) 

Or written as 

 
( ; , ) 1Uf t d =∫ V x V . (2) 

Where  is an abbreviation of . It is also important to note that the 

argument V in fU  represents ‘ ’ so that 

( ) d∫ V 1 2 3( ) dV dV dV
∞ ∞ ∞

−∞−∞−∞
∫ ∫ ∫

3 ( ; , )U1 2, ,V V V f tV x  is a joint probability density function 

1 2 3, ; ,( , )Uf V V V x t  of the turbulent velocity components . 1 2, ,U U 3U
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As Pope (Ref. 1) pointed out that, with the PDF ( ; , )Uf tV x
)t

, we can define various one-point 
statistical properties of the random velocity , for example, the mean velocity (or the first moment)( ,iU x

iU : 

 
( ; , )i i UU V f t d= ∫ V x V  (3) 

All other higher order moments at any single point of x,t  (also referred as one point moments or one 
point correlations) can also be defined: 

 

( ; , )

( ; , )

i j i j U

i j k i j k U

U U V V f t d

U U U V V V f t d

=

=

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

∫
∫

V x V

V x V  (4) 

In particular, the Reynolds stresses i ju u  defined by the Reynolds decomposition i i iu U U= −  are 
fully defined by ( ; , )Uf tV x : 

( )( )i j i i j j i j i j j i i j i j i ju u U U U U U U U U U U U U U U U U= − − = − − + = −  (5) 

Equation (5) indicates that the turbulent kinetic energy / 2i ik u u=  is fully defined by the velocity PDF
( ; , )Uf tV x .  

2.2 PDF of Turbulent Species fΦ(ψ; x,t)  

Turbulent scalar variables, for example, the species ( , ), 1,2,i t i nΦ =x , are random variables. The 
PDF of species is denoted as ( ; , )f tΦ ψ x , where i≡ ψψ  is the n-dimensional sample space coordinates of 
the speciesΦi. Therefore, ( ; , )f tΦ xψ  is a joint scalar PDF of multi species. Analogous to the turbulent 
velocity, the one-point statistical properties of the turbulent species Φi are fully defined by the PDF

( ; , )f tΦ xψ . For example, the mean is written as 

 
( ); , , 1, 2, ,i i f t d i nΦΦ = ψ =∫ xψ ψ

 
(6) 

And the higher order moment as: 

 

2 2

3 3

1 2 1 2

( ; , )

( ; , )

( ; , )

i i

i i

n n

f t d

f t d

f t d

Φ

Φ

Φ

Φ = ψ

Φ = ψ

Φ Φ Φ = ψ ψ ψ

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

∫
∫

∫

x

x

x

ψ ψ

ψ ψ

ψ ψ
 (7) 

In particular, the ith species fluctuating intensity 2
iφ defined by the Reynolds decomposition 

i i iφ = Φ − Φ  is fully defined by ( ; , )f tΦ xψ , 

 
( )22 2i i ii iφ = Φ − Φ = Φ − Φ Φi  (8) 
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2.3 Other Turbulent Quantities and Functions of Turbulent Variables  

There are several other turbulent quantities, for example, the pressure P, the chemical reaction source 
S(Φi), the pressure gradient iP x∂ ∂ , the velocity gradient iU∇ , and the higher order derivatives such as

, . They may be viewed as other separate random (scalar or vector) variables, in addition to 
the turbulent velocity Ui and the species Φi. We will see later that these “random variables” often appear 
as a “conditional mean” in the traditional PDF equations. 

2 iU∇ 2 i∇ Φ

There are two types of quantities: one is the analytical function of the turbulent variables such as  
S(Φi) = 1 2 , and the other is the derivatives of the turbulent variables such as . The quantities 
S(Φi) and  are both random because Φi is random. From the probability theory the statistical 
properties of S(Φi) and Φi can be determined by the same PDF

βαΦ Φ
2 i∇ Φ

2 i∇ Φ

( ; , )f tΦ xψ . However, the statistical 
properties of  is not that straightforward.  2∇ Φi

2.3.1 Statistical Mean of Analytical Function of Turbulent Variable S(Φi)  

The statistical mean of S(Φi) is defined as 

 
( ) ( ) ( ; , )i iS S f tΦΦ = ψ∫ x dψ ψ  (9) 

where S(ψi) is the functional form in the sample space ψ for S(Φi). The function S( ) is the assumed 
analytical function. 

2.3.2 Statistical Mean of Derivatives of Turbulent Variable ∂Ui /∂xj and ∂2Ui /∂xj∂xj 
There are at least two ways to take means on the derivatives of velocity. Let us first use the 

commutation rule (Section 3.1) to express the following means: 

 

2
2

( ; , )( ; , )

( ; , )

U
i i i U i

j

U
i i

j j

f tU U V f t d V d
x

f tU V d
x x

∂
∇ = ∇ =∇

∂

∂
∇ =

∂ ∂

∫ ∫

∫

V xV x V = V

V x V
 (10) 

Hence, the mean of derivatives can be determined by the derivatives of the PDF of turbulent variable. 
Equation (10) can be further expressed as  

 
2

2

( ; , )

( ; , )

i U
i U

U j

i U
i U

U j j

V fU f
f x

V fU f
f x x

⎛ ⎞∂
∇ = ⎜ ⎟⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
∇ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫

∫

V x V

V x V

t d

t d

 

or 

 
2

( ) ( ; , )

( ) ( ; , )

i j i U

i i U

U D V f t d

U L V f t d

∇ =

∇ =

∫
∫

V x V

V x V
 (11) 

where Dj(Vi) and L(Vi) are defined as  
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2

( ; , )( )
( ; , )

( ; , )( )
( ; , )

i U
j i

U

i U
i

U j

V fD V
f t x

V fL V
f t x x

∂
=

∂

∂
=

∂ ∂

V x
V x

V x
V x

j

j

t

t
 (12) 

Analogy to Equation (9), we may view Dj(Vi) and L(Vi)  as the functional forms of  and  in the 
sample space V. 

iU∇ 2 iU∇

Another way to take mean on the derivatives of velocity is to view them as some different random 
variables from the velocity; hence it will involve the joint PDF or the condition means of the velocity 
derivatives. This will be described in the next Section, where the relationships between the conditional 
means and the functions Dj(Vi), L(Vi) will be revealed.  

2.4 Joint PDF 

2.4.1 Joint PDF and Marginal PDF 

The Navier-Stokes equations contain several random variables, for example, the velocity Ui, the 
pressure P (or the pressure gradient ∇P) and the molecular diffusion . The scalar transport 
equations contain the velocity Ui, the species Φi and its molecular diffusion

2 iUν∇
2 iΓ∇ Φ . Hence a joint PDF 

for the joint variables of Ui, Φi, P, , 2 iUiU L∇ ≡ 2 ii LΦ∇ Φ ≡ , , i.e. U P, , , ,UL L ( , , , , ; , )f p tUV l l xΦψΦ

( ; , )
Φ
U

, 
may be needed in the analysis together with the marginal PDF, such as f tV x , ( ; , )f tΦ xψ , and the 
joint PDF of , ( , ; , )Uf tΦ V xψ . The arguments , ,Ul lp Φ  are the sample space variables of P,  and 

, respectively. 
2 iU∇

2 i∇ Φ
By definition, PDF must satisfy the normalization condition: 

 , , , , ( , , , , ; , ) 1UU P L Lf p t d d dp dΦΦ d =∫ ∫ ∫ ∫ ∫ UV l l x V l lΦψ ψ U Φ  (13) 

The relationship between the joint PDF , , , , ( , , , , ; , )UU P L Lf pΦΦ
UV l l xΦψ t  and the marginal PDF

( ; , )Uf tV x , ( ; , )f tΦ xψ , ( ; , )Pf p tx , ( ; , )ULf tUl x ( ; , )L f tΦ l xΦ  are defined as 

 

, , , ,

, , , ,

, , , ,

, , , ,

( ; , ) ( , , , , ; , )

( ; , ) ( , , , , ; , )

( ; , ) ( , , , , ; , )

( ; , ) ( , , , , ; , )

U

U

U

U U

U U P L L

U P L L

P U P L L

L U P L L

f t f p t d dpd d

f t f p t d dpd d

f p t f p t d d d d

f t f p t

Φ

Φ

Φ

Φ

Φ

Φ Φ

Φ

Φ

=

=

=

=

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

U U

U U

U

U U

V x V l l x l l

x V l l x V

x V l l x V

l x V l l x

U

l l

l l

Φ Φ

Φ Φ

Φ Φ

Φ

ψ ψ

ψ ψ

ψ ψ

ψ

, , , ,( ; , ) ( , , , , ; , )UL U P L L

d d dpd

f t f p t d d dpdΦ ΦΦ=

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫ U U

V l

l x V l l x V l

Φ

Φ Φ

ψ

ψ ψ

 (14) 

This is clearly required by the normalization condition for any type of PDF, including the marginal and 
joint PDF. With this basic concept, we can obtain various relationships between different joint PDF, for 
example, the joint PDF of Ui and Φi can be defined as 

 , , , , ,( , ; , ) ( , , , , ; , )UU U P L Lf t f p t dpd dΦΦ Φ= ∫ ∫ ∫ UV x V l l x l lUΦ Φψ ψ  (15) 

It should be noted from Equations (13) and (14) that the statistical mean of a random variable can be 
equally define by either the joint PDF or its marginal PDF, for example, 
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( )
, , , ,

, , , ,

( , , , , ; , )

( , , , , ; , )

( ; , )

U

U

i i U P L L

i U P L L

i U

U V f p t d d dp d d

V f p t d dp d d

V f t d

Φ

Φ

Φ

Φ

=

=

=

∫ ∫ ∫ ∫ ∫
∫ ∫ ∫ ∫ ∫
∫

U U

U U

V l l x V l l

V l l x l l

V x V

Φ Φ

Φ

ψ ψ

ψ ψ dVΦ  (16) 

 

( )
, , , ,

, , , ,

( , , , , ; , )

( , , , , ; , )

( ; , )

U

U

i i U P L L

i U P L L

i

f p t d d dp d d

f p t d dpd d

f t d

Φ

Φ

Φ

Φ

Φ

Φ = ψ

= ψ

= ψ

∫ ∫ ∫ ∫ ∫
∫ ∫ ∫ ∫ ∫
∫

U U

U U

V l l x V l l

V l l x V l l

x

Φ Φ

Φ

ψ

dΦψ ψ

ψ ψ

ψ

 (17) 

 

( )
, , , ,

, , , ,

,

( , , , , ; , )

( , , , , ; , )

( , ; , )

U

U

i j i j U P L L

i i U P L L

i i U

U V f p t d d dp d

V f p t dpd d d d

V f t d d

Φ

Φ

Φ

Φ

Φ

Φ = ψ

= ψ

= ψ

∫ ∫ ∫ ∫ ∫
∫ ∫ ∫ ∫ ∫
∫ ∫

U U

U U

V l l x V l l

V l l x l l V

V x V

Φ Φ

Φ Φ

ψ ψ d

ψ ψ

ψ ψ

 (18) 

Equations (16), (17) and (18) indicate that taking mean of a random variable only needs the relevant 
marginal PDF or the relevant joint PDF. 

2.4.2 Conditional PDF and Conditional Mean 
Let us examine an expression: 

 
 (19) , ( , ; , )i UV f t dΦ∫ V x Vψ

which is taking mean on the random variable Ui  at a fixed ψ, i.e. i iΦ =ψ . If we define the ratio of the 
joint PDF to the marginal PDF as  

 

, ( , ; , )
( ; , )

( ; , )
U

U
f t

f t
f t
Φ

Φ
Φ

=
V x

V x
x
ψ

ψ
ψ

 (20) 

Then the expression (19) can be written as 

 

, ( , ; , ) ( ; , ) ( ; , )

( ; , )

i U i iU

i

V f t d f t V f t dV

f t U

Φ Φ Φ

Φ

= ⋅

= ⋅

∫ ∫V x V x V x

x

ψ ψ ψ

ψ ψ
 (21) 

Where iU ψ  is an abbreviation of iU =Φ ψ  and is referred to as the conditional mean of Ui on the 
condition of :  i iΦ =ψ

 
( ; , )i i UU V f tΦ≡ ∫ V x Vψ ψ d  (22) 

And ( ; ,U )f tΦ V xψ  is referred to as the conditional PDF of Ui  on the condition of , which 
satisfies the normalization condition because of the definition 

iΦ =ψi
(20):  

 
( ; , )Uf t dΦ 1=∫ V x Vψ  (23) 
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Similarly, the conditional mean of the random pressure on the condition of  is denoted as ( , )P tx iU V= i
( , )P tx V  or P V and the corresponding conditional PDF is denoted as 
, , , ( , , , , ; , )UP L L Uf pΦΦ

Ul l V xΦψ t , then we may naturally write  

 

, , ,( , ) ( , , , , ; , )

( ; , )

UP L L U

UP

P t p f p t d dpd d

p f p t dp

ΦΦ=

=

∫ ∫ ∫ ∫
∫

U Ux V l l V x l l

V x

Φ Φψ ψ
 (24) 

The above conditional PDF is defined as 

 

, , , ,
, , ,

( , , , , ; , )
( , , , , ; , )

( ; , )
U

U
U P L L

P L L U
U

f p t
f p t

f t
Φ

Φ
Φ

Φ =
U

U
V l l x

l l V x
V x

Φ
Φ

ψ
ψ  (25) 

or 

 

, ( , ; , )
( ; , )

( ; , )
U P

P U
U

f p t
f p t

f t
=

V x
V x

V x
 (26) 

In Equations (24) and (25), the sample space variables , ,Ul lΦψ  are irrelevant.  

2.4.3 Relationship Between Unconditional Mean and Conditional Mean 

It should be noted from Equation (24) that a conditional mean is a function of the sample space 
variable that has been excluded from the process of conditional mean (e.g.,  in this case). Obviously, iV

P V  is a function of sample space variable , and taking ‘mean’ on iV P V  over the sample space  
will lead to its unconditional mean (or just mean) pressure 

iV
P , which is a function of ,ix t .: 

 

( )
,

( ; , ) ( ; , ) ( ; , )

( , ; , )

U U UP

U P

P f t d p f p t dp f t dV

p f p t d dp

P

=

=

=

∫ ∫ ∫
∫ ∫

V V x V V x V x

V x V

i

 

Or vice versa,  

 , ( , ; , ) ( ; , ) ( , )U P UP p f p t d dp f t P t d= =∫ ∫ ∫V x V V x x V V  (27) 

Equation (27) is a general formula for two or more different random variables (P and Ui in this case) 
involved in the conditional mean of one random variable (P in this case).  

Now, following Equation (27), we may straightforwardly express the means of the derivatives of 
turbulent velocity ,  as  iU∇ 2 iU∇

 

2 2

( ; , )

( ; , )

i U i

i U i

U f t U d

U f t U d

∇ = ∇

∇ = ∇

∫
∫

V x V V

V x V V
 (28) 

Comparing Equation (28) with Equation (11), a sufficient (but not necessary) condition for this identity is  
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2
2

( )

( )

i U
i j i

U j

i U
i i

U

V fU D V
f x

V fU L V
f

∂
∇ = =

∂

∇
∇ = =

V

V
 (29) 

Equation (29) indicates the relationship between the conditional means and functions ( )j iD V , ( )iL V . It is 
noted here that these equations can also be derived by using the fine grained PDF through similar 
sufficient condition (see Appendix A: Equations (100) and (103)).  

For the mean of pressure gradient ( , )i iP x t x∂ ∂ , following Equation (27), we may write  

 

( , )( ; , ) i
U

i i

P P x tf t
x x
∂ ∂

=
∂ ∂∫ V x V Vd  (30) 

In the past, the conditional mean of the pressure gradient in Equation (30) has been considered as an 
unknown quantity even if P = P (U) was assumed. This conditional mean, like the other conditional mean

2 iU∇ V , is actually carried by the traditional velocity PDF equation and is modeled empirically. Now, 
if we use the rule of commutation and take the mean on the pressure gradient (assuming that

 ), we may write ( , ) ( ( , )),  or ( , ) ( ( , ), , )P t P U t P t P U t t= =x x x x x

 

( )

( ) ( ; , )

( ) ( ; , )

1 ( ) ( ; , )

( ) ( ; , )

U
i i i

U
i

U
U

U i
g

Ui

P P P V f t
x x x

P V f t d
x

P V f= f
f x

P V f t d

∂ ∂ ∂
= =

∂ ∂ ∂

∂
=

∂

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

=

∫

∫

∫

∫

V x V

V x V

V x V

V x V

d

t d

 (31) 

Here,  is dependent on x,t in general and ( )P V ( )g
iP V  is defined as 

 

[ ]( )1( ) Ug
i

U i

P V f
P V

f x
∂

=
∂

 (32) 

Comparing Equations (30) and (31), and using a similar argument that leads to Equation (29), we obtain a 
relationship between the conditional mean and the function ( )g

iP V : 

 

[ ]( )( , ) 1( ) Ugi
i

i U

P V fP x t P V
x f

∂∂
= =

∂ ∂
V

ix

n

 (33) 

It is noted here that this equation can also be derived by using the fine grained PDF through the similar 
sufficient condition (see Appendix A: Eq. (104)) 

Now let us look at the mean of the product iU ⋅Φ , i.e. i nU Φ . By definition we may write 
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( ), ( , ; , )

( ; , )

i n n i U

n i

U V f t d

f t U d

Φ

Φ

Φ = ψ

= ψ

∫ ∫ d

∫

V x V

x

ψ ψ

ψ ψ ψ
 (34) 

or 

 

( ), ( , ; , )

( ; , )

i n i n U

i U n

U V f t d

V f t d

ΦΦ = ψ

= Φ

∫ ∫ d

∫

V x V

V x V V

ψ ψ
 (35) 

Equations (34) and (35) illustrate that, when taking joint mean, the joint PDF must be used to avoid the 
appearance of the conditional mean. The conditional mean iU ψ  is also carried by the current 
traditional species PDF equation. 

Finally, let us examine the mean and the conditional mean of a function of the variables Φi, say
, on the condition of 1 2( nS Φ Φ Φ ) =Φ ψ . Let us first view 1 2( nS )Φ Φ Φ as a separate random 

variable with the sample space variable s which is independent of ψ, then, following Equation (27), we 
write the mean as 

 1 2 1 2( ) ( ; , ) ( )nS f t SΦΦ Φ Φ = Φ Φ Φ∫ x n dψ ψ ψ  (36) 

The conditional mean in (36) is 

 

1 2 1 2

1 2

1 2

( ) ( ) ( ; ,

( ) ( ; ,

( )

n n S

n S

n

S S f s

S f s

S

Φ

Φ

Φ Φ Φ = ψ ψ ψ

= ψ ψ ψ

= ψ ψ ψ

∫
∫

x

x

ψ ψ

ψ

)

)

t ds

t ds  (37) 

Then Equation (36) will end up an expression that is just the definition of its mean: 

 1 2 1 2( ( ) ( ;n nS S fΦΦ Φ Φ = ψ ψ ψ∫ x, )t dψ ψ  (38) 

This term is related to the chemical reaction rate in the traditional species PDF equation, which is in a 
closed form. Also note that the reason for the conditional mean of 1 2( nS )Φ Φ Φ  in Equation (36) 
becoming free from the constraint is that 1 2( nS )Φ Φ Φ  is a known function of Φi without involving 
spatial differentiation.  

2.4.4 Summary 

2.4.4.1 Formulations With the Conditional Mean  

 
2 2( ; , )i U iU f t U d∇ = ∇∫ V x V V  (39) 

 
( ; , )UP f t P∇ = ∇∫ V x V Vd  (40) 

 
2 2( ; , )i if tΦ∇ Φ = ∇ Φ∫ x dψ ψ ψ  (41) 
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 1 2( ( ; , )i n iS f t SΦΦ Φ Φ = ∫ x dψ ψ ψ (42) 

 
( ; , )i n n iU f t UΦΦ = ψ∫ x dψ ψ ψ  (43) 

The conditional means (except the one in Eq. (42)) are all considered as unknowns in the traditional PDF 
equations.  

2.4.4.2 Formulations Without the Conditional Mean  

 

2 2

2
2

( ; , )

or

( ) ( ; , ) ( )

i i U

i U
i i U i

U

U V f t d

V fU L V f t d L V
f

∇ = ∇

∇
∇ = =

∫

∫

V x V

V x V,

 (44) 

 

[ ]

[ ]

( ) ( ; , )

or
( )1( ) ( ; , ) ( )

U
i i

Ug g
Ui i

i U

P P V f t d
x x

P V fP P V f t d P V
x f

∂ ∂
=

∂ ∂

∂∂
= =

∂ ∂

∫

∫

V x V

V x V,
ix

 (45) 

 

2 2

2
2

( ; , )

or

( ) ( ; , ) ( )

i i

i
i i i

f t d

fL f t d L
f

Φ

Φ
Φ

Φ

∇ Φ = ψ ∇

ψ ∇
∇ Φ = ψ ψ =

∫

∫

x

x ,

ψ ψ

ψ ψ

 (46) 

 1 2 1 2( ( ; , ) (i n i nS f t SΦΦ Φ Φ = ψ ψ ψ∫ x )dψ ψ  (47) 

 , ( , ; , )i n i n UU V f t dΦΦ = ψ∫∫ V x Vdψ ψ (48) 

These equations are exact and have no unknowns other than the PDFs fU, fΦ  and ,Uf Φ . The functions
( )iL V ,  and ( )iL ψ ( )g

iP V  are all well defined by the corresponding PDF, and the function P(V) is 
assumed as known and will be defined later (Section 3.4, Equation (68)).  

3.0 Transport Equation for Turbulent Velocity PDF fU(V; x,t)  
3.1 Mean and Differentiation Commutation 

It is important to note the commutation property of taking mean and differentiation, that is  

 

22
, ,

i i i i it t x x x x x x
∂ ∂∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

,
i

∂

 (49) 
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These commutation properties have been shown in several text books, for example by Pope (Ref. 1), 
Tennekes and Lumley (Ref. 2). For example,  

0 0

( , ) ( , ) ( ,( , ) ( , ) ( , )lim lim
i i

ii
x xi i i

+ x t t tt + x t t
x x xΔ → Δ →

Δ − ∂∂ Δ −
= =

∂ Δ Δ
U x U x U xU x U x U x )

ix
=

∂
 (50) 

where . ( )1 2 3, ,U U U=U

3.2 Taking Mean on Navier-Stokes Equations 

Apply the mean operation on the Navier-Stokes equations for incompressible flow, i.e. 

 

21 .i ji
i

j i

U UU P U
t x x

∂∂ ∂
+ = − + ν∇

∂ ∂ ρ ∂
 (51) 

Using the commutation rule, Equation (49), each term in Equation (51) can be expressed as follows, 

 

( ; , )

( ; , ) Note,  is independent of   and 

ii
i U

i U i i

UU V f t d
t t t

V f t d V x
t

∂∂ ∂
= =

∂ ∂ ∂

∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦

∫

∫

V x V

V x V t
 (52) 

Similarly,  

 

( ; , )

( ; , )

i j
i j U

j j

i j U
j

U U
V V f t d

x x

V V f t d
x

∂ ∂
=

∂ ∂

⎡ ⎤∂
= ⎢ ⎥

∂⎢ ⎥⎣ ⎦

∫

∫

V x V

V x V

 (53) 

Taking mean on the pressure gradient term can proceed in two different ways. One is with the conditional 
mean, i.e., via Equation (40): 

1 1 1( ; , ) ( ; , )

1 1( ; , ) ( ; , )

1( ; , ) Note, 

i
U U i

i i j j

i U i U
j j j

i U
j j

P P P Vf t d f t d
x x x V

P PV f t d V f t d
V x V x

P VV f t d
V x

⎛ ⎞∂ ∂ ∂ ∂
− = − = − ⎜ ⎟⎜ ⎟ρ ∂ ρ ∂ ρ ∂ ∂⎝ ⎠

⎛ ⎞⎛ ⎞ ⎡∂ ∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎢ ⎥= − − −
⎜ ⎟ ⎜ ⎟∂ ρ ∂ ∂ ρ ∂⎢ ⎥⎝ ⎠ ⎣⎝ ⎠
⎡ ⎤⎛ ⎞∂ ∂ ∂⎢ ⎥⎜ ⎟= − −

⎜ ⎟∂ ρ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫

∫ ∫

∫

V x V V V x V V

V x V V V x V V

V x V V

j

⎤

⎦

i
ij

jV
≡ δ

∂

 (54) 

Note that the following term in Equation (54) is zero (Pope (Ref. 1) or see Appendix B): 

 

1 ( ; , ) 0i U i
j j

PV f t dV
V x

⎛ ⎞∂ ∂⎜ ⎟− =
⎜∂ ρ ∂⎝ ⎠

∫ V x V
⎟

 (55) 
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The other way without the appearance of the conditional mean is via Equation (45) 

 

( ) ( )

1 1 ( ) ( ; , )

1 1( ) ( ; , ) ( ) ( ; , )

( )
( ; , )

g i
Uj

i j

g g
i U i Uj j

j j

g
j

i U
j

P VP V f t d
x V

V P V f t d V P V f t d
V V

P V
V f t d

V

∂ ∂
− = −
ρ ∂ ρ ∂

∂ ∂
= − +

ρ ∂ ρ ∂

⎡ ⎤⎛ ⎞∂⎢ ⎥⎜ ⎟=
⎢ ⎜ ⎟⎥∂ ρ⎝ ⎠⎣ ⎦

∫

∫ ∫

∫

V x V

V x V V x V

V x V

 (56) 

Note that (see Appendix B): ( )1 ( ) ( ; , ) 0.g
i Uj

j
V P f t d

V
∂

− =
ρ ∂∫ V V x V  

Finally, taking mean on the molecular diffusion term, one way with the conditional mean is via 
Equation (39), 

 

( ) ( )

( )

2 2 2

2 2

2

( ; , ) ( ; , )

( ; , ) ( ; , )

( ; , )

i
i U i U j

j

i U j i U j
j j

i U j
j

VU f t U d f t U d
V

V f t U d V f t U d
V V

V f t U d
V

∂
ν∇ = ν∇ = ν∇

∂

∂ ∂
= ν∇ − ν∇

∂ ∂

⎡ ⎤∂
= − ν∇⎢ ⎥

∂⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

∫

V x V V V x V V

V x V V V x V V

V x V V

 (57) 

Note that (see Appendix B): ( )2( ; , ) 0i U j
j

V f t U d
V
∂

ν∇ =
∂∫ V x V V . 

The other way without the conditional mean is via Equation (44), 

 

( ) ( )

( )

2 ( ) ( ; , )

( ) ( ; , ) ( ) ( ; , )

( ) ( ; , )

i
i j U

j

i j U i j U
j j

i j U
j

VU L V f t d
V

V L V f t d V L V f t d
V V

V L V f t d
V

∂
ν∇ = ν

∂

∂ ∂
= ν − ν

∂ ∂

⎡ ⎤∂
= − ν⎢ ⎥

∂⎢ ⎥⎣ ⎦

∫

∫ ∫

∫

V x V

V x V V x V

V x V

 (58) 

Note that (see Appendix B): ( )( ) ( ; , )i j U
j

V L V f t d
V
∂

ν
∂∫ V x V =0. 

3.3 Traditional Velocity PDF Equation 

Now substituting Equations (52), (53), (54), (57) into Equation (51) and collecting the terms factored 
by Vi , a sufficient but not necessary condition for satisfying the integral equation is that the factored, total 
integrand is zero. Thus, a transport equation for the turbulent velocity PDF ( ; , )Uf tV x is constructed: 
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( 21U U

i U U
i i i i

f f PV f f U
t x V x V

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − ν∇⎜ ⎟⎜ ⎟∂ ∂ ∂ ρ ∂ ∂⎝ ⎠

V )i V  (59) 

If the pressure term is decomposed into the mean and fluctuating parts, 'P P P= +  

 

( )' '1 1 1 1
i i i

P P PP
x x x

∂ + ∂∂
= = +

ρ ∂ ρ ∂ ρ ∂ ρ ∂
V V

i

P
x
∂ V  (60) 

Then Equation (59) can be written as 

 

'
21U U U

i U i
i i i i i

Pf f f PV f U
t x x V V x

⎛ ⎞1⎡ ⎤∂∂ ∂ ∂ ∂ ∂
⎜+ = − ν∇ − ⎟⎢ ⎥⎜∂ ∂ ρ ∂ ∂ ∂ ρ ∂ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

V V  (61) 

Equation (61) is exactly the same as the traditional velocity PDF equation (Pope (Ref. 1)). The mean 
pressure in Equation (61) is considered as a known quantity through its Poisson equation. However, the 
last two terms with the conditional mean were considered as unknown and modeled empirically. Using 
the following identity relations (Pope (Ref. 1)): 

 
( )'

'( ; , ) ( ; , ) ( ; , ) j
U U U

i i j i

UPf t f t P f t P
x x V x

⎛ ⎞∂∂ ∂ ∂
= + ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

V x V V x V V x V'  (62) 

 
2

2 2( ; , ) ( ; , ) ( ; , )j k
U j U U

j j k i i

U Uf t U f t f t
V V V x x

⎛ ⎞∂∂ ∂ ∂⎡ ⎤∇ = − ∇⎜ ⎟⎣ ⎦ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
V x V V x V V x  (63) 

Equation (61) can be rewritten as  

 

2 '
2

2 '

1

1 2
2

U U U
i U U

i i i i i

j ji i
U U

i j i j k k

Pf f f PV f f
t x x V x V

U UP U Uf f
V V x x x x

⎛ ⎞∂∂ ∂ ∂ ∂
+ = ν∇ + + ⎜ ⎟⎜ ⎟∂ ∂ ρ ∂ ∂ ∂ ∂ ρ⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂⎜ ⎟+ + − ν⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ρ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

V

V V  (64) 

Now we have three unknown terms in Equation (64) that were modeled empirically (Pope (Ref. 1)).  

3.4 Conservational Velocity PDF Equation  

Alternatively, collecting the terms factored by Vi from (52), (53), (56) and (58), and following the 
same procedure that leads to Equation (61), we obtain a closed velocity PDF transport equation: 

 
( ) ( )

( )
g
jU U

j j U
j j j

P Vf fV L V f
t x V V

ν
ρ

⎛ ⎞∂ ∂ ∂ ∂
+ = − + ⎜⎜∂ ∂ ∂ ∂ ⎝ ⎠

Uf ⎟⎟ . (65) 

Here ( )jL V and ( )g
jP V  are known functions: 
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[ ]2 ( )1( ) , ( )j U Ug
j j

U U

V f

j

P V f
L V P V

f f
∇ ∂

= =
∂x

 (66) 

In order to determine , we first take mean on the Poisson equation ( )P V

 

22
2 21 1, or i ji j

i j i j

U UU U
P P

x x x x
∂∂

∇ = − ∇ = −
ρ ∂ ∂ ρ ∂ ∂

 (67) 

By the definition of the mean, we may write Equation (67) as 

 
2

21 ( ) ( ; , ) ( ; , )U i j U
i j

P V f t d V V f t d
x x
∂

∇ = −
ρ ∂ ∂∫ ∫V x V V x V  

or 

 ( )
2

21 (( ) ( ; , ) U
U i j

i j

f t; , )P V f t d V V d
x x

∂
∇ = −

ρ ∂∫ ∫
V xV x V V
∂

 

By equating the integrands on both sides (again, this is a sufficient condition for satisfying the above 
integral equation), we obtain a model equation for : ( )P V

 [ ]
2

21 ( ) U
U i j

i j

fP V f V V
x x
∂

∇ = −
ρ ∂ ∂

 (68) 

Therefore we have constructed a velocity PDF Equation (65) that does not need extra turbulence 
modeling. 

Using Equation (65), it is easy to show that the exact equations for the first moment and higher order 
moments of the Navier-Stokes equations can be deduced by multiplying the Equation (65) with Vi and  
Vi Vj  respectively and integrating over the velocity sample space V. For example,  

 ( )
( )

( )
g

U U k
i j k k U U

k k k

Pf fV V V L V f f d
t x V V

⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪⎜ ⎟+ = − ν +⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂ ρ⎪ ⎪⎝ ⎠⎩ ⎭
∫

V
V  

The left two terms become 

 
i j i j k

k

U U U U U
t x

∂ ∂
+

∂ ∂
, 

and the first term on the right hand side is, 

 

( ) ( )

( )
2 2

( ) ( ) ( )

( ) ( )

i j
i j k U i j k U k U

k k

j i U i j U

i j j i

V V
V V L V f d V V L V f d L V f d

V V

L V V f L V V f d

U U U U

∂∂ ∂
− ν − ν ν

∂ ∂

ν + ν

ν ∇ + ∇

∫ ∫ ∫

∫

V = V + V

= V

=

kV∂
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Note that (see Appendix B): ( )( )i j k U
k

V V L V f d
V
∂

− ν
∂∫ V = 0. 

Similarly, the second term on the right hand side is 

 
( ) 1g

k
i j U i j

k j

P P PV V f d U U
V x

⎛ ⎞∂ ∂⎜ ⎟ = − +
⎜ ⎟∂ ρ ρ ∂ ∂⎝ ⎠

∫
V

V
ix

∂  

Therefore we obtain the exact equation for the second moment i jU U : 

 

2 21i j i j k
i j i j j

k j i

U U U U U P PU U U U U U
t x x x

∂ ∂ ∂ ∂
+ = − + + ν ∇ + ∇

∂ ∂ ρ ∂ ∂ i  (69) 

4.0 Transport Equation for Turbulent Species PDF fΦ(ψ; x,t)  
4.1 Taking Mean on Species Equation 

Taking mean on the transport equation for species Φi  

 

2 1 2(i ji
i i n

j

U
S

t x
∂Φ∂Φ

+ = Γ∇ Φ + Φ Φ Φ
∂ ∂

)  (70) 

The first term on the L.H.S. of (70) can be written as 

 

( ) ( ), ,( , ; , ) ( , ; , )

( ; , )

i
i U i U

i

f t d d f t d d
t t t

f t d
t

Φ Φ

Φ

∂ Φ ∂ ∂
= ψ = ψ

∂ ∂ ∂
∂⎡ ⎤= ψ ⎢ ⎥∂⎣ ⎦

∫ ∫ ∫ ∫

∫

V x V V x V

x

ψ ψ ψ

ψ ψ

ψ
 (71) 

Equation (71) involves a marginal PDF fΦ . We can also write this term using the joint PDF ,Uf Φ :  

 

( )

( )

,

,

( , ; , )

( , ; , )

i
i U

i U

f t d d
t t

f t d d
t

Φ

Φ

∂ Φ ∂
= ψ

∂ ∂
∂⎡ ⎤= ψ ⎢ ⎥∂⎣ ⎦

∫ ∫

∫ ∫

V x V

V x V

ψ ψ

ψ ψ
 (72) 

The second term on the L.H.S. of (70) can also be formed in two ways: 

 

, ( , ; , )

( ; , )

i j
i j U

j j

i j
j

U
V f t d d

x x

f t U d
x

Φ

Φ

∂ Φ ∂
= ψ

∂ ∂

⎡ ⎤∂
= ψ ⎢ ⎥

∂⎢ ⎥⎣ ⎦

∫ ∫

∫

V x V

x

ψ ψ

ψ ψ ψ

 (73) 

or 
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,

,

( , ; , )

( , ; , )

i j
i j U

j j

i j U
j

U
V f t d d

x x

V f t d d
x

Φ

Φ

∂ Φ ∂
= ψ

∂ ∂

⎡ ⎤∂
= ψ ⎢ ⎥

∂⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

V x V

V x V

ψ ψ

ψ ψ

 (74) 

The next term of 2
i∇ Φ (70) can again be written in two different forms: Using Equation (41), we have  

 

( )

( )

2 2 2

2 2

2

( ; , ) ( ; , )

( ; , ) ( ; , )

( ; , )

i
i i j

j

i j i j
j j

i j
j

f t d f t d

f t d f t

f t d

Φ Φ

Φ Φ

Φ

∂ψ
Γ ∇ Φ = Γ ∇ Φ = Γ ∇ Φ

∂ψ

∂ ∂⎡ ⎤= Γ ψ ∇ Φ − Γ ψ ∇ Φ⎣ ⎦∂ψ ∂ψ

⎡ ⎤∂
= − ψ Γ∇ Φ⎢ ⎥

∂ψ⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

∫

x x

x x

x

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ ψ ψ

dψ  (75) 

Note that (see Appendix B): 2( ; , ) 0i j
j

f t dΦ
∂ ⎡ ⎤ψ ∇ Φ⎣ ⎦∂ψ∫ xψ ψ =ψ . 

Or we can straightforwardly write its mean as 

 

2 2 2
,

2
,

,

( , ; , )

( , ; , )

( ) ( , ; , )

i i i U

i U

i U

f t d d

f t d d

L f t d d

Φ

Φ

Φ

Γ ∇ Φ = Γ∇ Φ = Γ∇ ψ

⎡ ⎤= ψ Γ∇⎣ ⎦

= Γ ψ

∫ ∫
∫ ∫
∫ ∫

V x V

V x V

V x V

ψ ψ

ψ ψ

ψ ψ

 (76) 

Where  is defined as ( )iL ψ

 

2 2,

,
( ) i U i

i
U

f fL
f f

Φ Φ

Φ Φ

ψ ∇ ψ ∇
ψ = =

 
(77) 

Equation (76) can be further manipulated as  

 

( )

( )

( )

2 ,

,

,

,

( ) ( , ; , )

( ) ( , ; , )

( ) ( , ; , ))

( ) ( , ; , )

i
i j U

j

i j U
j

i j U
j

i j U
j

L f t d d

L f t d d

L f t d d

L f t d d

Φ

Φ

Φ

Φ

∂ψ
Γ ∇ Φ = Γ ψ

∂ψ

∂
= Γ ψ ψ

∂ψ

∂
−Γ ψ ψ

∂ψ

⎡ ⎤∂
= −Γ ψ ψ⎢ ⎥

∂ψ⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

∫ ∫

∫ ∫

V x V

V x V

V x V

V x V

ψ ψ

ψ ψ

ψ ψ

ψ ψ

 (78) 

Note that (see Appendix B): ( ),( ) ( , ; , )i j U
j

L f t d dΦ
∂

Γ ψ ψ
∂ψ∫ ∫ V x Vψ ψ  = 0. 
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The reacting source term is readily available via Equation (42), 

 

( ) ( )

( )

1 2

1 2

( ) ( ; , ) ( ; , )

( ; , ) ( ; , )

( ; , ) ( )

i
i n i j

j

i j i j
j j

i j n
j

S f t S d f t S d

f t S d f t S d

f t S d

Φ Φ

Φ Φ

Φ

∂ψ
Φ Φ Φ = =

∂ψ

∂ ∂
= ψ − ψ

∂ψ ∂ψ

⎡ ⎤∂
= − ψ ψ ψ ψ⎢ ⎥

∂ψ⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

∫

x x

x x

x

ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

ψ ψ

 (79) 

Note that (see Appendix B): ( )( ; , ) 0i j
j

f t S dΦ
∂

ψ =
∂ψ∫ xψ ψ ψ . 

Another expression for the reaction source term can be obtained as  

 
( )

1 2 1 ,

1 ,

( ) ( ) ( , ; , )

( ) ( , ; , )

i n i n U

i j n U
j

S S f t d d

S f t

Φ

Φ

Φ Φ Φ = ψ ψ ψ

⎡ ⎤∂
= − ψ ψ ψ ψ⎢ ⎥

∂ψ⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

V x V

V x V

ψ ψ

d dψ ψ
 (80) 

Note that (see Appendix B): ( )1 ,( ) ( , ; , )i j n U
j

S f tΦ
∂

ψ ψ ψ ψ
∂ψ∫ ∫ V x Vd dψ ψ  = 0 

4.2 Traditional Species PDF Equation 

Collecting terms factored by  from Equations iψ (71), (73), (75) and (79), and following the 
procedure similar to the construction of the velocity PDF equation, we obtain the species PDF equation: 

 
( ) ( )( )2 1(j j j

j j

f f U f S
t x
Φ

Φ Φ
∂ ∂ ∂

+ = − Γ∇ Φ + ψ ψ
∂ ∂ ∂ψ

ψ ψ )nψ  (81) 

By using Reynolds decomposition i i iu U U= − , Equation (81) becomes 

 ( ) ( )( )2 1(j j j j
j j j

f fU f u f S
t x x
Φ Φ

Φ Φ
∂ ∂ ∂ ∂

+ + = − Γ∇ Φ + ψ ψ ψ
∂ ∂ ∂ ∂ψ

ψ ψ )n  (82) 

Equation (82) is also exactly the same as the traditional species PDF equation derived by Pope (Ref. 1), 
which contains two conditional means from the convection term and the molecular diffusion term. These 
terms were considered as unknowns and were modeled empirically. 

4.3 Conservational Joint Species-Velocity PDF fU,Φ(V,ψ; x,t) Equation  

Alternatively, by collecting terms factored by iψ  from Equations (72), (74), (78), and (80) , we obtain 
the following equation: 

 
( ) (, ,

, , 1( ) ( )U U
j j U U j

j j j

f f
V L f f S

t x
Φ Φ

Φ Φ
∂ ∂ ∂ ∂

+ = − Γ ψ − ψ ψ ψ
∂ ∂ ∂ψ ∂ψ

)n  (83) 
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Equation (83) is in closed form. They can be reduced to the marginal species PDF ( ; , )f tΦ xψ  equation 
by integrating over the velocity sample space Vi. The result is 

 
( ) ( ) ( )1( ) ( )j j j j

j j j j

f fU f u L f f S
t x x
Φ Φ

Φ Φ Φ
∂ ∂ ∂ ∂ ∂

+ + = − Γ ψ − ψ ψ
∂ ∂ ∂ ∂ψ ∂ψ

ψ nψ  (84) 

In Equation (84), there is an unavoidable conditional mean due to the convection term that involves both 
the velocity and the species. The conditional mean of fluctuating velocity conditioned on , i iΦ = ψ

ju ψ , is unknown and must be modeled.  
Now let us return to the subject of joint PDF. Equation (83) is derived from the species diffusion 

Equation (70), the two source terms on the right hand side represent the molecular mixing of “species” 
and the chemistry reaction, respectively. We also have to consider the contribution from the Navier-
Stokes equations, which can be obtained in a way similar to that leads to Equation (65): 

 
( ), ,

,
( )

( )
g
jU U

j j U
j j j

Pf f
V L V f

t x V V
Φ Φ

Φ

⎛ ⎞∂ ∂ ∂ ∂ ⎜+ = − ν +
⎜∂ ∂ ∂ ∂ ρ
⎝ ⎠

V
,Uf Φ ⎟
⎟

 (85) 

The terms on the right hand side of Equation (85) represent the molecular mixing of “momentum” and the 
pressure source. Therefore, the joint species-velocity PDF , ( , ; , )i iU i i if V xΦ tψ  equation should include all 
source terms on the right hand side of Equations (83) and (85), i.e. 

 

( )

( ) ( )

, ,
, ,

, , 1

( )
( )

( ) ( )

g
jU U

j j U U
j j j

j U U j
j j

Pf f
V L V f f

t x V V

L f f S

Φ Φ
Φ Φ

Φ Φ

⎛ ⎞∂ ∂ ∂ ∂ ⎜ ⎟+ = − ν +
⎜ ⎟∂ ∂ ∂ ∂ ρ
⎝ ⎠

∂ ∂
− Γ ψ − ψ ψ ψ
∂ψ ∂ψ

V

n

 (86) 

It is easy to verify that the joint PDF ,Uf Φ  Equation (86) can be reduced to the equations for the marginal 
velocity PDF Uf  and the marginal species PDF fΦ  by integrating over the corresponding sample space, 
and the results are the same as the Equations (65) and (84). It is also easy to verify that Equation (86) can 
deduce the exact equations for the first moments ,iU iΦ and higher order moments ,i jΦ Φ i jU Φ , 
etc. 

The functions involved in Equation (86), i.e., ( )jL V , , ( )g
jP V ( )jL ψ  are all known and given by 

Equations (66), (68) and (77): 

 

[ ]

2 2,

,

,

,
2 2,

2 2,
2 2,

,

( )

( ) ( )1 1( )

1 ( )

( )

j U j U
j

U U

U Ug
j

U j U j

i j i jU U

U i j U i j

i U i
i

U

V f V f
L V

f f

P V f P V f
P V

f x f x

V V V Vf fP V
f x x f x x

f fL
f f

Φ

Φ

Φ

Φ

Φ

Φ

Φ Φ

Φ Φ

∇ ∇
= =

∂ ⎡ ⎤ ∂⎣ ⎦= =
∂ ∂

∂ ∂
= − = −

ρ ∇ ∂ ∂ ∇ ∂ ∂

ψ ∇ ψ ∇
ψ = =

 (87) 
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The Following two relations, which are similar to Equation (12), are also useful: 

 

,

,

,

,

( )

( )

Ui i
j i

U j U

Ui i
j i

U j

fV VD V U

j

j

f
f x f x

f fD
f x f x

Φ

Φ

Φ Φ

Φ Φ

∂ ∂
= =

∂ ∂

∂ψ ψ ∂
ψ = =

∂ ∂
 

(88) 

The solution of Equation (86) should be able to calculate all one-point statistics for the velocity and 
species, for example, 1 2, , , ,i i i j i iU U U UΦ Φ Φ Φ , etc. We can also calculate other turbulent 

quantities, such as ji

k k

UU
x x

∂∂
∂ ∂

, n n

k kx x
∂Φ ∂Φ
∂ ∂

, iPU and ijPS , which are related to the dissipation rate

, the pressure transport and the pressure strain correlations, etc. For example, , , nij Φε ε ε

 j ji i
ij

k k k k

U UU U
x x x x

⎛ ⎞∂ ∂∂ ∂
ε = ν −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

 
n

n n n n

k k k kx x x xΦ
⎛ ⎞∂Φ ∂Φ ∂Φ ∂Φ

ε = Γ −⎜ ⎟
∂ ∂ ∂ ∂⎝ ⎠

 

 
,i i i ij ij ijpu PU P U ps PS P S= − = −  

and 

 

,

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ji
k i k j U k i k j U

k k

n n
k n k n U k n k n

k k

UU D V D V f d d D V D V f d
x x

D D f d d D D f d
x x

Φ

Φ Φ

∂∂
= =

∂ ∂

∂Φ ∂Φ
= ψ ψ = ψ ψ

∂ ∂

∫ ∫ ∫

∫ ∫ ∫

V V

V

ψ

ψ ψ

 (89) 

 
( )( ) ( )( )

,

,

( ) ( )

1 1( ) ( ) ( ) ( ) ( ) ( )
2 2

i i U i U

ij j i i j U j i i j U

PU P V V f d d P V V f d

PS P V D V D V f d d P V D V D V f

Φ

Φ

= =

= + = +

∫ ∫ ∫
∫ ∫ ∫

V V

V V

ψ

ψ d
 

(90) 

5.0 Concluding Remarks 
We have constructed a set of conservational PDF equations directly from the Navier-Stokes equations 

and the species diffusion equations through the use of some sufficient but not necessary conditions. 
Therefore, in theory, they are neither general nor unique. However, all these PDF equations are in closed 
form. They are able to deduce the exact transport equations for the first moment and all higher order 
moments. This feature has not been observed from any other existing modeled PDF equations. For 
example, the modeled traditional PDF equations can deduce the first moment equation correctly, but not 
for the higher order moments.  

In this study, we have also defined a few functions, for example, ( )j iD V , ( )iL V , ( )j iD Φ , ( )iL Φ  
and ( )g

iP V , they may be viewed as the models for the conditional means of iU∇ ,∇ ,  , 2 iU i∇Φ 2 i∇ Φ  
and . These functions may be used to calculate other turbulent quantities of interest.  P∇
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Future work includes further testing of the present conservational PDF equations for their application 
in the area of CFD and the development of conservational filtered density function (FDF) equations for 
compressible turbulent flows.  
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Appendix A.—Fine Grained PDF, Velocity and Species PDF Equations  
A.1 Transport Equation for Fine Grained PDF f ′(V; x,t)  

According to Pope (Ref. 1), the fine grained PDF f ′(V; x,t)  is defined as  

 
( )( )' ( ; , )f t t= δ −V x U x, V  (91) 

Taking the following operations, 

 

' ' '
'

' ' '
'

i i

i i i

i i

i

i

j i j i j i j

f f U f U Uf
t U t V t V t

f f U f U Uf
x U x V x V x

∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= = − = − ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
⎛∂ ∂ ∂ ∂ ∂ ∂ ∂

= = − = − ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎞
 (92) 

We may form an identity equation for the fine grained PDF: 

 

' '
' i

j
j i j

f f U UU f U
t x V t x

i
j

⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪+ = − +⎜ ⎟⎨ ⎬⎜∂ ∂ ∂ ∂ ∂ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 (93) 

Inserting the Navier-Stokes equation into Equation (93), we obtain a transport equation for the fine 
grained PDF:  

 

' ' 2
' 1 i

j
j i i j j

f f P UU f
t x V x x x

⎧ ⎫⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪+ = − − + ν⎜ ⎟⎨ ⎬⎜∂ ∂ ∂ ρ ∂ ∂ ∂ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 (94) 

A.2 Transport Equation for Velocity PDF fU(V; x,t)  

Now, taking mean on Equation (94) we will obtain a transport equation for the velocity PDF. First 
taking mean on the left hand side of (94), 

 

' '' '

'( ) ( ; , ) ( ) ( ; , )

( ; , ) ( ; , )

j
j

j j

U j
j

U U
j

j

f f Uf fU
t x t x

Uf t d V f t d
t x
f t f tV

t x

∂ ∂∂ ∂
+ = +

∂ ∂ ∂ ∂

∂ ∂
= δ − + δ −
∂ ∂

∂ ∂
= +

∂ ∂

∫ ∫V V V x V V V V x V

V x V x

' ' ' ' ' '  (95) 

To explain the way of taking mean on the right hand side of (94), let us first take the mean on  
' i jf U x∂ ∂ , i.e. 
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( )( )

( )( ) ( )( )

'
0

0

( , ) ( , )
lim

( , ) ( ,
lim

j

j

i j ii
xj j

i j i

x j

U x t U tUf t
x x

t U x t t U t
x

Δ →

Δ →

+ Δ −∂
= δ −

∂ Δ

δ − + Δ − δ −
=

Δ

x x
U x, V

U x, V x U x, V x )
 (96) 

Now the first term on the R.H.S of (96) involves a two-point correlation between the fine grained PDF at 
the point x and the velocity at the point jx+ Δx , which needs a two-point PDF to express the correlation. 
As an approximation (or modeling) for this two-point correlation at the limit 0jxΔ → , we express it with 
the one-point PDF as follows 

 
( )( ) ( ) '( , ) ( ; , )i j i jt U x t V f x t dδ − + Δ = δ − + Δ∫ ' 'U x, V x V V V x V'  (97) 

Then Equation (96) becomes 

 

( ) ( )' '
'

0

0

( ; , ) ( ; , )
lim

( ; , ) ( ; , ) ( ; , )lim

j

j

i U j i Ui
xj j

i U j i U U
i

x j j

V f x t V f tUf d
x x

V f x t V f t f tV
x x

Δ →

Δ →

δ − + Δ − δ −∂
=

∂ Δ

⎛ ⎞+ Δ − ∂
= =⎜ ⎟⎜ ⎟Δ ∂⎝ ⎠

∫
' ' ' '

'
V V V x V V V x

V

V x V x V x
 (98) 

We note that Equation (98) itself is not exact correct due to the assumption made in Equation (97). On the 
other hand, the following integral equation is exactly correct: 

 

' ( ; , )( ; , ) ii i U
U i

j j j j

UU U f tf d f t d V
x x x x

∂∂ ∂ ∂
= =

∂ ∂ ∂ ∂∫ ∫ ∫
V xV V V x V = dV  (99) 

This illustrates that the model (98) is just a sufficient condition for Equation (99) to be satisfied. 
Equation (98) also directly suggests  

 

1i U
i

j U j

U fV
x f x

∂ ∂
=

∂ ∂
V (100) 

Using the same procedure to carry out the mean on the right hand side of (94), we may obtain 

 

2 2
' 1 ( )i U

i i j j i i j j

U fP P Vf
V x x x V x x x

ν
ρ ρ

⎧ ⎫⎛ ⎞ ⎛∂ ∂∂ ∂ ∂⎪ ⎪− − + = − − +⎜ ⎟ ⎜⎨ ⎬⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠ ⎝⎩ ⎭

i UV fν
⎞∂
⎟⎟
⎠

 (101) 

Therefore, we obtain a closed velocity PDF equation: 

 

2( )U U U i U
j

j i i j j

f f P V f VV
t x V x x x

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ = − − + ν⎜⎜∂ ∂ ∂ ρ ∂ ∂ ∂⎝ ⎠

f
⎟⎟  (102) 

Note that the conditional means appeared in the traditional PDF equations (Pope (Ref. 1)) are related to 
the terms on the right hand side of Equation (102). For example, 
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2 2

' i i
U

2i U

j j j j

U U Vf f
j j

f
x x x x x
∂ ∂

ν = ⋅ ν = ν
∂ ∂ ∂ ∂ ∂ ∂

V
x

∂  

This indicates that the conditional mean is  

 

2 2
i i

j j U j j

U V Uf
x x f x

ν ν∂ ∂
=

x∂ ∂ ∂
V

∂
 

(103) 

Similarly, 

 

[ ]( )1 1 U

i U

P fP
ix f x

∂∂
=

ρ ∂ ρ ∂
V

V
 

(104) 

It is clear that these conditional means are actually the functional forms for  and in the sample 
space . Let us denote them as 

2 iU∇ P∇
V ( )iL V  and ( )g

iP V , then the velocity PDF equation can be simply written 
as 

 

[ ] 2

( )
( )

( )1( ) , ( )

g
U U i

j U
j i

Ug U
i ii

U i U

P Vf fV f
t x V

P V f

i UL V f

fP V L V V
f x f

⎛ ⎞∂ ∂ ∂
+ = − − + ν⎜ ⎟⎜ ⎟∂ ∂ ∂ ρ⎝

∂ ∇
= =

∂

⎠  (105) 

Now, let us apply the fine grained PDF to the Poison equation of , which will lead to a functional 
form of : 

( , )P tx
( )P V

 

2
' 2 '1 i j

i j

U U
f P f

x x
∂

∇ = −
ρ ∂ ∂

 
(106) 

The operation of the above mean, under a similar assumption made in Equation (97), gives the following 
equation for   ( )P V

 

[ ]2 2( ) U U
i j

i j

P V f fV V
x x

∇ ∂
= −

ρ ∂ ∂
 

(107) 

A.3 Transport Equation for Joint Species-Velocity PDF fu,Φ(V,ψ; x,t) 

Similar to Equation (94), the transport equation for the fine grained species PDF 
 is  ( )' ( ; , ) ( , )f t t≡ δ −x xψ Φ ψ

 

' ' 2
' ' 1 2(i

j
j i j j

f fU f f S
t x x x

⎛ ⎞∂ ∂ ∂ ∂ Φ
+ = − Γ − Φ Φ⎜⎜∂ ∂ ∂ψ ∂ ∂⎝ ⎠

)i ⎟⎟  (108) 

Analogy to the derivation of velocity PDF equation, we may construct the following species PDF 
equation: 
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( ) ( )1 2

2

( ) ( )

( )

j i i
j i

i i

f f U L f S
t x

fL
f

Φ
Φ Φ

Φ

Φ

∂ ∂ ∂
+ = − Γ ψ − ψ ψ

∂ ∂ ∂ψ

∇
ψ = ψ

ψ fΦ
 (109) 

It should also be recognized that the conditional mean 2 i∇ Φ ψ  appearing in the traditional PDF 
equation is represented by  here in Equation ( )iL ψ (109). Finally, Equations (105) and (109) will lead to a 
joint species-velocity PDF equation as the following: 

( ), ,
, , , 1 2

( )
( ) ( ) ( )

g
U U i

j U i U i U i
j i i

f f P V
V f L V f L f S

t x V
Φ Φ

,UfΦ Φ Φ
⎛ ⎞∂ ∂ ∂ ∂

+ = − − + ν − Γ ψ − ψ ψ⎜ ⎟⎜ ⎟∂ ∂ ∂ ρ ∂ψ⎝ ⎠
Φ  (110) 

Where, 

 
2 2, , ,

, ,

( )1( ) , ( ) , ( )U U Ug
i i i ii

U i U U

P V f f f
P V L V V L

f x f f
Φ

,

Φ Φ

Φ Φ

∂ ⎡ ⎤ ∇ ∇⎣ ⎦= = ψ
∂ Φ

= ψ  
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Appendix B.—Miscellaneous Formulations 
In the derivation of PDF equations, the following relationships have been intensively used. The proof 

of Equation (111) has been described by Pope (Ref. 1). The same procedure can be followed to prove 
Equation (112). 

 
( )( ; , ) ( ) 0U i

j
f t A d

V
∂

=
∂∫ V x V V  (111) 

Where  is a vector function of sample space variable V, and it has a finite mean. ( )iA V

 
[ ]( ; , ) ( ) 0i

j
f t A dΦ

∂
=

∂ψ∫ xψ ψ ψ  (112) 

Where  is a vector function of sample space variable ( )iA ψ ψ , and it has a finite mean. 
Therefore, the following integrations are all zero: 

 1 ( ; , ) 0U i
j j

P f t V d
V x

⎛ ⎞∂ ∂⎜ ⎟− =
⎜ ⎟∂ ρ ∂⎝ ⎠

∫ V V x V  

 [ ]( )1 ( ) ( ; , ) 0i U
j

V P f t d
V
∂

− =
ρ ∂∫ V V x V  

 ( )2( ; , ) 0i U i
j

V f t U d
V
∂

ν∇ =
∂∫ V x V V  

 ( )1 ( ) ( ; , ) 0.g
i Uj

j
V P f t d

V
∂

− =
ρ ∂∫ V V x V  

 ( )( ) ( ; , )i j U
j

V L V f t d
V
∂

ν
∂∫ V x V =0. 

 2( ; , ) 0i j
j

f t dΦ
∂ ⎡ ⎤ψ ∇ Φ =⎣ ⎦∂ψ∫ xψ ψ ψ  

 ( )1 ,( ) ( , ; , )i j n U i
j

S f x t d dΦ
∂

ψ ψ ψ ψ =
∂ψ∫ ∫ V Vψ ψ 0  
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