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Background 

•  The idea to power aircraft with electric 
motors has been around a long time 
–  Patents filed in 1943 for both battery and 

piston-engine hybrid electric airplanes 
–  Progress limited by key technology barriers 

>  A source of electricity with power and energy 
densities suitable for aircraft 

>  Electric motors with high power/weight ratios 

•  What has changed 
–  Environmental concerns are accelerating 

development of electric power-system 
technologies that have the potential to 
overcome the historical barriers 



Worldwide Interest in Piloted Electric Aircraft 
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Yuneec E430 – 2009 
Li-ion battery 

~1.5-2 hr with 60 mph cruise 

Boeing Dimona – 2008 
PEM fuel cell + Li-ion battery 

62 mph for 20 min 

Antares DLR-H2 – 2008 
PEM fuel cell + battery 

106 mph, 10 min flight, 465 mi range 

DigiSky SkySpark – 2009 
Li-Polymer battery 

155 mph, 8 minute flight 

Pipistrel Taurus – 2007 
Li-Polymer battery 

65 mph 1.0 hr 
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Why Now 

•  Increasing public awareness of 
environmental and climate concerns 

• Maturation and accelerated development of 
key enabling technologies 

• Possible near term market opportunities with 
reasonable paths for growth 

5 
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Critical Technologies for Electric Aircraft 

Fuel-cell 

Battery/Energy Storage 

Hydrogen Storage 

Electric Motor 



Non-Cryogenic Electric Motors 
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Recently developed 
lightweight motor by University 
of Oxford claims to have high 

power density 

•  Power density of non-cryogenic motor will continuously increase with the 
growth in electric car market (> 6 kW/kg motors can be expected in future). 

•   > 20 kW/kg power density can be achieved for cryogenic motors   
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Battery Energy Storage 

Fuel-cell power-systems will require some battery storage to balance power demands 

Battery technologies in 
development have the 
potential for 10X increase in 
storage capacity over currently 
available Li-ion batteries 
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Fuel Cell Systems - Advantages / Disadvantages 

•  Proton Exchange Membrane (PEM) Fuel-cell: 
–  More mature, operational in cars, high power 

density demonstrated 
–  Need pure H2, availability and storage challenge 
–  Lower operating temperature (low quality heat 

released) needs larger heavier heat exchanger 
•  Solid Oxide Fuel-Cell (SOFC) 

–  Less mature, currently low power density systems 
–  30-45 minute startup warm-up  

>  Battery startup operations could reduce impact 
–  Can use hydrocarbon fuels 
–  Efficiencies greater than 60 % for hybrid system 

>  Fuel-cell with gas turbine bottoming cycle 
–  Higher power density needed for mobile systems 

>  Pathway exists to achieve higher power density but will 
require significant technology development 
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State of Fuel-cell Technology 

Commercial PEM Fuel Cell 

Developmental SOFC 

Balance of Plant Contributes 
Significant Weight (~50%) 

•  Significant opportunity exists to reduce weight of balance of 
plant through use of lightweight materials and composite 
materials (~50% weight reduction possible) – 1 kW/kg stack 
would correspond to 0.66 kW/kg at system level 

•  Effective system integration may yield further weight reductions 

0.5 kW/kg at 
system level 

1.25 kW/kg at 
system level 
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Hydrogen Storage 

Extensive Research Underway 
on Solid State Hydrogen Storage 

Complex hydrides 

Microspheres 

Nanotubes 

•  Current available: 3-6 wt% 
•  Potential for > 15 wt % based 

on theoretical limits 

Gravimetric Density (% weight Hydrogen) 
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Power-system configuration options 

IC: Internal (Intermittent) Combustion 
PEM: Proton Exchange Membrane 
SOFC: Solid Oxide Fuel-Cell 
PM/D: Power Management/Distribution 

Energy Storage 
(Chemical) 

Energy Conversion 
(Mechanical Final Output) 

Hydrocarbon 

Hydrogen 

Electrochemical 
Battery 

Chem - Elect 
Electric Motor 

Elect - Mech 

IC Engine 
Chem - Mech 

Fuel-cell (PEM) 
Chem - Elect 

Reformer 
CnH2(n+1) - H2 

Electric Motor 
Elect - Mech 

PM/D 
Elect - Elect 

PM/D 
Elect - Elect 

Baseline 

Fuel-cell (SOFC) 
Chem - Elect Systems boundary 
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Comparing Electric Aircraft Power-systems 

•  Power-systems are normalized by maximum power and 
total available energy 

•  System weight is used as a figure of merit 
•  Two reference mission used as a basis for comparison 

–  Light Utility General Aviation (GA) 
>  3525 lb GTOW 
>  170 Knts 
>  300 HP 
>  4.75 hr endurance 

–  Light Primary Trainer 
>  1100 lb GTOW 
>  85 Knts 
>  67 HP 
>  1.5 hr endurance 

•  Electric aircraft synergistic advantages not considered 
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Analytical Approach 

•  Vehicle Power-systems are decomposed into energy storage and 
energy conversion subsystem components 
–  Energy storage components 

>  Fuel: Hydrocarbons, H2, electrochemical… 
>  Containers: tanks, pressure vessels, batteries… 

–  Energy conversions components 
>  Chemical to mechanical: Combustion Engines 
>  Chemical to electric: Fuel-cells, Batteries 
>  Electric to electric: Power Management 
>  Electric to mechanical: Electric Motors 

•  Storage component weights scale to energy requirement 

•  Conversion component weights scale to power requirement 

•  Weight of Power-systems providing equivalent mechanical 
energy (Power delivered over time) is the primary figure of merit 
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Power-system Energy Model 

•  ER: Energy Requirement 

•  ES: Total stored energy 
€ 

ER = Pn( )
n

m
∑ tn( )

Where:  Pn is power level for interval n 
 tn is time at interval n 

€ 

ES = ER
η1( ) η2( ) η3( ) η4( )

Where:  ηn is efficiency of energy 
conversion component n 

Reference Missions:   
 Light Utility GA  ER    = 800 kW*hr 
    Pmax = 225 kW 
 Light Trainer  ER    = 60   kW*hr 
    Pmax = 50   kW 
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Power-system Weight Model 

•  WS:  Total system weight 

•  WES: Sum of energy storage  
 component weights 

•  WEC: Sum of energy conversion 
 component weights 

€ 

WS =WES +WEC

€ 

WES = ES( )
n∑ γ n( )

€ 

WEC = Pmax( )
n

m
∑ θn( )

Where:  Pmax is Maximum power 
 γn is the weight scaling factor for energy storage component n 
 θn is weight scaling factor for energy conversion component n 
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Energy Storage  
Typical and Projected Performance Parameters 

Energy Storage weight factors: γ (energy density) 

•  Fuels 
–  Hydrogen (H2)  33.5  kW*hr/kg 
–  Kerosene (C12H26)  14.3  kW*hr/kg 

•  Batteries (η = .98) 
–  Li-S            (2010)  0.25  kW*hr/kg 
–  Li-ion/Li-S (2015)  0.65  kW*hr/kg 

•  Tanks                   Fuel/Tank wt ratio 
–  Liquid HC  10.0 
–  H2(gas)    (2010)  0.06 
–  H2(gas)    (2015)  0.10 
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Chemical and Electrical Energy Conversion 
Typical and Projected Performance Parameters 

Energy Conversion weight factors; θ (power density) 

•  Fuel-cells (η = 50%) 
–  Proton Exchange Membrane (PEM) 

>  2010: Automotive systems  0.9 kW/kg 
>  2015  1.5 kW/kg 

–  Solid Oxide Fuel-Cell (SOFC) 
>  2010  0.25 kW/kg 
>  2015  0.50 kW/kg 

•  Power management/distribution (η = 97%) 
>  2010: Automotive systems  5.0 kW/kg 
>  2015  8.0 kW/kg 
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Mechanical Energy Conversion 
Typical Performance Parameters 

Energy Conversion weight factors; θ (power density) 
•  Internal Combustion Engine (η = 30%)  1.0 kW/kg 

–  Continental IO-550 (300 HP)  0.984 kW/kg 
>  Power = 224 kW 
>  Weight = 227 kg 

–  Rotax 912S (100HP)  1.10 kW/kg 
>  Power = 74.6 kW 
>  Weight = 68 kg 

•  Electric Motors   (η = 95%)  3.4 kW/kg 

–  Tesla Automobile (244 HP)  3.49 kW/kg 
>  Power = 182 kW   
>  Weight = 52.2 kg 

–  Honda FCX (134 HP)  2.96 kW/kg 
>  Power = 100 kW 
>  Weight = 33.8 kg 

•  Gas Turbine (η = 34%)  5.1 kW/kg 

–  P&W PT6A (1500 HP) 
>  Power = 1125 kW 
>  Weight = 220 kg 
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Light Utility Aircraft 
Power-systems weight comparison 

GTOW 3564 kg 
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Light Primary Trainer 
Power-systems weight comparison 

GTOW 
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 Current              Piston Equivalent 
• PEM   

–  Efficiency; η  50%  60% 
–  Power density; θ  0.9 kW/kg  2.5 kW/kg 
–  Battery energy density; γ  0.25 kW*hr/kg  0.75 kW*hr/kg 
–  Fuel/Tank weight ratio; ρ  0.06  0.20 

• SOFC 
–  Efficiency; η  50%  65% 
–  Power density; θ  0.25 kW/kg  0.90 kW/kg 
–  Battery energy density; γ  0.25 kW*hr/kg  0.75 kW*hr/kg 

• Pure Battery 
–  Battery energy density; γ  0.25 kW*hr/kg  2.35 kW*hr/kg 

Electric power-systems performance targets to 
match a piston engine Light Utility GA Aircraft 
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•  Available electric motor and power-management systems are 
adequate, however significant technology challenges remain in the 
development of batteries, fuel-cells, and light weight H2 tanks 

•  Battery powered aircraft will require a 10X energy density increase 
to match Light Utility GA piston performance, but looks like a viable 
option for Light Primary Trainer aircraft in the near future 

•  Several potentially viable approaches exist for electric propulsion-
systems and targets for component performance have been 
identified, but significant development work remains before the best 
solution is known 

•  The rate Electric Aircraft Propulsion technologies are advancing is 
encouraging and holds the promise of new more capable aircraft in 
the near future. 

Summary 


