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This paper focuses on the analysis and tuning of a controller based on the “Adaptive Control Technology for
Safe Flight (ACTS)” architecture. The ACTS architecture consists of a nominal, non-adaptive controller that
provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides
robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make
the controller’s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune
the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified
by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart.
The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop
performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions
considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator
failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface
deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability
of the controller to track pilot commands, the ability of the controller to keep the aircraft’s state within the
reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from
these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.
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I. Introduction

An adaptive reconfigurable controller autonomously changes the controller gains to maintain satisfactory perfor-
mance when unforeseen changes in the system dynamics occur. Adaptive control has the potential to improve flight
safety, as the loss-of-control is one of the major causes of abnormal flight and fatal accidents. Over the past three
decades, adaptive control has been developed extensively and its main performance and robustness properties have
been established [2, 8–11].

In this paper we tune a controller designed for the Generic Transport Model (GTM) and evaluate its robustness
characteristics. The GTM is a dynamically scaled test article of a transport aircraft for which NASA Langley Re-
search Center has developed a high-fidelity mathematical model. Since the dynamics of this model, as those of the
vehicle itself, depart considerably from the Linear Time Invariant (LTI) setting supporting the theory, it remains to be
determined if the improvements in stability and performance predicted in such setting are realized in practice. This
paper addresses this question by performing a comparative analysis of the robustness of the non-adaptive controller
at the core of the ACTS architecture and of its adaptive augmentation. Details of these controllers structure and their
implementation are available in the companion paper [6]. The studies performed herein, which are based on the de-
velopments in [4, 7], evaluate the system robustness to multiple adverse conditions solely based on the performance
observed in the high-fidelity simulation. As expected, many of the assumptions and simplifications supporting the
control design procedures do not hold in this setting.
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The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties (e.g.,
changes in pitch stiffness, roll and yaw damping), structural damage (e.g., situations where the CG moves from its
nominal location), and actuator failures (e.g., situations where symmetric and asymmetric failures in control surfaces
and engines occur). These failures include partial and total loss of control effectiveness, locked-in-place control surface
deflections, and engine out conditions. The requirements considered are (i) the peak structural loading, (ii) the ability
of the controller to track commands, (iii) whether the aircraft’s state stays within the reliable flight envelope (i.e.,
region in the state space where the aircraft dynamics are properly modelled and flying is safe), (iv) the handling/riding
qualities, and (v) the ability of the controller to track the dynamics of the reference model.

This paper is organized as follows. Section II briefly introduces the framework and set up used for the verification
of a controller’s robustness. This is followed in Section III by robustness analysis of a baseline nominal controller
designed using classical control concepts. The control tuning framework proposed is presented in Section IV. The
sections that follow demonstrate this framework by tuning both the nominal and adaptive controllers. Finally, a few
concluding remarks are made.

II. Control Verification

The terms verification and validation have not been defined or used consistently by the scientific community in
general. The notions used in this paper are in agreement with the NASA technical standards on the subject [1]. In
particular, Verification is defined as “the process of determining that a computational model accurately represents the
underlying mathematical model and its solution from the perspective of the intended uses of modeling and simulation”.
Therefore, a verified controller is one that satisfies the requirements set for the closed-loop system in a mathematical
setting. On the other hand, Validation is “the process of determining the degree to which a model or a simulation is
an accurate representation of the real world from the perspective of the intended uses of the model or simulation”.
Therefore, a validated controller is one that satisfies the requirements set for the closed-loop system experimentally.
Note that the emphasis of verification is on the mathematics and the emphasis of validation is on the physics.

In this paper, verification refers to evaluating the robustness of a controller to various uncertainties and failures
according to its ability to satisfy the closed-loop requirements. A brief introduction to the methodology used for this
is presented next [4].

A. Framework

Consider a plant whose dynamics depend on the uncertain parameter vector p̂. Assume that controller c with gains d is
applied to this plant. The resulting closed-loop system is deemed acceptable if a set of requirements are satisfied. These
requirements can be described as the set of inequality constraints g < 0. The satisfaction of the constraints implies the
satisfaction of the requirements. The overall objective of this analysis is to determine the ranges of uncertainty in p̂
in the set p̂min ≤ p̂≤ p̂max for which the controller c with gains d satisfies g(p̂,c(d)) < 0. A brief introduction to the
notions used to make this analysis is presented next.

Assume that the controller c satisfies all requirements at the nominal parameter point p̄. The nominal parameter
point is the realization of the uncertainty corresponding to nominal flying conditions. Call the region in the parameter
space where at least one of the requirements is violated the Failure Domain. The complement set of this region, called
the Non-failure Domain, is composed of all parameter realizations where all the requirements are satisfied. Let Ω be
a set in p̂-space, called the Reference Set, whose geometric center is p̄. The task of interest is to assign a measure of
robustness to controller c based on measuring how much the reference set can be deformed before intersecting failure
domain.

The Homothetic Deformation of Ω with respect to p̄ by a factor of σ ≥ 0, is the set of p̂ points satisfying p̂ =
p̄ +σ(p̂− p̄) such that p̂ ∈ Ω. The factor σ , is called the Similitude Ratio. While expansions of Ω are accomplished
when σ > 1, contractions result when 0 ≤ σ < 1. Intuitively, one imagines that the reference set is being deformed
until its boundary touches the failure domain. Any point where the deforming set touches the failure domain is a
Critical Parameter Value (CPV). The CPV might not be unique. The deformed set, called the Maximal Set, is fully
contained in the non-failure domain by design.

The Critical Similitude Ratio (CSR), denoted as σ̃ , is the similitude ratio of the deformation leading to the maximal
set. While the CSR is a non-dimensional number, the Parametric Safety Margin (PSM), denoted as ρ is its dimensional
equivalent. The values taken on by the CSR and the PSM are proportional to the size of the maximal set and measure
the separation between the nominal parameter point p̄ and the failure domain. If the PSM takes on a negative value, the
controller does not even satisfy the requirements for the nominal parameter point p̄. If the PSM is zero, the controller
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exhibits no robustness because there are arbitrarily small perturbations of p̂ from p̄ leading to a requirement violation.
If the PSM is positive, the requirements are satisfied at p̄ and its vicinity. The larger the PSM, the larger the Ω-shaped
neighborhood of p̄ for which the requirements are satisfied. The calculation of the CPV requires solving a standard
optimization problem. Such a problem is non-convex when the dependency of g on p̂ is nonlinear.

The reference set Ω used in this paper is the hyper-rectangle

R(p̄,m) = {p̂ : p̄−m≤ p̂≤ p̄+m} , (1)

where m > 0 is the vector of half-lengths of the sides. In this case, the CPV for the jth requirement is given by

〈p̃ j, σ̃ j〉= argmin
p̂,σ

{
σ : g j(p̂,c)≥ 0, p̂min ≤ p̂≤ p̂max, p̄−σm≤ p̂≤ p̄+σm

}
. (2)

The overall CPV p̃ is the p̃ j that is the closest to the nominal parameter point p̄ according to the norm ‖x‖∞
m =

maxi{|xi|/mi}. The overall CSR σ̃ is the CSR associated with the overall CPV. Alternatively, the overall CPV and
CSR can be found from

〈p̃, σ̃〉= argmin
p̂,σ

{σ : max{g(p̂,c)} ≥ 0, p̂min ≤ p̂≤ p̂max, p̄−σm≤ p̂≤ p̄+σm} . (3)

The PSM is defined as
ρ(c) = σ̃‖m‖ (4)

In the one-dimensional setting p̂ ∈ R, the maximal set is the largest range of p̂ centered at p̄ for which g(p̂,c) < 0
for all set members. The PSM corresponding to controller c for the jth requirement in g is

ρ
j(c) =−sign

{
g j(p̄,c)

}
|p̃− p̄| (5)

The corresponding CPV is given by

p̃ j = min
p̂

{
|p̄− p̂| : g j (p̄+(p̂− p̄),c) = 0, p̂min ≤ p̂≤ p̂max

}
(6)

B. Application to the GTM

The components of the uncertain parameter vector p̂ considered in the analyses that follow are described next. The
parameters ΛT HL, ΛT HR, ΛERO, ΛERI , ΛELO, ΛELI , ΛAL, ΛAR, ΛRU and ΛRD are the control effectiveness of the main
ten inputs [6]. These are the throttle input to the left and right engines, the four elevators, the left and right ailerons;
and the upper and lower rudders. These parameters, which are used to describe both loss in control effectiveness and
the locked-in-place failures, should be interpreted as follows: if 0 < Λ ≤ 1 the actuator will suffer a loss in control
effectiveness, making the actual plant’s input ΛRs(u+U0) instead of Rs(u+U0) [6]. If −1≤ Λ≤ 0, the actuator will
be locked at the fixed value u = Λumax.

τ > 0 is an unknown time delay, µ > 0 is a scaling factor proportional to the amplitude of the commandsa, ∆x is a
shift in the CG from its nominal location in the x-directionb, and δCmα , δCl p and δCnr are aerodynamic uncertanties
in pitch stiffness, roll and yaw damping. These aerodynamic uncertainties are implemented by using primary or
secondary control surfaces. These surfaces are no longer driven by the flight control system, but instead by additional
feedback loops aimed at artificially degrading the resulting stability derivatives. From the perspective of the flight
control system this is equivalent to having different stability and control derivatives. In particular, the generation of
non-zero values for δCmα and δCnr require the loss in control effectiveness ΛERI = ΛELI = 0 and ΛRD = 0, respectively.

The flight condition corresponding to p̂ = p̄ is one in which the amplitude of the pilot commands is moderate
(µ = 1), the actuators are fully functional (i.e., effectiveness of all actuators is one), there is no additional time delay
in the processing and communication of signals, the CG remains at its nominal location and there are no aerodynamic
uncertainties.

The design requirements that define a satisfactory closed-loop response are as follows:
aThe desired maneuver is composed of a sequence of doublets in αcmd, βcmd and pcmd. When µ = 0 the commands keep the vehicle trimmed at

the point used for control design. As µ increases the commands make the vehicle depart from this trim point. The larger the value of µ , the larger
is such a departure, and the larger are the effects of the nonlinear dynamics. Note that the vehicle is supposed to return to the trim point in steady
state no matter how large µ is. By including µ into p̂ we evaluate the degradation in performance caused by inaccuracies in the LTI representation
used in the underlying control theory.

bThe value of ∆x will be specified as a percentage of the mean aerodynamic chord. Besides, its sign is consistent with the orientation of the body
axes, e.g., ∆x =−0.5 implies an aft shift in the CG location equal to 50% of the mean aerodynamic chord.
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• Structural loading: the requirement g1 < 0 ensures that the loading factor caused by the vehicle’s acceleration
does not exceed the structural stress limit.

• Command tracking: the requirements gi < 0 for i = 2,3,4,5 ensure the aircraft satisfactorily tracks the αcmd,
Vcmd, βcmd and pcmd commands generated by the pilot.

• Reliable Flight Envelope (RFE): the requirement g6 < 0 ensures that the vehicle remains within a safe flight
envelope, i.e., the vehicle’s state stays within a given bounded set, throughout the maneuver.

• Riding quality/high frequency oscillation: the requirement g7 < 0 bounds the amount of energy in the high-
frequency part of the power spectrum of the response. Excessively large adaptation rates induce high frequency
oscillations that can lead to the violation of this requirement.

• Reference tracking: the requirements gi < 0 for i = 8,9 bound the offset between the plant and the reference
model for the pitch rate q and the yaw rate r.

Because all tracking requirements are based on L2 norms, they are a function of the transient response. Details of the
functional form of the requirements can be found in [7]. Notice that the dependency of all the components of g on
the parameter p̂ assume an unknown and implicit functional form. Further notice that evaluating g for a particular
realization of p̂ requires simulating the closed-loop response and calculating the performance function g. In this study
the values of p̂min and p̂max are given by −1 ≤ Λ ≤ 1 for all controllable inputs, and by 0 ≤ τ ≤ 0.07, 0 ≤ µ ≤ 3,
−0.5≤ ∆x ≤ 1, 0≤ δCl p ≤ 1, 0≤ δCmα ≤ 1 and 0≤ δCnr ≤ 1. In the inequalities for the aerodynamic uncertainties
the zeros correspond to conditions where there is no uncertainty. The ones, on the other hand, correspond to a severe
degradation in the corresponding aerodynamic coefficient well beyond open-loop neutral stability.

III. Robustness Analysis of the Baseline Nominal Controller

The baseline version of the nominal controller will be denoted as cnom, base. The gains of this controller were
chosen based on classical margins of stability and performance as well as on the pilot’s feedback. After several rounds
of tuning and exhaustive testing in the real time simulator, this controller was rendered suitable for flight by the pilot.
Since the pilot’s determination of whether a controller is suitable for flight or not mostly depends on testing under
nominal flying conditions, the acceptance or rejection of any given controller does not take into consideration its
robustness characteristics.

p̂ ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

ΛT HL 2.00 2.00 2.00 2.00 1.87 1.55 2.00 1.92 1.47
ΛELO 2.00 2.00 2.00 2.00 1.50 2.00 2.00 2.00 1.67
ΛAL 2.00 2.00 2.00 1.81 1.30 1.72 1.75 1.87 1.24
ΛRU 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.27

τ 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
µ 2.00 2.00 2.00 2.00 2.00 1.16 2.00 2.00 2.00
∆x 0.46 0.28 0.46 0.42 0.17 0.12 0.31 0.29 0.42

δCl p 1.00 0.66 1.00 0.53 0.65 0.66 0.43 1.00 0.72
δCmα 1.00 0.79 1.00 1.00 1.00 1.00 0.76 0.77 1.00
δCnr 1.00 0.89 0.86 0.80 1.00 1.00 0.82 0.90 0.73

Table 1. One dimensional PSMs of cnom, base.

The PSMs corresponding to cnom, base for all requirements and several one-dimensional uncertainties are listed in
Table 1. In these analyses and those that follow, all the uncertain parameters excluded from p̂ assume their nominal
value p̄. The results are fairly intuitive. The critical requirement for ΛT HL, ΛRU , ΛAL and δCnr uncertainty is the yaw
rate tracking requirement g9. The tracking of V on the other hand, degrades the most when the elevator or the aileron
are locked. Furthermore, δCl p and δCmα uncertainties trigger unacceptable levels of high frequency oscillation before
compromising asymptotic tracking of the commands. The metrics in Table 1 will be used to compare the robustness
characteristics of cnom, base with those of other controllers.
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Multi-dimensional robustness analyses of the baseline nominal controller led to the data in Table 2. The second
and third columns show the PSM and the failure probabilities. Suitable values of m for all the components of p̂ were
chosen when calculating PSMs. Probabilities were calculated after assuming a joint probability density function for
p̂ and evaluating g for 200 Monte Carlo samples. The parameter η , which implies the combination of aerodynamic
uncertainties δCl p = η and δCmα = 0.8η , is used to evaluate the effects of the simultaneous pitch and roll uncertainties
on the aircraft’s performance. The metrics above enable the comparative analysis of competing control alternatives.

p̂ min(ρ(cnom, base)) P[max(g) > 0]

[τ,µ] 2.1 7.5e-2

[δCl p,δCmα ] 0.63 3.6e-1

[∆x,∆y] 0.095 7.7e-1

[τ,δCl p] 0.39 3.3e-1

[τ,δCmα ] 0.52 1.2e-1

[τ,δCnr] 0.67 8.5e-2

[δCl p,δCnr] 0.59 3.7e-1

[ΛT HR,ΛRU,RL] 1.08 4.5e-2

[τ,η ] 0.39 3.8e-1

[ΛELO,ΛELI ] 1.59 1.5e-2

[τ,δCl p,δCmα ,δCnr] 0.64 5.6e-1

[ΛT HR, . . . ,ΛRD] 1.68 2.4e-1

Table 2. Multi-dimensional PSMs and failure probabilities of cnom, base.

With this aim we postpone a discussion on their significance to a later section. Figures 1 and 2 show the parameter
space for p̂ = [δCl p,δCmα ] and p̂ = [τ,δCl p]. The coloring of the figures indicate the number of the requirements being
violated. Therefore, while the non-failure domain (i.e., the set where all the requirements are satisfied) is colored in
green, the failure domain is colored otherwise. These figures are generated by simulating the closed-loop response at
the points of an uniformly spaced grid, calculating the corresponding performance vector g, and counting its number
of non-negative components. This exceedingly large number of simulations have only been made for illustrative
purposes. The maximal set, which is a subset of the non-failure domain by design, is superimposed. Note that the
size of the maximal set, measured by the PSM, is an indicator of the separation between acceptable and unacceptable
closed-loop performances and as such it is a measure of robustness to these uncertainties.

Figure 1 shows that δCl p uncertainty degrades the system performance faster than δCmα . Furthermore, the almost
rectangular shape of the the non-failure domain indicates no interaction between these two uncertainties. This obser-
vation is in agreement with the control design procedure in which the longitudinal and lateral/directional controllers
were designed independently. The CPV, shown in the figure as a circle, occurs when δCmα = 0. Note that the physics
of the problem on the surfaces δCmα = 0 and δCmα = ε , where 0 < ε� 1, differ significantly since in the former case
the four elevators are fully functional while in the latter case the two inner elevators are totally ineffective. Figure 2
shows how the performance function g depends on the aerodynamic uncertainty η and the time delay τ . In contrast
to the previous figure, the compound effect of both uncertainties affect the geometry of the non-failure domain. This
dependency is almost linear in the vicinity of the maximal set.

IV. Control Tuning

Ultimately, a good controller should satisfy the stability and performance requirements imposed upon it with suffi-
ciently large robustness margins. The PSM and CSR introduced above are examples of such margins. A computational
framework that enables searching for the set of controller gains that maximize such margins is introduced next. Further
details are available in [5].

Recall that the controller c depends on the control parameters d. This dependency, which is inconsequential for
the analyses above, is exploited in the developments that follow. Note that the constraint function g < 0 and therefore,
the non-failure domain and all the robustness metrics used to evaluate it, are a function of d. A control designer wants
to determine the value of the design point d for which the closed-loop system exhibits satisfactory performance and
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Figure 1. Maximal set, failure and non-failure domains of cnom, base for p̂ = [δCl p,δCmα ].

Figure 2. Maximal set, failure and non-failure domains of cnom, base for p̂ = [τ,η ].
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robustness characteristics. The design points targeted herein realize the largest PSM the control structure allows for.
Since these controllers are able to tolerate the largest perturbations from the nominal parameter point before violating
any of the requirements, they will be called Robustly Optimal. The formulations that follow evaluate the robustness
characteristics of any design point considered during the search for the robustly optimal one by using the exact maximal
set, or by using a multi-point approximation to the maximal set. Only the former strategy always leads to the intended
designs while the other strategy may not, due to the approximate nature of the formulation. However, the relaxed
computational demands of the latter strategy make it attractive in spite of their potential drawbacks. Because the
framework in Reference [4] allows for a detailed robustness analysis, the inaccuracies resulting from such drawbacks
can be detected and mended a posteriori. To expedite the search for a robustly optimal controller, we use the design
point resulting from the approximate formulation as starting point for the exact one.

A. Enlarging the Maximal Set

The problem of interest is given by
d∗ = argmax

d
{σ̃(d) : h(p̂,d) > 0} , (7)

where d∗ is the set of optimal controller gains, and the CSR σ̃ is given by Equation (3). The constraint h(p̄,d) > 0
is used to enforce additional characteristics, e.g., h(p̄,d) = τ − τmin > 0 ensures that the time delay for the nominal
plant is larger than τmin. Recall that determining the CSR η̃ corresponding to any given design point entails solving an
optimization problem. Therefore, this formulation has an optimization in the outer loop and another one in the inner
loop. While the outer loop searches for the robustly optimal gains d∗, the inner one searches for the CSR corresponding
to the design point under consideration. Nested optimizations, such as Equation (7) and those resulting from worst-
case-based design policies, impose stringent computational demands. Such demands can be substantially mitigated by
using multi-point approximations. The multi-point approach in the next section eliminates the inner optimization loop
at the expense of possibly finding suboptimal design points.

B. Enlarging an Approximation to the Maximal Set

An approximation to the solution of Equation (7) is given by

〈d∗,ξ ∗〉= argmax
d,ξ

{
ξ : max

j,i

{
g j(p̄+ξ (pi− p̄),d)

}
< 0, ξ ≥ 0, h(p̂,d) > 0

}
, (8)

where pi for i = 1, · · ·n are parameter-points on the surface of R(p̄,m). These points, which only have to be computed
once, should be uniformly distributed over the surface. Note that this formulation replaces the inner optimization loop
in Equation (7) by a multi-point constraint over parameter points lying on the surface of the approximate maximal
set. Further notice that σ̃(d∗) is approximated by ξ ∗. Since the satisfaction of the multi-point constraints does
not guarantee that the approximate maximal set is a subset of the non-failure domain, this formulation may lead
to suboptimal designs. Besides, the larger the value of ξ , the smaller the density of points over the surface of the
approximated maximal set, and the greater the chance to converge to an overly large approximation of the true maximal
set. Procedures to generate the pi points are available in reference [3].

V. Robustness Analysis of the Tuned Nominal Controller

The methods of Section IV are first applied to the nominal controller (see the companion paper [6]). In particular,
we search for the set of gains of the lateral/directional controller that maximize the CSR for p̂ = [δCl p,δCmα ]. The
constraint h(p̂,d) > 0 was used to enforce frequency domain and stability margin considerations. The same reference
set used in the previous δCl p-δCmα deformation is used. We will denote the resulting controller cnom, tuned. One- and
multi-dimensional robustness analyses of this controller are presented next.

Table 3 presents the change in the PSMs attained by cnom, tuned relative to cnom, base for the one-dimensional cases
in Table 1. This change is given by

κi(cnom, tuned,cnom, base) =
(

ρi(cnom, tuned)
ρi(cnom,base)

−1
)
×100% (9)

where i = 1, . . . ,9. While positive values indicate a robustness improvement, negative values indicate a loss. Changes
in the PSMs enable determining the relative advantages and drawbacks of using one controller over another according
to particular requirements and uncertainties.
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p̂ κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9

ΛT HL 0 0 0 0 0 0 0 0 0
ΛELO 0 0 0 0 0 0 0 0 -16
ΛAL 0 0 0 -3 -2 -2 3 -3 -2
ΛRU 0 0 0 0 0 0 0 0 2

τ 0 0 0 0 0 0 0 0 0
µ 0 0 0 0 0 0 0 0 0
∆x 0 0 0 0 0 0 7 0 0

δCl p 0 45 0 48 35 45 59 0 34
δCmα 0 0 0 -8 0 0 0 0 0
δCnr 0 2 2 2 0 0 2 2 0

Table 3. Change in the PSMs of cnom, tuned relative to cnom, base.

Note that even though cnom, base and cnom, tuned have the same longitudinal controller, their robustness to failure
in the left-outer elevator differ. This is because the CPV for ΛELO is negative, and therefore, the locked elevator is
coupling the longitudinal and lateral/directional dynamics. The PSMs remain practically unchanged for most of the
uncertainties, δCl p being a notable exception. Figure 3 shows g(p̂,cnom, base) and g(p̂,cnom, tuned) as a function of
p̂ = δCl p. Note that the performance functions g for cnom, tuned cross the threshold of satisfactory performance g = 0
at values of δCl p that are much larger than those corresponding to cnom, base. Overall, the tuned controller is much
more robust to aerodynamic uncertainties in the roll axis than the baseline. This improvement is attained without a
significant reduction in the robustness to other uncertainties. As with cnom, base, cnom, tuned was evaluated extensively
by the pilot in a real time simulator and it was regarded suitable for flight. During its evaluation, and consistently with
the results above, piloted simulations showed that cnom, tuned tolerated 25% more uncertainty in δCl p and δCmα than
cnom, base.

Figure 3. Dependence of g on δCl p for cnom, base and cnom, tuned. Line conventions are as follows: g1(solid), g2(squares), g3(diamond),
g4(asterisk), g5(triangle), g6(dotted), g7(dashed), g8(circle), g9(x)

Table 4 presents the change in the PSM and in the failure probability attained by cnom, tuned relative to cnom, base
for the multi-dimensional cases in Table 2. Note that changes in the PSM and in the failure probability have con-
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p̂
(

ρ(cnom, tuned)
ρ(cnom, base)

−1
)
×100% P[g(cnom, base) > 0]−P[g(cnom, tuned) > 0]

[τ,µ] -43 0.015

[δCl p,δCmα ] 51 0.344

[∆x,∆y] -9 -0.05

[τ,δCl p] 49 0.230

[τ,δCmα ] 0 0.005

[τ,δCnr] 0 0.03

[δCl p,δCnr] 52 0.25

[ΛT HR,ΛRU,RL] 1 -0.02

[τ,η ] 49 0.1

[ΛELO,ΛELI ] 0 -0.005

[τ,δCl p,δCmα ,δCnr] 33 0.265

[ΛT HR, . . . ,ΛRD] -24 -0.17

Table 4. Changes in PSMs and failure probabilities of cnom, tuned relative to cnom, base.

sistent trends most of the time. In other words, an increase(decrease) of the PSM commonly implies a proportional
decrease(increase) in the failure probability. This is the case in all analyses with the exception of p̂ = [τ,µ] for which
a reduction of 43% in the PSM does not yield a sizable reduction in the failure probabilityc. This situation arises
because the failure domain has a long and thin spike intruding deeply into the non-failure domain. This spike prevents
the realization of a larger homothetic deformation. This is a situation where the PSM analysis is able to find critical
failure modes (since they are the closest to the nominal operating conditions associated with p̄) that cannot be found
otherwise. In this particular case the spike is caused by a violation of the roll rate tracking requirement g4. Since the
rate of change of g4 within the spike is very low, the effects of this violation can be easily overcome by the pilot. Note,
however, that the failure probability and the PSM are qualitatively different metrics whose trends do not have to be in
agreement.

Figure 4 shows the number of requirements violated by cnom, tuned as a function of δCl p and δCmα . The same color
conventions used earlier apply. The maximal sets corresponding to cnom, base and cnom, tuned are superimposed. Note
that the tuned controller is able to tolerate 52% larger δCl p uncertainties than the pilot-approved baseline controller
before reaching the failure domain. As before, Figure 5 shows the dependency of g on the aerodynamic uncertainty η

and the time delay τ . The comparison of the maximal sets and of the non-failure domains shows that the improvements
in robustness to δCl p and δCmα do not reduce the robustness to time delay. With respect to the baseline controller,
the tuned controller exhibits a substantial improvement to δCl p uncertainty at the expense of a moderate reduction in
the robustness to actuator failure. After considering the risk/benefit ratio of using cnom, tuned illustrated by the above
metrics, we decided to build the ACTS architecture around this controller.

A. Flight Validation

The controller cnom, tuned was successfully validated using the NASA AirSTAR Flight Test Vehicle. In the set of
flight experiments conducted, nominal and off-nominal flying conditions were evaluated. Some of the off nominal
conditions included a latency test and a set of failures where the aerodynamic characteristics of the vehicle were
degraded progressively beyond open-loop neutral stability. These degradations are consistent with the manner in
which δCl p and δCmα uncertainties are enforced in this paper. None of the other controllers flown, including a DF
MRAC and an L1 adaptive controllers, were able to outperform this non-adaptive controller.

VI. Robustness Analysis of the Tuned Adaptive Controller

The adaptive control parameters to be determined are Q, θmax, Γ1, Γ2, and Γλ (see the companion paper [6]). Q
prescribes the rate at which the Lyapunov function decreases in time, θmax prescribes the range of adaptation and Γ1,

cEven though the failure probability estimates have the numerical error caused by calculating probabilities with a finite number of samples,
moderate failure probability differences are much larger than this error.
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Figure 4. Maximal set, failure and non-failure domains of cnom, tuned for p̂ = [δCl p,δCmα ].

Figure 5. Maximal set, failure and non-failure domains of cnom, tuned for p̂ = [τ,η ].
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Γ2 and Γλ determine the rate of adaptation.
The methods of Section IV are now applied to determine some of these control parameters. In particular, we

search for the set of adaptive control parameters Γ1 > 0 and Q that maximize the CSR for p̂ = [δCl p,δCmα ]. The
parameters kept were found to be the most consequential. As before, a lower bound on the time delay is enforced via
the constraint function h(p̂,d) > 0. We will denote the resulting controller cada, tuned. One may think of a baseline
adaptive controller where cada, base = cbase, tuned by assuming a very small Γ1. One- and multi-dimensional robustness
analyses of the resulting cada, tuned are presented next.

Table 5 presents the change in the PSMs attained by cada, tuned relative to cnom, tuned for the one-dimensional cases
considered earlier. In this case, Equation (9) becomes κi(cada,tuned,cnom, base). According to the data, the effects of
adaptation are detrimental. Even in the δCmα and δCl p directions only one PSM increases. However, the control
tuning procedure indicates that the two dimensional maximal set in the δCmα -δCl p space corresponding to cada, tuned
is slightly larger than that of cnom, tuned. In the one-dimensional setting this is reflected on the 1% increase of the PSM
of the critical requirement g7 for δCl p. Therefore the 1% increase in the PSM of the critical requirement that enables
having a larger maximal set causes a sizable reduction in the PSM of some non-critical requirements.

Figure 6 shows the number of requirements violated by cada, tuned as a function of δCl p and δCmα . The maximal sets
corresponding to cnom, tuned and cada, tuned as well as the estimate of the boundary of the non-failure domain of cnom, tuned
are superimposed. Even though the maximal set for cada, tuned is very close to that of cnom, tuned, the corresponding
control parameters enlarge considerably the non-failure domain. This improvement, which is practically unnoticeable
from the one-dimensional analyses, illustrates high sensitivity of the controller robustness to the joint effect of both
uncertainties.

p̂ κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9

ΛT HL 0 0 0 0 0 0 0 0 -2
ΛELO 0 0 0 0 0 0 0 0 -19
ΛAL -17 -17 -72 -78 -4 -3 -11 -14 -47
ΛRU 0 0 0 0 0 0 0 0 -2

τ 0 0 0 -13 0 0 -9 0 -15
µ 0 0 0 0 0 -7 0 0 -54
∆x 0 -7 0 -5 0 0 -6 0 -78

δCl p 0 -20 -30 -11 -13 -22 1 -19 -27
δCmα 0 0 0 -9 0 0 0 0 0
δCnr 0 -18 -22 -19 -12 -23 -18 -17 -21

Table 5. Changes in PSMs of cada, tuned relative to cnom, tuned.

Even though the robustness to δCl p and δCmα uncertainty was increased as intended, sizable reductions in ro-
bustness to ΛAL and τ also occur (see Table 5). Figure 7 shows the performance functions g(ΛAL,cnom, tuned) and
g(ΛAL,cada, tuned). Note that at ΛAL = −0.62, value where the left aileron is stuck at 62% of its maximum deflection,
the adaptive controller becomes unstable, making all components of g to blow up. This “finite escape time” -like
phenomenon, which is solely caused by adaptation, occurs abruptly without any lead time for pilot reaction. This
illustrates a serious drawback of adaptation in which the controller itself causes instabilty. The elimination of this
behavior requires smaller adaptive rates or smaller ranges of adaptation. Unfortunately, with these reductions the
advantages and disadvantages of adaptation are both mitigated.

Table 6 shows the changes in the PSM and in the failure probability attained by cada, tuned relative to cnom, tuned
for the multi-dimensional settings considered above. This data indicates that the cost of the robustness improvements
for δCl p and δCmα is a reduction in robustness to time delay, CG location and actuator failure. The reduction of the
failure probability for p̂ = [δCl p,δCmα ] is an incidental result from attempting to increase the corresponding PSM
during control tuning. The increase in the PSM corresponding to p̂ = [τ,µ] results from the elimination of the spike
mentioned above. The data in Table 6 is consistent with that for other optimization-based strategies where the optimal
controller exhibits high sensitivity to those uncertainties which were left out of the problem formulation.

Figure 8 shows the dependency of g on the aerodynamic uncertainty η and the time delay τ . The comparison of
Figures 8 and 5 shows that the improvements in robustness to aerodynamic uncertainty results in a slight increase in
the time delay margin in the vicinity of the maximal set. Note however, that the region where all requirements are
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Figure 6. Maximal set, failure and non-failure domains of cada, tuned for p̂ = [δCl p,δCmα ].

Figure 7. Dependence of g on ΛAL for cnom, tuned and cada, tuned.
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p̂
(

ρ(cada, tuned)
ρ(cnom, tuned) −1

)
×100% P[g(cada, tuned) > 0]−P[g(cnom, tuned) > 0]

[τ,µ] 57 1e-1

[δCl p,δCmα ] 1 -8e-2

[∆x,∆y] -51 7e-2

[τ,δCl p] -15 1e-1

[τ,δCmα ] -2 3e-3

[τ,δCnr] -32 1.7e-1

[δCl p,δCnr] -22 1.6e-1

[ΛT HR,ΛRU,RL] 0 -3e-3

[τ,η ] 7 -9e-3

[ΛELO,ΛELI ] 0 3.5e-2

[τ,δCl p,δCmα ,δCnr] -8 1e-1

[ΛT HR, . . . ,ΛRD] -59 2.4e-1

Table 6. Changes in PSMs and failure probabilities of cada, tuned relative to cnom, tuned.

violated is dangerously close to the non-failure domain.

Figure 8. Maximal set, failure and non-failure domains of cada, tuned for p̂ = [τ,η ].

Figure 9 shows estimates of the failure and non-failure domain for cnom, tuned corresponding to p̂ = [τ,δCl p]. The
maximal set of both cnom, tuned and cada, tuned are superimposed. The reduction in the size of the non-failure domain
illustrates detrimental effects caused by adaptation.

VII. Real Time Simulation

The nominal and adaptive controllers cnom, tuned and cada, tuned were evaluated in the real time simulation. In this
environment, and in contrast to the analyses above, pilot commands are generated in real time. Furthermore, there is a
more accurate aerodynamic model, a surface dead-band in all control surfaces, sensor noise and moderate turbulence.
The Figures 10 show closed-loop responses corresponding to degradations in δCl p and δCmα that make the open-loop
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Figure 9. Maximal set, failure and non-failure domains of cnom, tuned for p̂ = [τ,δCl p].

unstable. The improvement in the transient roll rate response attained by adaptation is apparent. Unfortunately, the
liabilities caused by adaptation when flying outside the region where the reference model accurately approximates the
aircraft dynamics make this controller unsuitable for flight. Strategies to overcome this difficulty include expanding
the range of accuracy of the reference model via gain scheduling and applying adaptive dead-zones. Efforts in these
directions are underway.

VIII. Rate of Adaptation

Figure 11 shows the failure and non-failure domains associated with p̂ = [δCl p,δCmα ] for four adaptive controllers.
These controllers only differ in their adaptive rate Γ1 whose value is printed in the top left of each figure. Note that
as the controller becomes more aggressive, spikes of the failure domain start intruding into the non-failure domain.
These spikes cause a reduction in the PSM to the extent that for the most aggressive controller, the maximal set is
empty (i.e., the controller does not satisfy the requirements for the nominal plant). Note that while the PSM decreases
when the adaptive rate is increased from 4Γ to 8Γ, the size of the non-failure domain slightly increases.

Further notice that a probabilistic assessment of the most aggressive controller, such as one based on calculating
failure probabilities via Monte Carlo, does not properly characterise its most prominent robustness characteristics
(e.g., the fact that the controller does not even satisfy the requirements under nominal flying conditions). Besides
the reduction in the size of the non-failure domain associated with this controller, note the small separation between
such a domain and the region where all requirements are violated (i.e., region in black where the controller becomes
unstable). The small separation between these two regions pose a grave safety risk since the transition to instability is
not preceded by an observable degradation in closed-loop performance and as such, it will be very difficult to predict
or avert. Recall that this mode of instability is caused by adaptation. Figure 11 illustrates the risk of over-tuning
the control parameters according to particular uncertainty realizations and highlights the need for determining the
robustness characteristics of the controller from a global perspective.

IX. Conclusions

This paper concentrates on the evaluation and tuning of a controller for an unmanned air vehicle. The control
architecture assumed augments a non-adaptive controller with an adaptive component. The gains of both these con-
trollers are tuned using a framework that aims at increasing robustness to aerodynamic uncertainty. Global robustness
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Figure 10. Closed-loop responses corresponding to the nominal and adaptive controllers

Figure 11. Failure and non-failure domains for increasingly faster adaptive controllers.
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assessments of the resulting controllers are used to determine advantages and disadvantages of adaptation. While
increments in the rate of adaptation have the potential of improving the robustness to aerodynamic uncertainties, they
usually cause a reduction in the time delay margin. More importantly, suitable adaptation rates for some uncertainty
realizations (i.e., rates for which the adaptive controller well-outperforms the nominal controller and improves safety)
may turn out to be excessively high for other uncertainties (i.e., situations where the controller, and thereby the air-
craft, becomes unstable). This instability, which may not be preceded by a noticeable degradation in closed-loop
performance, occurs abruptly without any lead time for a pilot reaction. Failure to properly balance these trends may
lead to controllers that compromise safety by adapting either too rapidly or too slowly. The nominal controller tuned
by the methods proposed was successfully validated using the NASA AirSTAR Flight Test Vehicle. This flight ex-
periment, where both the longitudinal and lateral aerodynamic characteristics of the aircraft were degraded beyond
neutral stability, targets uncertainties that perfectly match the mathematical framework supporting the theory of adap-
tive control. None of the other controllers flown, including a DF MRAC and an L1 adaptive controllers, were able to
outperform this non-adaptive controller. Efforts to make the adaptive controller suitable for flight are underway.
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