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Introduction:  It has been known since the Lunar 

Prospector mission that the poles of the Moon evi-
dently harbor enhanced concentrations of hydrogen 
[1,2]. The physical and chemical form of the hydrogen 
has been much debated.  Using imagery from 
Clementine it was possible to roughly estimate perma-
nently-shadowed regions (PSRs), and to perform im-
age reconstructions of the Lunar Prospector epithermal 
neutron flux maps [3,4].  The hydrogen concentrations 
resulting from these reconstructions were consistent 
with a few weight percent water ice in selected loca-
tions. 

With the LCROSS impact, we now know that hy-
drogen in the form of ice does exist in lunar polar cold 
traps [5]. Armed with this information, and new data 
from LRO/Diviner, we can examine whether the pre-
sent-day distribution of hydrogen in the form of water 
ice is consistent with a past large impact that delivered 
a large mass of volatiles to the lunar surface.  These 
volatiles, mixed with solid impact ejecta, would then 
be lost from locations having high mean temperatures 
but would otherwise remain trapped in locations with 
sufficiently low mean annual temperatures [6].  The 
time scales for loss would depend on the location-
dependent temperatures as well as impact history. 

New Measurements: New results from Chan-
drayaan and NASA’s Lunar Reconnaissance Orbiter 
are clarifying our picture of conditions at the lunar 
poles.  Data from the Diviner Lunar Radiometer Ex-
periment indicate extensive areas of very low tempera-
tures (<100K) in the south polar region, and these ar-
eas are not limited to locations of strictly permanent 
shadow [7].  Such cold terrain has subsurface tempera-
tures low enough to keep shallow buried ice stable for 
1 Ga or longer [7]. Moreover, Chandrayaan M3 spec-
tral reflectance observations [8] have suggested the 
possible presence of H2O and OH at mid-latitudes. 
Both of these results indicate that the confinement of 
potentially high hydrogen concentrations to permanent 
shadow is overly restrictive.  The Lunar Prospector 
epithermal data can now be used to fit a model that 
includes these three possible hydrogen repositories. 

Modeling:  Figure 1 shows a model for the mean 
annual regolith temperature at 75 cm depth (T75).  Per-
manently-shadowed regions comprise a subset of the 
more areally extensive terrains that have annualized 
subsurface temperatures low enough to permit stable 
water ice.  For that reason, reconstructions are likely to 
have lower average hydrogen abundance than in the 
PSR-only reconstructions.  In effect, the same amount 

amount of hydrogen is placed into a larger area, result-
ing in lower average abundances.  

This is illustrated in Figure 2, which shows two 
Pixons reconstructions for the Cabeus area.  The upper 
panel shows the best-fit water-equivalent hydrogen 
(WEH) distribution assuming that concentrations 
higher than about 0.25 wt% are confined to permanent 
shadow.  The lower panel shows the best-fit WEH dis-
tribution when ice is permitted in areas with subsurface 
temperatures below 110K.  The WEH abundance at the 
LCROSS impact site is ~1wt% for the PSR-decoupled 
reconstruction, but ~0.3 wt% for the T75<110K recon-
struction. 

 
Fig, 1.  Model mean annual temperature at 75 cm 
depth for the lunar south pole.  Note that areas with 
subsurface temperatures below 110K (red through 
blue) are far more extensive than  areas in strict 
permanent shadow (white outlines). 
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   We can compare present-day WEH distribution 
with what might be expected to remain following a 
large impact in the past.  This calculation is based on 
work done on the sublimation of cold-trapped water 
ice in lunar regolith [9,10].  Figure 3 shows the subli-
mation rate of water ice versus temperature the vac-
uum lunar conditions from [10].  This strong tempera-
ture dependence will result in major loss (or downward 
retreat) of ice from areas with temperatures above 
about 130K.  (This does not include the gardening and 
reworking processes described by Crider and Vondrak 
[11]).  We present results of such ice evolution using 
LRO/Diviner-constrained surface and sub-surface 
temperatures, and compare with the Lunar Prospector 
results. 
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Fig. 2.  Stereographic projections of water-equivalent 
hydrogen (WEH). (Upper) Decoupled Pixons recon-
struction assuming WEH abundances > 0.25 wt% are 
confined to areas of permanent shadow. (Lower) Re-
construction assuming that WEH > 0.25 wt% are con-
fined to areas with T75<110K.  Note differences in 
color bar scales.  LCROSS impact site shown by green 
arrows. 

Local mass conservation dictates @r/@t +@J/@z = 0. Hence
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[19] If the temperature is constant with depth, then the
residence time can be pulled out of the derivative, and the
migration is described by the diffusion equation
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with a diffusion coefficient of D = ‘2/(2t). This is the
same coefficient we derived above based on the random
walk model, equation (5). Note that the diffusion
equation arises not because one gas diffuses through
another, but from random migration of a single molecule
species.
[20] When geothermal heating is not neglected, expan-
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The first term on the right-hand side is a diffusive flux; the
second term is an advective flux with an outward velocity w,
due to a temperature increase with depth. The thermal
conductivity of the most surficial layer on the Moon can be
extremely low, and the temperature increase with depth
correspondingly large [Heiken et al., 1991].

[21] The derivative of t with respect to depth z depends
on the geothermal temperature gradient g = @T/@z. With the
expression from equation (4),
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where Z is the length-scale over which r changes
significantly. The geothermally induced flux becomes
important when the relative change in temperature due to
geothermal heating, Zg/T, becomes comparable to 1/(Q/kT$
1/2) & 0.02. For a gradient of g = 1 K/m, this occurs at a
depth of about 2 m.

4. Solutions to the Subsurface Migration Model

[22] The general continuum equation (7) can now be
solved. In fact, we only solve the simpler equation (8)
and are subject to the limitation from the geothermal
temperature gradient described by equation (10). Through-
out this section, we take the temperature to be constant in
time.

4.1. Loss Rate of Buried Ice

[23] The first of several applications is the determination
of the survival time of ice buried by a layer of regolith of
thickness Dz. Obviously, buried ice lasts substantially
longer than ice on the surface, because a molecule has to
undergo many hops to escape. Our physical model allows
us to determine its life time.
[24] The flux at the upper boundary of the ice layer is

given by J = $D@r/@z. Assuming the amount of ice at
question is much larger than could be buffered by partially
‘‘wetted’’ grains in the overlying dry layer, a linear density
profile will be established after a transient period, that is,
equation (8) evolves toward @2r/@z2 = 0. Thereafter, @r/@z
is constant and the density gradient is determined by the
difference between the surface density (essentially zero) and
the density at the ice-regolith boundary (mq/‘). The loss rate
is given by

J ¼ D
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Figure 4 shows this loss rate for ice buried beneath a 10 cm
thick layer, compared to the loss rate of exposed ice. The
total loss rate for exposed ice consists of a temperature
independent space weathering rate, d, and a temperature
dependent sublimation loss rate, E.
[25] A subtle but important point in the derivation of this

formula is that r in the immediate vicinity of the ice is mq/‘,
which is much smaller than the bulk density of solid ice,
because ‘ is much larger than the size of an H2O molecule.
The first layer of grains on top of the ice layer receives a
certain flux from the ice and must send back less than it
receives to maintain its transport capability. The grains
maintain less than a complete layer of volatile H2O mole-

Figure 4. Loss rate of ice on the surface (dash line) and
buried beneath a 10 cm thick layer of 75 mm large grains
(solid line). The total loss rate for exposed ice consists of a
temperature independent space weathering rate and a
temperature dependent sublimation loss rate (dot line).

E02010 SCHORGHOFER AND TAYLOR: MIGRATION OF H2O AT COLD TRAPS

4 of 11

E02010

 
Fig. 3.  Ice sublimation rates versus temperature, from [10]. 
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