

What is the Space Shuttle?

The space shuttle is the world's first reusable spacecraft and the first spacecraft in history that can carry large objects both to and from space.

The shuttle launches like a rocket, maneuvers in Earth uibll like a spacecraft and lands like a airplane - though many times more complex and robust.

Each space shuttle has a design life of 100 missions. So far, the combined fleet has flown 113 missions.

The space shuttle is the most capable, versatile and reliable space vehicle in the world today - a unique national asset.

Page 2

Solid Rocket Boosters [SRB]

- Each shuttle is equipped with two solid rocket boosters (SRB) that provide the initial thrust and acceleration to allow the main engines to carry the orbiter into space.
- Tha honctare ara 116 foot inng, 17 foot in diameter and contain more than one million pounds of solid propellant.
- The propellant burns at 5,800 degrees and each SRB delivers 2.65 million pounds of thrust at liftoff.
- After two minutes, at an altitude of about 24 miles, the SRBs separate from the ET and descend by parachute into the ocean where they are collected for refurbishment and reuse.
- The shuttle SRBs are the largest solid rocket propellant motors ever built and the first to be used on human-rated spacecraft.

USA
Untend sponov Alitionco

Thermal Protection System Icont.J

Surface Temperatures Experienced

- The purpose of the thermal protection system is not only to protect the orbiter from the searing heat of reentry, but also to protect the air frame and major systems from the extremely cold conditions experienced when the venicle is in the night phase of each orbit.
- The external temperature fluctuates from -200 degrees F to +200 degrees F during each 90 minute orbit.
- There are approximately 23,500 black tiles, used primarily on the undersurface of the vehicle and a few other key areas that require more strength and experience the highest temperatures during reentry.
- There are approximately 800 white tiles, used around the windows and front of the orbital maneuvering system (OMS).

Space Shuttle Processing and Hardware Flow

Vehicle Assembly Building [VAB]

- After the vehicle has been prepared for flight in the OPF, it is ready to be mated to the ET and SRBs in the VAB.
- In the VAB, the orbiter is raised to a vertical position and is lifted several hundred feet above the VAB floor and slowly lowered beside tne waring EI and twin SRBs.
- The vehicle is "mated" or bolted to the ET and platforms are moved into place to provide access for integration and final testing.
- Electrical and mechanical verification of the mated interfaces are performed while in the VAB.
- After checkout is complete, the VAB doors are opened to permit the tracked crawler-transporter vehicle (CTV) to move under the mobile launch platform (MLP) and the assembled vehicle or "space shuttle stack."
- The CTV then rolls the MLP and stacked vehicle out to the launch pad.
- It takes about six hours for a space shuttle, aboard the CTV, to make the trip to the launch pad.

Page 11

> Improving the Shuttle with Modifications and Upyrades

Page 12

Orbiter Modifications

- NASA has made literally thousands of major and minor modifications to the original design that have made the space shuttle safer, more reliable and more capable today than ever before.
- There are different types of space shuttle modifications conducted routinely during normal vehicle processing and during scheduled Orbiter Major Modification (OMM) periods.
> During OPF processing, any required vehicle modifications, in addition to routine post-flight deservicing/servicing and checkout, are performed.
> Planned modifications are typically put into work as soon as practical after the orbiter returns and are generally completed in parallel with pre-launch servicing.
> Modifications to orbiters may be performed to meet future mission requirements, resolve an identified deficiency, enhance vehicle safety and performance, or reduce cost.

Space Shuttle Upgrades

- Several years back, NASA began improving the shuttle with goals of increasing its safety by improving the highest risk components.
- In managing and operating the space shuttle, NASA holds the safety of the crew as the highest priority.
- The space shuttle is an integral part of NASA's Integrated Space Transportation Plan (ISTP).
- Space shuttle safety, supportability and technology upgrades are a critical step in the ISTP and will assure the orbiter continues to perform its role optimally, through 2020, when a next-generation reusable launch vehicle (RLV) is planned to be operational.
- The primary goal of a next generation RLV is to increase safety and reliability, and reduce the overall cost of human access to space.
- New technologies must be developed or evolved from existing technologies in order to reach this goal.

Status of the Space Shuttle Upgrades

- Significant technical and planning progress has been made for multiple projects
- Upgrade projects have met their contractual budget and schedule requirements to date, resulting in an aggregate cost under-run
> Total project costs and schedules have been updated from early estimates
- Requirements definition and trade studies completed
- Operational concepts defined
- Engineering 'brassboard' units manufactured and delivered
- Hardware and software prototypes completed that demonstrate key architectural components and functionality
- Dynamic testing demonstrated project designs that meet or exceed top-level requirements
- Infrastructure construction companies put under contract

SSP Major Sites and Funding Spent at State-Level

Design, Development and Flight History

- September 1969 - Space Task Group recommends "development of a new space transportation capability..."
- January 1972 - President Nixon announces development of low cost reusable space shuttle system.
- March 1972 - Rockwell Rocketdyne Division selected to design and develop main engines.
- July 1972 - Rockwell Space Transportation Systems selected to design and develop orbiter.
- August 1973 - Martin Marietta awarded external tank contract.
- June 1974 - Morton Thiokol awarded contract for solid rocket boosters.
- September 1976 - Enterprise, the first orbiter spacecraft is rolled out. Test vehicle is never flown in space.
- January 1979 - Rockwell contracted to manufacture two additional orbiters Discovery and Atlantis.
- March 1979 - The Columbia orbiter is delivered to Kennedy Space Center.

Design, Development and Flight History [cont.J

- April 1979 - Enterprise is mated with external tank and solid rocket boosters for test purposes.
- April 1981 - Space Shuttle Columbia lifts off and is the first orbiter in space (STS-1).
- July 1002 The Challenger orbiter is delivered to Kennedy Epace Oenter.
- October 1983 - Lockheed Space Operations awarded contract for shuttle processing at Kennedy Space Center.
- November 1983 - The Discovery orbiter is delivered to Kennedy Space Center.
- April 1985 - The Atlantis orbiter is delivered to Kennedy Space Center.
- January 1986 - Shuttle Challenger explodes and crew perishes 73 seconds after liftoff.
- September 1988 - Discovery lifts off marking return to flight status of Shuttle Program.
- October 2000 - Space Shuttle makes $100^{\text {th }}$ space flight.
x-mix

