
 

1.  INTRODUCTION 
 

Space offers countless raw materials and opportunities for 

exploration and profit [1].  However, the large gravity field of 

Earth makes any forays into space very expensive.  In the mid 

1970s the idea was formed  [2] to create large space habitats in 

the 5
th

 LaGrange Point (L5) that would be employed to 

construct Space Solar Power Satellites (SPS).  The LaGrange 

Points are regions in space near the Earth and the Moon where 

the gravitational fields of the two bodies cancel.  These 

Satellites [3] would beam power down to Earth, converting the 

energy of the Sun in space into a cheap and abundant energy 

source on Earth.  In 1975 NASA began to study these 

concepts.  One of the first comprehensive reports was from the 

1975 summer study hosted at the Ames NASA Center entitled 

“Space Settlements: a Design Study.”  The study advocated a 

combination of 10,000 person habitats and other facilities to 
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ABSTRACT: Gerard K. O’Neill combined his concept for large free space habitats with Peter Glaser’s 

concept for Space Solar Power Satellites (SPS), and with the use of extraterrestrial (Lunar and asteroid) 

materials, to form an economic model.  This economic model for SPS production and human space settlement 

was published in the journal Science (1975), studied in detail during two Cal Tech/NASA Ames Summer 

Studies (1974, 1976) and presented to the Senate Committee on Science and Technology (1975).  The model 

showed that after a substantial investment in space infrastructure mainly to create lunar mining and in space 

manufacturing facilities the production of SPS could be achieved with a very high profit margin and economic 

break even would occur in 20 – 30 project years (dependent upon program decisions), after which large profits 

would be accrued in additional to enabling tens of thousands of permanent settlers in free space habitats.   The 

program was not implemented primarily because of the high initial program costs and long time to economic 

breakeven and profitability.  In the work described in this paper, the O’Neill – Glaser financial model was 

rebuilt, tested, and modernized to more current inflation and energy costs.  Analysis of the results show that the 

use of space resources and space based labor is essential to the plans economic viability.  However in the past 

implementation of the model the habitat size was fixed to meet O’Neill’s vision of large vista environments of 

sizes that accommodate  40 thousand to 4 million people.  The first of these habitats would take decades to 

complete.   Space based labor (colonists living, some with their families, in permanent nearly Earth-supply 

independent O’Neill habitats) is a prime cost saver for the O’Neill – Glaser model.  Thus, in our study we 

allowed the habitat size to vary in order to determine the economic optimum.  As in the original O’Neill – 

Glaser model, the first ten program years (Phase 1) are reserved to build the lunar mining base (which would 

employ about 200 people) and the in space manufacturing facility.  This construction would be accomplished 

primarily with Earth derived materials.  After completion of this infrastructure all manufacturing would utilize 

90% or more of lunar materials greatly decreasing launch costs.  The resulting financial optimum habitat sizes 

for the O’Neill – Glaser model is from 60 – 360 person bolo habitats.  This size range was optimum because 

the first O’Neill habitat and SPS could be built in the first year of the SPS/Habitat construction phase (Phase 2).  

In addition, our analysis shows that after these smaller O’Neill habitats are built (in the quantity needed to 

support SPS construction) for 10 years, the manufacturing capability in space becomes so large that it is 

insensitive to habitat size enabling the economic construction of large vista habitats as envisioned by O’Neill. 
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meet the projected energy needs for new power generation in 

the US and the rest of the world.  This required an investment 

of $1,400 Billion (in 2005 dollars) and had an economic 

break-even time of 38 years [4].  The uncertainties associated 

with this large investment and time scale for economic return 

made the 1975 NASA study proposed program cost 

prohibitive even with its large potential benefits.  The purpose 

of this paper is to study how the initial cost and economic 

break-even time can be minimized by varying habitat size.  

The details of the 1975 NASA report provide a set of 

engineering parameters and financial assumptions which were 

used for the calculations.  The cost data was inflated to 2005 

dollars and the US and world energy requirements and energy 

costs were updated to 2005 values.  With this basis we studied 

the optimum geometry and size of habitats in order to 

maximize the potential economic benefit of space habitats and 

SPS.    

 

 
 
FIGURE 1.  The economics of using space resources relative to 

Earth launch is compared by showing the cumulative cost for sending 

50 kt/yr of material from the Earth or from the Moon.  The cost from 

the Moon includes the $283 billion required to build a lunar base and 

other necessary infrastructure. 

 
Two of the main themes that this paper builds upon are that 

space labor and space resources are cheaper than Earth based 

labor and resources when working in space.  The use of space 

resources is imperative to enable economically reasonable 

space exploration [5], settlement [6], and space 

industrialization and solar power development [7].  Launching 

advanced lightweight solar power satellites from Earth can be 

cheaper than using space resources when few units are 

launched [8]; however, Earth launched solar power satellites, 

even using advanced technologies, are not economically 

competitive [9] unless Earth launch costs can be greatly 

reduced.  Space solar power satellites might be constructed 

autonomously from Earth, but only with significant 

advancements in technology [10].  Using space resources, 

such as metals from the Moon as construction materials, has a 

high initial cost but a much lower cost per unit produced and 

transported into space.  Figure 1 shows the difference in cost 

when bringing just 50 kilotons per year to L5 from the Earth 

or Moon.  The costs given for transporting materials from the 

Earth is obtained simply by multiplying the launch cost by the 

amount of material launched.  The costs for sending materials 

from the Moon are obtained by adding the expenses of 

building the lunar infrastructure to those of sending the 

material from the Moon to L5.  Fifty kilotons is enough 

material for the construction of a 766 person habitat (with 

shielding) or enough to construct about 62.5% of a 10 GW 

solar power satellite.  For Figure 1, a launch cost of $1000 per 

kilogram is assumed (compared to current costs of about 

$10,000/kilogram).  Also assumed for the space resources 

calculation is a $283 billion estimate for the start-up costs, 

which is the value assumed in the 1975 NASA Report [4] 

inflated to 2005 dollars.  The method for obtaining the yearly 

costs of the space resources will be covered in detail in the 

Methods section of this report.  In short, while SPS lunched 

from Earth are still not economically viable, utilizing space 

resources for SPS construction is economically compelling 

after about the third satellite even using decades old 

technologies.   

 

The energy required for transporting materials to L5 or to 

Geosynchronous Orbit (GEO) is a factor of almost 20 times 

greater from the Earth than from the Moon, thus using lunar 

materials has high economic benefit.  Figure 1 shows that the 

costs of infrastructure to transport and process the lunar 

materials ($283 billion) are recovered in less than 3 years.  

After 10 years, the cost of transporting material from the 

Moon is cheaper by $700 billion.  In addition to the large 

economic benefit, using space resources has the added bonus 

of building infrastructure for further space development and 

exploration such as ventures to asteroids or Mars and enables 

the human settlement of space. The benefit of the investment 

in space resource utilization continues indefinitely into the 

future. 

 

Space based labor also proves to be far cheaper than Earth 

based labor for large space endeavors.  Space labor is the labor 

of people living in space almost completely independent from 

Earth.  If a community is created in space which creates its 

own products and grows its own food, it is cheaper than a 

community in space using Earth supplies because of the 

exorbitant costs of transportation from Earth to space.  

Workers based in space using Earth resources require a 

constant resupply of materials launched from Earth.  They 

must be rotated back to Earth every six months, and their 

salary must also be supplied from Earth.  Workers living in a 

near independent and moderately comfortable permanent 

space habitat could be paid mostly using goods constructed in 

space.  Each habitat could have a large agriculture section, in 

which food is grown.   Living in permanent habitats also has 

the added benefit of attracting individuals who are betting 

their future on the project.  Creating temporary, unshielded 

“construction shacks,” (as was done in part in the NASA study 

[4]) has high cost for transportation and re-supply of the 

workers.  The economic consequence of this can be seen in 

Figure 2.  The cost of Earth based workers is obtained by 

multiplying 614 workers by their wages of $38,420 and the 

cost of buying and sending 1.67 tons (at $19.11 per kilogram) 

of resupply material from Earth.  The cost of Space based 

labor is obtained by the cost of building and maintaining one 

space habitat for 614 workers, and paying each space settler 

the equivalent to launching 100 kg from Earth.    In the 

habitats for the 
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FIGURE 2.  Cost for 614 Earth based labor versus space based 

labor. 

 
space settlers only a fraction of the inhabitants work in 

construction.  The habitat in which only 44% are workers will 

be larger than the habitat in which 80% are workers.  

Examining Figure 2, it is apparent that the costs of using Earth 

based personnel (salary, transportation, and resupply costs) 

quickly exceeds the cost of using space based labor housed in 

the space habitats described later in this paper after less than a 

years of operation.  Using space settlers instead of temporary 

workers not only begins the human settlement of space, but 

also provides much cheaper, more comfortable and dedicated 

workers for the project.  

 

 

2.  METHODS 
 

In previous papers [11] the concept of a minimum habitat size 

for beginning space settlement was introduced.  The study 

described in the current paper (presented previously in 

abbreviated form [12]) was designed to test the effects of 

Space Habitat size on the economics of Space Solar Power 

Satellites construction.  The model for the underlying 

engineering concepts was the 1975 NASA report [4] that was 

considered the most comprehensive prior treatment of the 

topic.  All the costs have been updated according to the 

inflation rate of 383.42% from the year 1975 to 2005 [13]. 

 

In the NASA study [4] the first 10 year period was utilized for 

research and development, lunar base construction, and other 

initiation costs.  To expedite comparison of habitat size, this 

study assumes the common cost equal to the inflated value 

derived in the NASA study [4] for the first 10 years and 

begins the comparison at year 10 of the project.  Each of the 

figures in the Results section thus starts at project year 10.  

This corresponds to beginning the analysis when the necessary 

infrastructure is in place to begin building.   

 

A summary of the activity during these ten years as envisioned 

in the NASA study [4] is as follows:  The first five years are 

devoted to research and basic construction on Earth.  At year 5 

a temporary habitat for 200 people is created in Low Earth 

Orbit (LEO).  With a 10 Megawatt (MW) nuclear power plant 

and a material fabrication plant, the station at LEO starts 

creating products.  At year 9 a L5 space station is created 

along with the transfer of three 20 MW solar power satellites 

to provide power for the station.  Lunar Landers, which have 

been researched from year three, are then created.  On year 

ten, a 120MW nuclear power plant is landed on the Moon.  

Also in this year, the Interlibrational Transfer Vehicle (ITV), 

the mass driver, and the mass catcher are fully developed.  

These three pieces of equipment take the raw materials from 

the Moon and transport them to their destination.  The Lunar 

Base begins operation on Year 10.  The total cost for this is 

estimated to be $283 billion in 2005 dollars. 

 

Space Solar Power Satellite construction offsets the costs of 

large scale human habitation in space and provides return on 

the investment.  To determine how many new SPS per year 

are required, the growth rate of the demand for electricity in 

the world is assumed to be a steady 2.4 percent per year.  The 

total demand for electricity during 2004 was 1,875 GigaWatts 

[14, 15].  For this analysis, a start date of 2010 is used, so year 

12 of the report (the first year SPS are created) would 

correspond to the year 2022.   

 

The business plan for the SPS industry is to capture the world 

growth and replacement market for electricity, so only 2.4% of 

this electricity is provided by space industry.  The replacement 

market is 4.32 times smaller than the growth market.  So the 

total electrical needs fulfilled by space power are taken to be 

2.96% of the total world electricity requirement.  The model 

for market penetration for the first 10 years is as follows: 10, 

12, 16, 20, 25, 32, 49, 45, 50, and 60 percent of the world 

electrical growth and replacement market.  For the years after, 

this market penetration is taken to be 100 percent of the 

growth and replacement market.  This market penetration is 

achieved by pricing the electricity 20% below all competing 

Earth based sources. 

 

The demand formula is then 

 

 

 

 

To find the number of 10 GW SPS that are created each year, 

the demand found by Equation (1), is divided by 10 GW, and 

then rounded to the nearest whole number.  These SPS then 

generate income.  The business plan is to charge 80% of the 

current industrial average price for electricity. The average 

price in the United States is 891 mils (where 1 mil =0.01¢), 

and so 80% of this is 712 mils (Public Policy Institute, 2007).  

The economic benefit, b, in billions, of the SPS program could 

then be calculated as the total population of SPS, ps, times the 

10 million kilowatt-hours they produce multiplied by their 

operational time (95%) times the amount of hours per year 

they are operational, times the price per kilowatt-hour (in 

billions). 

 
97 100712.03652495.010spb  (2) 

 

The Solar Power Satellites (modeled after the Glaser design 

[3]) are made of 80 kt of material and take 2,950 worker-years 

to complete.  Some of this material is purchased on Earth and 
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transported to L5.  The cost of this material is $17.67 billion to 

purchase and $11.04 billion to transport.  The amount of 

material required from Earth is assumed to decrease at an 80% 

learning curve, decreasing the purchase and transport cost.  

The amount of labor required is taken to stay the same as a 

worst case scenario, except when otherwise stated.  When 

these SPS learning curves are incorporated into the model, a 

more conservative learning curve of 90% is used to account 

for the differing levels of expertise of the crews working on 

the Satellites.  There is also a maintenance cost for the SPS.  

This fee is $115 million per year, which can be approximated 

over the lifetime of the satellite by multiplying by 10.  So the 

total maintenance cost per satellite is $1.15 billion. 

 

The learning curve can be produced using the formula: 

 
)2ln()ln(cuaw  (3) 

 

The standard learning curve of 80% (c = 0.8) which has been 

found to be a reliable model in airplane construction [16].  

This means that each time the amount of machines created 

doubles, the work and price decrease by 80%. 

 

The bulk of the material for the construction of the satellites 

and the habitats must be transported from the Moon.  The cost 

of the transportation to L5 and the cost of construction 

(inflated to 2005 dollars) at L5 are taken from the 1975 NASA 

report [4].  The costs associated with the transportation of 

material come from the Mass Driver, the Mass Catcher, and 

the Interlibrational Transfer Vehicle (ITV).  These are the 

machines which move the material.  The Mass Driver 

launches the lunar soil or regolith from the surface of the 

Moon, the Mass Catcher collects this material at L2, and the 

ITV transports the regolith to L5.  The ITV, the Mass Driver, 

and the Mass Catcher each have costs associated with them.  

Every year, there must be enough of each to handle the mass 

needs of that year.  But since these continue working, only as 

many need to be created each year to handle the increase in 

tonnage over the last greatest tonnage requirement.  These 

costs as well as the mass transfer capacity of each machine are 

reproduced in Table 1.  The transportation costs from the 

Earth to the place of construction are estimated at $1,840 per 

kilogram ($480/kg in 1975 dollars), which is taken from the 

NASA report [4] for transfer from Earth to L5.  Even though 

current launch costs are higher this rate was considered 

reasonable when the required increase in launches per year is 

considered. 

 

Since the radius of the bolo spheres are small compared to the 

length of the rotation tether between them, most of the bolo 

volume is between 0.8 and 1 gravity.  The volume of the bolo 

can thus be divided into decks in the classic metallic view of 

space stations.  Our proposed bolo design consists of one 

double sphere on each end of a rotation tether.  The outer 

compartment would be shielded for habitation.  Each of these 

inhabited spheres would be next to another sphere, this one 

shielded for agriculture.  The tonnage of lunar material needed 

for a bolo can be found the same way as for two spheres, since 

only two of the spheres are shielded. The structural weight of 

the agricultural spheres are assumed to be 

3

33.33400
r

tons.  This is obtained using the structural 

weight of a 33.3m bolo in the 1975 NASA Ames report [4].  

The population of a bolo can be found by calculating the 

volume of the habitable spheres and dividing it by 35m
2
 * 

3.1m.  Thirty five m
2
 is the amount of space an individual 

needs in a high density environment (not including space for 

food production) and 3.1m is a reasonable height for each 

deck.  After financial break even, as will be discussed later, 

habitats can economically be built assuming 47m
2
 for the 

amount of space an individual needs corresponding to a low 

density “large vista” environment.  The two habitation spheres 

with their high shielding mass would act as the primary 

counterweights allowing for the rotation of the bolo. 

 

 
 

Some figures use models with a learning curve for the 

habitats.  For these, an 80% learning curve is used on the labor 

required.  However, the learning curve is assumed to stop after 

a 75% decrease. 

 

The concept for an Interlibrational Transfer Vehicle in the 

NASA report [4] uses some cargo (lunar regolith) for reaction 

mass to achieve propulsion.  A round trip requires a quarter of 

the cargo for propellant.  Thus 625 kt must be put in an ITV 

for it to transport 500 kt of material to L5.  Therefore the Mass 

Drivers and Mass Catchers must move 1.25 times the amount 

of material needed. 

 

Each Mass Driver requires power from a lunar rectenna which 

receives power from a solar power satellite orbiting the Moon.  

Each Mass Driver requires 0.1071 of the power received by 

the rectenna.  Each rectenna costs $8.7 billion.  The price and 

labor decrease with an 80% learning curve based on how 

many are produced.  Given the amount of mass drivers for a 

year, the amount of rectenna needed and their operating costs 

can be calculated.  

 

The regolith is processed and turned into usable products at L5 

in the Material Processing and Fabrication Plants.  Each of 

these is sized to process 1 Mt of lunar rocks per year.  The 

number of plants built each year is that required for the 

construction of the SPS and habitats.  While the first of these 

plants comes from Earth, each of the following will be built 

using material from the Moon.  Each plant is made of 10.8 kt 

of material that must be transported from the Moon to L5. 

 

To develop a scenario that could begin implementation with 

current launch systems, we studied an initial 50 space worker 
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startup that begins by building smaller 384 person habitats 

(compared to the 5000 space worker startup prior to the 

construction of the 10,000 person habitats used in the NASA 

study [4]).  In the case of habitats that cannot be built in a 

single year, it is assumed that there are no extra workers 

brought in, and the number of workers stays at 50.  Once a 

habitat is complete, all workers live in the habitat and there are 

no Earth-based workers that require 6 month rotation between 

Earth and space.  To maximize the economic payback, there 

must be just enough total workers in space each year to 

construct the SPS for that year, as well as to build habitats to 

keep up with the increased demand for SPS.   As was assumed 

in the NASA study [4], the settlers are paid in materials 

constructed on the habitats, as well as by 100 kg/year from 

Earth.  The materials from Earth are assumed to be purchased 

at $19.2 per kilogram, and transported to L5 at $1,840 per 

kilogram.   

 

To maintain the operations on the Moon, 70 workers are 

needed to create each mass driver and 75 workers are required 

for the maintenance of the mass drivers.  The amount of 

workers decreases at an 80% learning curve.  Also, new lunar 

rectennas need to be built by lunar workers.  Each lunar 

rectenna requires 277 workers for construction.  Twenty 

percent of the workers on the Moon are assumed to be 

working on other lunar base related tasks.  The lunar base 

could hold agriculture, and be mostly independent from Earth; 

thus lunar workers are assumed to be paid the same as settlers.  

 

The cost of the initial supplying of the habitats is taken from 

the 1975 NASA report [4].  This calculation is for the 

transportation of nitrogen and hydrogen from Earth, the 

transportation of plants and animals, the purchase and 

transportation of some equipment from Earth, and for the 

transport of the settlers from Earth.  The NASA study [4] 

concludes that this is $29.02 billion (2005 dollars) for every 

10,000 people.  Since this cost is directly proportional to the 

amount of settlers, to find the cost per habitat, multiply the 

$29.02 billion times the amount of settlers in the habitat over 

10,000. 

 

Using the above, the cost and benefit per year can be 

calculated when given the tonnage and personnel capacity of a 

certain space habitat.  But these factors must be calculated as 

well.  For this, simple geometry as well as previous models 

done by the 1975 Ames sponsored NASA report [4] are used.  

 

 

 

3.  RESULTS and DISCUSSION 
 

Analytical and spread sheet models were developed using the 

methods described above and refined to predict as close as 

possible the economic data reported in the 1975 NASA report 

[4].  These models then allow the systematic study of effects 

of variables such as habitat size, that were not previously 

analyzed in depth, on the economics of SPS production. 

 

 

 

 

3.1  The Economic Advantage of Beginning with 

Small Permanent Space Habitats 

 

The primary hypothesis tested in this study is that starting with 

small permanent space habitats yields improved economics 

compared to the classic approach of temporary space workers 

building large (10,000 person or more) habitats.  To test this 

hypothesis a model was created to directly compare habitat 

sizes with the 1975 Ames hosted NASA study [4] model.  In 

order to fix variables other than habitat size, this initial 

calculation relies on the NASA study data completely, and 

uses all the data corresponding to a 1975 start date including 

using 1975 dollars.  The in space society productivity is also 

calculated based on the NASA study value of 44% per habitat 

working on SPS and new permanent habitation.  The shield 

weight is 5 tons per square meter.  A learning curve similar to 

that found in the NASA study is applied to the work required 

for SPS.  Eighty percent learning curves are used for the 

habitats, and are added to the cost for buying the material for 

the Mass Catchers, Mass Drivers, and ITVs.  The benefit from 

the SPS is reduced to the 1975 value of 141 mills per kilowatt 

hour.  Following the NASA study, the cost of transportation is 

reduced in year 22 from $480 per kilogram (in 1975 dollars) to 

$110 per kilogram.  While there was not enough information 

to duplicate all the details of the NASA report we believe that 

the calculation has fidelity within 5 %.   

 

Figure 3 shows the comparison between small bolo habitats 

and the large torus habitats built using temporary space 

workers housed in orbital construction shacks.  The bolo 

program relies solely on permanent space labor and use no 

temporary space construction shacks after the first year.  The 

results given in Figure 3 show that the small bolos, relative to 

the large vista cylinders, require only about one quarter of the 

investment, and reach economic break-even 10 years sooner. 

 

 
 
FIGURE 3.  A Comparison of small bolos to the 1975 NASA Ames 

study [4] using an almost identical model (1975 economics).  This 

shows the economic benefit of early spaced based labor achieved 

through smaller permanent habitats 
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FIGURE 4.  Estimate of the economic benefits from productivity 

increases since 1975 (2005 energy demand and water shielding) 
 

  

3.2  The Economic Effects of Space Worker 

Productivity and Learning Curves 

 
The value for worker productivity per man year, MY, used is 

taken from the NASA report [4] to be 12 tons of structural 

mass per year for habitat construction and 28 tons per year for 

SPS construction.  In the 30 years since the Ames hosted 

NASA study, technology has advanced substantially yielding 

increases in automation and human productivity.  Technology 

and automation improvements since 1975 combined with the 

smaller scale of the proposed bolo habitats makes an increase 

in worker productivity for space construction likely.  To 

account for this productivity increase we maintain the tons per 

man year numbers above but assume that the society 

productivity increases so that now only 20% of the settlers are 

needed for maintenance and other projects on the habitats, 

which permits 80% (instead of 44%) of the settlers to build 

SPS and more space habitats.  The economic difference 

caused by this increase in productivity would result in an 

economic break even about 2.5 years sooner as can be seen in 

Figure 4. 

 

The economic calculations given in the 1975 NASA study [4] 

employ 80% learning curves for habitat construction and 90% 

for SPS construction.  The economic effect of these learning 

curves can be seen in Figure 5.  For the case of 25 MY bolos, 

using the learning curves to reduce the manpower needed to 

create each SPS reduces the time needed to break even by 

about half a year.  The 90% learning curve for SPS along with 

an 80% learning curve for the habitats can be considered a 

probable scenario, while the series without the these learning 

curves could be a worst case scenario.  However, for 

simplicity in the rest of this paper comparisons do not include 

the habitat or SPS learning curves.  These figures are thus 

conservative, and show a worst case learning scenario in terms 

of economic costs and time to break even. 

 

 
 

 
FIGURE 5.  The effects of learning curves on the economics of 5 

Man Year 384 person habitats (2005 costs and efficiencies) 

 

 

3.3  Selection of Habitat Geometry and Initial 

Space Worker Population 
   

Previous designs for space habitats studied include the torus, 

sphere, cylinder and bolo.  In each of these models, the 

agriculture is assumed to be kept in a low-shielding structure 

separate from the inhabited colony.  Table 2 shows critical 

parameters for the large habitats as well as for some of the 

smaller habitats. 

 
TABLE 2.  Characteristics of Habitats of Various Geometries and 

Population Densities 

 
 
For the following calculations we assume that habitats must 

have a three meter thick passive shielding to protect the 

colony’s inhabitants from radiation.  Since it is now known 

that the lunar poles contain excess hydrogen and possibly 

water ice, water is used as the shield material, allowing for 

lighter shielding than rock, and also providing a large water 

storage facility for the colonists.  This water could either be 

obtained from the lunar surface directly, or by combining the 

oxygen from the lunar soil with hydrogen.  The air in the 

structure is assumed to be at ½ Earth atmospheric pressure.    

The structural support would have to keep the air at ½ 

atmospheres as well as to support the spinning of the structure. 

 



7 

 

 
 
FIGURE 6.  Habitat geometry comparison (4000 person start) using 

the 2005 baseline power demand and assumptions shows that the 

bolos are the most profitable. 

 
The classical free space settlements as analyzed by the 1975 

NASA report [4] are large habitats with populations of 10,000 

people or more.  However, because of the massive size, a large 

Earth based space labor force is needed for years before the 

first of these habitats is built.  In order to be economically 

feasible, construction of a large habitat (Table 2) requires 

thousands of temporary workers for a number of years.   

 

 
 
FIGURE 7. Choosing habitat size for optimum economic gain, the 

points represent the total income by year 24. 
 

Starting construction with only 50 workers a year, a 50,000 

man cylinder would take about 200 years to complete!  

Beginning habitat construction with, for example, 25 man year 

construction time (1,922 person) Bolo habitats, enables the 

first two permanent habitats to be constructed in the first year 

with an Earth based work force of only 50 people.  Subsequent 

space based labor would then be exclusively provided by more 

economical space based labor.  

 

In order to compare the economies of space habitats of 

different sizes we begin an analysis using an initial space work 

force of 4000 people.  Figure 6 compares the different designs 

explained in the previous section.  From Figure 6 it is apparent 

that even with an initial space workforce of 4000 people (more 

optimized for the large habitats), the smaller bolos are the 

most profitable solution. 

 

 
 
FIGURE 8.  Small bolos enable a modest first year habitat 

construction work force of 50 workers after which the workers live in 

permanent space habitats lowering costs and enabling space 

colonization. 
 
Since the growth economics is based on the SPS demand of 

that year, the economics of building small bolos does not 

change much with the initial workforce.   

 

3.4  Optimizing Habitat Size 
 

The habitat geometry (as illustrated in Figure 6) that is the 

most economically optimum for early construction is the bolo.  

We next examine the sensitivity of the economics to habitat 

size.  Figure 7 shows the economics of the 4,000 person start 

and of the 50 person start as a function of bolo size.  For the 

Bolo sizes considered (2-200 man years, MY, construction 

time), a 4000 person start represents an initial excess of 

workers and a 50 person start represents a modest starting 

population.  From Figure 7 it is apparent that when the 

habitats get too small, or too large, the economic potential 

decreases.  Considering the 50 person start series, habitats that 

are too large will decrease profits because they increase the 

SPS construction start time relative to expenses and thus 

greatly decrease out year revenues.  However, since smaller 

designs have a small volume to shielding tonnage ratio making 

designs that are too small also decrease out year profits. This 

is illustrated in the 50 person start series in Figure 7.  For the 

4,000 person start the sizes that are the most profitable are 

between 2 and 65 Man Years. In the 50 man start series, only 

bolo sizes from 4-8 MY are economically optimum and the 5 

year bolo has the best possible economic gain.   

 

Figure 8 shows the economic difference between starting with 

a space work force of 4,000 people compared to 50 people.  

Starting with 50 workers, only a temporary structure for one 

year needs to be built.  Starting with 4,000 workers, larger 

temporary housing needs to be built up over several years 

before the construction of the first permanent habitat.  Thus, 

for any bolo habitat smaller than 50 MY, we can take 

advantage of the inexpensive space based labor after the first 

year of construction.  Starting with the same 50 person 

workforce, it would take decades to complete the first 10,000 

person permanent large vista space habitat.   
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Figure 9 shows the details of the economics for bolo sizes 5, 

50 and 100 MY construction time showing the best economics 

is obtained for the 5 MY construction scenario.  

 

 
 
FIGURE 9.  The economics of bolo habitats as a function of size 

with an optimum at 5 Man Years (384 person habitat). 
 

A model for a 5 Man Year Bolo Habitat would have two 6.5 

kiloton shields.  The radius of each of the inhabited spheres is 

17.08 m, and each sphere holds 192 settlers.  If spun at 2 

rotations per minute, the length from the end of the habitat to 

the center of mass would be 245m, which would give 1 

gravity of acceleration at the end of the inhabited spheres.  

Each habitation sphere would have an associated lower 

shielding agriculture sphere. 

 

3.5  Progressing from a Space Power Intensive to 

a Space Real Estate Intensive Economy 
  

When 100% market penetration is achieved, the increase in 

production of the SPS slows considerably, but the profits rise 

dramatically.  At this point in time, about 24 years into the 

program, the industrial capacity above that needed to continue 

meeting the world power demand can be applied to building 

habitation.  In other words the excess capacity can be applied 

to space real estate production.   

 

Large cylinders could be built, with the previously built 

habitats put inside the cylinder as houses or apartment 

buildings.  Some of the connection tubes would be left on the 

habitats and attached to the center of the cylinder as a support 

structure.  Also, the water from the bolo’s shields could be 

pumped into the cylinder’s shields.  This would allow all the 

settlers to be moved into a large, spacious environment.  The 

population density could decrease substantially.  At this point 

of great profit, new habitats could be built in a large-scale 

fashion with beautiful vistas as envisioned in the Gerard 

O’Neill space settlements (1974). 

 

With the excess space industrial capacity, enabled by SPS 

profits, applied to developing space habitation, the population 

in space could substantially increase over the next decades.  

Starting with just 50 people living in space habitats at year 11 

of the project, between 35 and 45 thousand people would live 

 

 
 
FIGURE 10.  Population living in space as optimized to produce 

space solar power satellites (SPS) and capital profits 

 
 

in space by year 28 (Figure10).  This would be a major step in 

the human settlement of space.   

 

If the profits are spent on increasing the population in space, 

as shown in Figure 11, the space population growth could be 

staggering.  Figure 12 shows the space population if the 

workers start building 45,000 person tori or more small bolo 

habitats.   

 

However, we suggest that after the costs of the project are paid 

back to investors with interest in about project year 25, the 

program should transition to providing the maximal additional 

space habitation.  We should remember that the program has 

achieved the production all future electricity demand in a 

carbon free manner and for only 80% of projected Earth 

electricity prices.  The Earth and its inhabitants will reap this 

dividend for the foreseeable future. 

 

 
 

FIGURE 11.  Financial curves assuming that after financial 

break-even profits are applied to maximize the human 

population living in space transitioning from primarily a space 

energy production to primarily a space real estate production 

economy.   
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FIGURE 8.  Population living in space if the SPS profits are invested 

in space real estate. 

 

We suggest that after financial break even, that the endeavor 

be considered as a world utility.  The additional income should 

be applied to maximize the available real estate in space.  This 

scenario is shown in Figure 12.  It can be seen that if the 

profits after financial break-even are invested into building 

habitats and providing transportation of settlers into space, one 

million people could be living in space by about project year 

30.  It is also seen in Figure 12 that after financial break even, 

the industrial capacity in space is so large that the finances are 

no longer sensitive to habitat size.  Thus the large vista 

habitats envisioned by O’Neill can be constructed with little 

financial penalty. 

 

 

4.  CONCLUSIONS AND OPPORTUNITIES 

FOR FUTURE RESEARCH 

 

Creating large space habitats by launching all materials from 

Earth is prohibitively expensive.  However using space 

resources and space based labor to build space solar power 

satellites can yield extraordinary profits after a few decades.  

The economic viability of this program depends on the use of 

space resources and space based labor.  To maximize the 

return on the investment, the early use of high density bolo 

habitats is required.   Other shapes do not allow for the small 

initial scale required for a quick increase in space based labor 

based on settlers in permanent free space habitats.  This study 

found that 5 Man Year, or 384 person bolo high density 

habitats is the most economically advantageous for the 

classical O’Neill – Glaser model assumptions.   The program 

investments are returned with interest by year 24, and over 

45,000 people would be living O’Neill habitats in free space.   

All new and replacement world energy demand would be met 

by carbon emission free space solar power at only 80 % of 

Earth energy costs.   

 

We suggest that after financial break even, that the endeavor 

be considered as a world utility.  The additional income should 

be applied to maximize the available real estate in space.  If 

the profits after financial break-even are invested into building 

habitats and providing transportation of settlers into space, one 

million people could be living in space by about project year 

30 living in the large vista habitats envisioned by O’Neill. 

 

In order to study the effects of initial habitat size on the 

O’Neill – Glaser model economics we purposefully did not 

update the technologies and financial parametric values from 

those used in the classical 1975 economic model as described 

by O’Neill in Science.  We suggest that a new study be 

undertaken to update the financial and technological 

parameters of the O’Neill – Glaser model but with care not to 

eliminate its essence, that is achieving human settlement of 

space in conjunction with the implementation space solar 

power.  

 

 

NOMENCLATURE 

 

c = the learning curve 

D = demand in GW 

p = market penetration for that year in fraction form 

b = the economic benefit in billions of dollars 

ps, = total population of SPS 

u = the amount of units created previously 

w = work done per unit 

y = the year 
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Habitat Size Optimization of the O’Neill – Glaser Economic Model for Space Solar Satellite Production 

Peter A. Curreri, Ph.D., NASA Marshall Space Flight Center, Huntsville AL 35812 

Michael Detweiler, Junction Solutions, Englewood, CO  80112 

Gerard K. O’Neill combined his concept for large free space habitats with Peter Glaser’s concept for 
Space Solar Power Satellites (SPS), and with the use of extraterrestrial (Lunar and asteroid) materials, to 
form an economic model.  This economic model for SPS production and human space settlement was 
published in the journal Science (1975), studied in detail during two Cal Tech/NASA Ames Summer 
Studies (1974, 1976) and presented to the Senate Committee on Science and Technology (1975).  The 
model showed that after a substantial investment in space infrastructure mainly to create lunar mining 
and in space manufacturing facilities the production of SPS could be achieved with a very high profit 
margin and economic break even would occur in 20 – 30 project years (dependent upon program 
decisions), after which large profits would be accrued in additional to enabling tens of thousands of 
permanent settlers in free space habitats.   The program was not implemented primarily because of the 
high initial program costs and long time to economic breakeven and profitability.   

In the work described in this paper, the O’Neill – Glaser financial model was rebuilt, tested, and 
modernized to more current inflation and energy costs.  Analysis of the results show that the use of 
space resources and space based labor is essential to the plans economic viability.  However in the past 
implementation of the model the habitat size was fixed to meet O’Neill’s vision of large vista 
environments of sizes that accommodate  40 thousand to 4 million people.  The first of these habitats 
would take decades to complete.   Space based labor (colonists living, some with their families, in 
permanent nearly Earth-supply independent O’Neill habitats) is a prime cost saver for the O’Neill – 
Glaser model.     

Thus, in our study we allowed the habitat size to vary in order to determine the economic optimum.  As 
in the original O’Neill – Glaser model, the first ten program years (Phase 1) are reserved to build the 
lunar mining base (which would employ about 200 people) and the in space manufacturing facility.  This 
construction would be accomplished primarily with Earth derived materials.  After completion of this 
infrastructure all manufacturing would utilize 90% or more of lunar materials greatly decreasing launch 
costs.  The resulting financial optimum habitat sizes for the O’Neill – Glaser model is from 60 – 360 
person bolo habitats.  This size range was optimum because the first O’Neill habitat and SPS could be 
built in the first year of the SPS/Habitat construction phase (Phase 2).  In addition, our analysis, shows 
that after these smaller O’Neill habitats are built (in the quantity needed to support SPS construction) 
for 10 years, the manufacturing capability in space becomes so large that it is insensitive to habitat size 



and the large multi million person O’Neill habitats can be built with little financial penalty.   The 
economics advantage gained from ten years of smaller habitat production is that the program time to 
financial break even can be reduced by 30 % and the peak expenditure is reduced by 80 %.  The 
improved economics combined with today’s concerns about survivability of the human species on Earth 
make the O’Neill – Glaser scenario quite compelling. 
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A Technological Society Prefers Living in Artificially Constructed Habitats

Rather than live in the trees and caves that nature provides,
Industrialized humans live in constructed homes, towns and cities.

Homesteader's cabin, man and dog along Elwha River

Credit: NPS/OLYM Archives
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Gerard K. O'Neill ,Physics Today, 27(9):32-40 (September, 1974) 

The “Classical” Model of  Space Settlement – Extending Humans Beyond LEO

Rather than live on the 
planets and moons that 
nature provides,  Space Age 
humans will eventually live in 
constructed homes, towns 
and cities in free space.

http://www.aip.org/pt/�
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Using Space Resources is Essential to Enabling the Space Frontier

Saturn V
Total Mass: 2.5 * 10^6 kg 

Exhaust velocity: 3.0 km/s (3000 m/s) 
Burn Rate: 1.6 * 10^4 kg/s 
Duration: 2 min (120 sec) 

Rocket Equation

Relative ~ Costs $

Low Earth Orbit
10 K$/ lb

Transit Hours

Moon
250 K$ / lb

Transit  Days

Mars
750 K$ / lb

Transit Months to Years

U is final, u0 initial (rocket), v is exhaust velocity,
M0 is starting and M is ending mass

(Tsiolkovsky 1903).

Space-time around a gravitating body
is described by Schwarzschild Geometry,

Space-time is  bent by the presence of mass
creating  a gravity well which extends to

the surface of the body or, in the case of a black hole,
to oblivion. (John Walker)

(Gold on Earth = $6k/lb)
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Solar Power Satellite – “the killer app.”

Space Solar Power Satellite suggested by Dr. Peter Glasser in 1968

21 by 5 km Satellite would provide 10 GW to Earth by Microwave Beam

“No alternative at all was found to the manufacture of solar satellite 

Plants as the major commercial enterprise of the colony.”
Johnson, R. D. and Holbrow, C., eds., Space Settlements, a Design Study, SP-413, NASA, Washington, D.C. 197  
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Affordable Space Solar Power + Human Colonies in Free Space
Built using Lunar and Asteroid Materials

Sun pumps out 4 x 1026 watts (40 million times the needs of even a projected Solar System Society).

Senate Committee on Aero and Spa. Sci. Dr. O’Neill, 1976
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Gerard K. O'Neill ,Physics Today, 27(9):32-40 (September, 1974) 

“MODEL ZERO” – SPACE HOMESTEAD

Library of Congress, Farm Security Administration 

CRITICAL MINIMUM SET OF TECHNOLOGIES:

•SPACE HABITAT  THAT SUPPORTS ONE HUMAN FAMILY

•SELF REPRODUCIBLE IN LESS THAN ONE GENERATION

•USES LOCAL ENERGY AND MATERIALS RESOURCES

•ECONOMICALLY VIABLE, SUBSISTANCE FARM 

•INDIVIGUALLY INDEPENDENT

•CAN GROW INTO TOWNS, CITIES AND NATIONS

http://www.aip.org/pt/�
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Johnson, R. D. and Holbrow, C., eds., Space Settlements, a Design Study, SP-413, NASA, Washington, D.C. 1977.

WE USED the 1975 Ames SUMMER STUDY MODEL to TEST the SENSITIVITY of 

SSPS CONSTRUCTION to SPACE HABITAT SIZE
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Some Details of the Economic Model for Space Solar Power
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A Comparison of small bolos to the 1975 NASA Ames project using an almost 

identical model (1975 economics).  This shows the economic benefit of early 

spaced based labor achieved through smaller permanent habitats.

The Economic Advantage of Beginning with Small Permanent Space Habitats 
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ECONOMICS OF EARTH SUPPLIED VS. LUNAR SUPPLIED

INDUSTRY FOR SPACE SOLAR POWER CONSTRUCTION
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Economics of Using Lunar Resources versus launch from Earth
For Construction of Space Habitats and Solar Power Satellites

INTRODUCTION

The economics of using space resources relative to Earth launch is compared by showing the 
cumulative cost for sending 50 kT/yr of material from the Earth or from the Moon.  The cost from the 
Moon includes the $283 billion required to build a lunar base and other necessary infrastructure.



13

THE ECONOMICS OF A EARTH SUPPLIED
VS. SPACE SUPPLIED WORKFORCE
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Economics of Using Lunar Resources versus launch from Earth
For Construction of Space Habitats and Solar Power Satellites

Cost for 614 Earth based (orange) versus space based labor (blue).



15

(a)      (b)      (c)      

(d)      (e)      (f)      

NASA Illustrations

Artists Renditions of NASA Studied Space Habitats 

Cylinders                       Sphere                          Torus 
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Habitat

People

1 RPM

Farm





22m

5m

1km

1g 0g
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*

* Shielded Transport

*

Humans in the Loop Self-Reproducible Self-Sufficient Habitat in Free Space. 

SPACE HOMESTEAD CONCEPTAL DESIGN
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Parker, E.N., “Shielding Space Travelers,”  Scientific American, March 2006, pgs. 40-47,  

5 m of lunar soil or of water shield against solar radiation and cosmic rays 

RADIATION SHIELD for SMALL VOLUME HAB
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The Economic Effects of Space Worker Productivity 

Estimate of the economic benefits from productivity increases since 1975 (2005 energy 

demand and water shielding).
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Selection of Habitat Geometry and Initial Space Worker Population
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Habitat geometry comparison (4000 person start) using the 2005 baseline 
power demand and assumptions shows that the bolos are the most 
profitable.

Selection of Habitat Geometry and Initial Space Worker Population
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Selection of Habitat Size and Initial Space Worker Population

Beginning habitat construction with, for example, 25 man year ((1,922 person) Bolo 

habitats, enables the first two permanent habitats to be constructed in the first year with 

an Earth based work force of only 50 people.  Subsequent space based labor would 

then be exclusively provided by more economical space based labor. 

Note: Starting construction with only 50 workers a year, a 50,000 man cylinder would 

take about 200 years to complete! 
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The economics of bolo habitats as a function of size with an optimum at 5 Man Years 

(384 person habitat). (50 MY = 3846 P, 100 MY ~ 8k P)

Optimizing Habitat Size
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Moving from a Space Power Intensive
to a Space Real Estate Intensive Economy

Population living in space as optimized to produce space solar power satellites 

(SSPS) and capital profits.
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GROWTH INTO TOWNS AND 
CITIES

Propulsion

Manufacturing

Habitat

10 People

1 RPM

Farm





22m

5m

1km

1g 0g

Shield

*

* Shielded Transport

*

(a)  Cylinder, Outside View.   (b) Sphere, Outside View.     (c)  Toris, Outside View.     

(d)  Cylinder, Inside View.    (e)  Sphere, Inside View.    (f) Toris, Inside View.      
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Moving from a Space Power Intensive
to a Space Real Estate Intensive Economy

Population living in space if the SSPS profits are invested in space real 
estate.
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Time Line 
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CONCLUSIONS

Creating large space habitats by launching all materials from Earth is 

prohibitively expensive.  

Using space resources and space based labor to build space solar power 

satellites can yield extraordinary profits after a few decades.  

The economic viability of this program depends on the use of space 

resources and space labor.  

To maximize the return on the investment, the early use of high density 

bolo habitats is required.   Other shapes do not allow for the small initial 

scale required for a quick population increase in space.  

This study found that 5 Man Year, or 384 person bolo high density habitats 

will be the most economically feasible for a program started at year 2010 

and will cause a profit by year 24 of the program, put over 45,000 people 

into space, and create a large system of space infrastructure for the further 

exploration and development of space.


