Male Astronauts Have Greater Bone Loss and Risk of Hip Fracture following Long Duration Spaceflights than Females

Rachel Ellman, Jean Sibonga, Ph.D., Mary Bouxsein, Ph.D. Harvard-MIT Division of Health Sciences & Technology Beth Israel Deaconess Medical Center – Harvard Medical School NASA Johnson Space Center

Astronauts lose bone rapidly in microgravity

Rate of bone loss in postmenopausal osteoporosis

-1 to 2%/year

In-flight Countermeasures

- Exercise up to 2.5 hours/day (allotted time)
- Vitamin D supplementation

Treadmill (TVIS)

Cycle ergometer (CEVIS) Resistance (IRED)

Research Questions

- 1. Is there a sex-specific difference in microgravity induced bone loss?
- 2. Can factor-of-risk analysis be used to identify individuals at risk for hip fracture?
- 3. Do BMD and factor-of-risk recover to baseline levels after returning to Earth?

Subjects

- All long duration NASA astronauts who completed missions on the ISS (2000 - May 2009)
 - 20 males (1 repeat)
 - 5 females (1 repeat)

	Women	Men	
Weight (kg)	67.5 ± 4.2	81.4 ± 8.5	p=0.002
Height (m)	1.69 ± 0.03	1.75 ± 0.07	p=0.06
Age (years)	43 (41 to 47)	46 (37 to 54)	NS
Mission Length (days)	175 (134 to 195)	170 (95 to 215)	NS

Outcome assessments: aBMD

- Bone mineral density by DXA
 - Whole body and L hip
 - Preflight
 - 1 month to 1.5 years before flight
 - 80% within 6 months
 - Postflight
 - 5 to 32 days after landing
 - Follow up
 - Annually until "full" recovery, then triennially
 - 1 to 6 postflight scans per person

Outcome assessments: Factor-of-Risk

Factor of Risk =
$$\frac{\text{Fall Force}}{\text{Bone Strength}}$$

- Fall Force: impact force due to sideways fall
 - Estimated from biomechanical model
 - Function of height, weight, soft tissue thickness
- Bone strength: failure strength of hip with sideways fall loading
 - Estimated from mechanical testing of cadaver femora
 - Function of aBMD

Weight and soft tissue thickness do not change in flight

Bone loss is greater in men than women

Factor-of-risk is markedly higher in men and increases more postflight

Many male crewmembers are at high risk for hip fracture postflight

Recovery of bone is incomplete and variable

- Highly variable rate of bone loss and recovery
- Most recovery occurs within first 1.5 years postflight
 - Average slope = +0.038 g/cm²/year
 - No significant change in aBMD after 1.5 years
- n of people who don't reach baseline BMD in
 1.5 years

5

Strengths and Limitations

Strengths

- Large data set of long-duration NASA astronauts
- Accounts for other biomechanical factors leading to hip fracture
- Limitations
 - Femoral strength estimated from DXA aBMD measurement
 - Modeled for sideways fall only
 - Small sample set

Conclusions

- Male astronauts experience a greater decrease in hip BMD than females after exposure to microgravity
- Men have a significantly higher factor-of-risk than women
 - Due to less soft tissue padding and greater height and weight
- Most recovery of BMD occurs within the first
 1.5 years after return.
 - 5 male astronauts continue to be at high risk for hip fracture 3 years after return

Why do men lose more than women?

Possible explanations

- Physiological
 - Estrogen is protective for pre-menopausal female crewmembers
- Environmental
 - Men are stronger than women and max out the exercise equipment
 - iRED can only provide 135 kg of resistance

Acknowledgements

- Lisa King (NASA JSC)
- Ben Roberts (BIDMC)
- Funding: NSBRI Bioastronautics Fellowship

Estimation of Fall Force

- g = 9.81 m/s²
- h = height of c.g.
- m = effective mass
- k = stiffness constant

Soft tissue thickness

Estimation of Femoral Strength

 Mechanical testing of cadaver femora to failure in sideways fall configuration

 Linear regression used to predict subjects' femoral strength

Estimated Femoral Strength (N) =

 $10118 \, x \, \text{TrochaBMD}(g/\text{cm}^2) - 1512.5$

Roberts, Bone 2010