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Contractor Report

Integrated Evaluation of Closed Loop Air Revitalization System Components

1 Introduction

NASA’s vision and mission statement include an emphasis on human exploration of
space, which requires environmental control and life support technologies. As the target
destination becomes more distant and the target mission duration longer, closed loop life
support systems become increasingly necessary for feasibility and success.

Cabin
Air Residual
Products

Fira Dataction
& Suppression

Contaminant
Control
Subassembly

Figure 1 — Closed Loop Air Revitalization System

An air revitalization system (ARS) includes temperature and humidity control, oxygen
and nitrogen supply and control, carbon dioxide and trace contaminant removal and
carbon dioxide reduction for oxygen recovery. These processes also interact with the
water recovery system. Crew oxygen is produced by the electrolysis of water. The
hydrogen by-product of electrolysis is utilized by the carbon dioxide reduction assembly
along with the waste carbon dioxide to re-form water. This last step, carbon dioxide
reduction, is a necessary step for loop closure that minimizes the resupply needed for
Crew support.

This paper describes the development of components for a closed loop ARS, modeling
and simulation of the components and integrated hardware testing, with the goal of better
understanding the capabilities and limitations of this closed loop system. The integrated
testing included a carbon dioxide removal assembly (CDRA), carbon dioxide reduction
assembly (CRA), and two different compressor technologies that provided the necessary
link between the CDRA and CRA.



1.1 What did we do

The overall test objective was to integrate the carbon dioxide removal assembly with the
carbon dioxide reduction assembly. Two distinct compressor technologies were
developed to provide the function of collecting and storing CO2 from the CDRA before it
is consumed by the CRA. The systems were tested over a range of conditions that
represented both ISS and Lunar surface activities. The test program was conducted from
November 2004 through March 2006 in the Laboratory Module Simulator facility at the
NASA Marshall Space Flight Center (building 4755).

1.2 Why did we do it

The purpose of the integrated testing was to operate the two configurations of ARS
components to determine any limitations or requirements imposed on each component by
the interfacing components. Each of the hardware assemblies (CDRA, mechanical
compressor, Temperature Swing Adsorption Compressor (TSAC), and Sabatier Reactor
Subassembly (SRS)) has been tested independently, and computer simulations have been
run of the integrated system. Testing was required to evaluate the performance of the 4-
bed molecular sieve (4BMS, another name for CDRA), compressor and Sabatier
performance when integrated together and to verify the results from the engineering
analysis. Specifically, the testing was intended to:

= Provide understanding of transients and integration issues;

= Validate baseline operation/control logic for the compressors;

= Validate FORTRAN integrated model of the 4BMS, compressors and Sabatier;

and
= Validate the mechanical compressor and TSAC computer models.

1.3 What did we learn

The testing described herein was the first integrated test of a Four-Bed Molecular Sieve
and Sabatier Carbon Dioxide Reduction Assembly with the interfacing CO2 compressor.
Two compressor technologies were tested, a mechanical oil-free piston compressor and a
temperature swing adsorption compressor (TSAC). The mechanical compressor was
tested under simulated International Space Station parameters. The TSAC was tested
under both ISS and Lunar Base parameters. Both sets of tests provided enhanced
understanding of nominal steady operation and dynamic, transient scenarios that can be
expected to occur in an integrated Environmental Control and Life Support System.

In general, the 4BMS, Sabatier and both compressor technologies were proved
compatible and able to perform their intended functions for a wide range of input
conditions. It is feasible, using these technologies to recover oxygen in the form of
water, to make the next step toward oxygen loop closure. These technologies are ready to
be advanced to the next Technology Readiness Level (TRL) level and put in service in a
flight mission.



1.4 What do we want to do next

This test program showed not only that water recovery is feasible using CO2 reduction,
but it also identified areas where each of the technologies could be improved. These
improvements include upgrades to hardware components, changes to control logic and
the implementation of artificial intelligence or smart controls. Additional testing should
be performed with these systems to better define the proposed modifications to arrive at
the best possible solution.



2 Integrated Test Configuration

Integrated testing of carbon dioxide removal and reduction assemblies was performed at
MSFC over the period from 2004 through 2006. This testing was performed to
understand the interactions between the different subassemblies in order to plan for future
phases of subsystem development. This section details the hardware used in the
integration testing, test configurations and operating parameters, and test results.

Figure 1 below depicts three main elements of an Air Revitalization System (ARS).
These systems and their interactions were the focus of this test program. The three
systems shown below are the carbon dioxide removal assembly (CDRA), the oxygen
generation assembly (OGA) and the carbon dioxide reduction assembly (CRA). The
CDRA collects and concentrates carbon dioxide and feeds it to the CRA. The OGA
electrolyzes water for crew oxygen and feeds the by-product hydrogen to the CRA. The
CRA reacts hydrogen and carbon dioxide to form methane and water. The water is
returned to the OGA, thus partially closing the oxygen loop. The OGA/CRA interaction
has been separately studied by Hamilton Sundstrand, the supplier of the ISS OGA, and is
not reflected in this report. This report focuses on the interaction of the CDRA with the
CRA.
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Carbon Dioxide Reduction Removal Assembly
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' Assembly (CRA)
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Figure 2 — Overall block diagram of the Air Revitalization System (ARS) sub-systems.

The CRA is further separated into two sub-assemblies, the Sabatier Reactor Subassembly
(SRS) and the Carbon dioxide Management Subassembly (CMS). The CMS includes the
compressor and accumulator. The focus of this test program, therefore, is the insertion of
different compressor technologies into the CMS role supporting the requirements of the
CDRA and Sabatier in their respective roles in the overall Air Revitalization System.



The 4BMS, Sabatier and compressors have each been independently tested over a range
of operating conditions. These isolated tests are not covered in this test report, but are
discussed in references [ ], with the focus of this study being to understand the
subsystem interactions. The previous liquid and water-cooled versions of the TSAC were
also tested in conjunction with the 4BMS. These tests are not reported here but are
detailed in references [ ]. The sequence of test configurations presented here were
planned to develop a working ARS originally for use on the International Space Station,
and later as a potential solution for lunar missions. The test configurations are described
below as they were conducted chronologically:

1. 4BMS with mechanical compressor and accumulator — (November, December
2004)

2. 4BMS, mechanical compressor, accumulator and Sabatier — (February, March
2005)

3. 4BMS with air-cooled TSAC — (November 2005)
4. 4BMS, air-cooled TSAC and Sabatier — (January 2006)

Referring back to Figure 1 of the Air Revitalization System, the Carbon Dioxide
Reduction Assembly (CRA) consists of both the Carbon Dioxide Management
Subassembly (CMS) and the Sabatier Reactor Subassembly (SRS). In these tests we
evaluated two hardware configurations for the CMS. The mechanical compressor
requires a separate accumulator; the TSAC serves as both compressor and accumulator.
Regardless of which compressor technology was installed as CMS, the CMS would
operate when required based on CO2 availability from the 4BMS, regardless of the
operating state of the SRS. Since the compressor and 4BMS are so closely linked, each
compressor was initially tested with the 4BMS prior to addition of the Sabatier.

2.1 Description of Equipment — Subsystems and Support
Hardware

This section describes each of the subsystems used in the integration testing. The
summary includes the 4-bed molecular sieve (4BMS) carbon dioxide removal assembly
(CDRA), the Sabatier reactor subassembly (SRS), the mechanical compressor and
accumulator (the 1% evaluated compressor), and the temperature swing adsorption
compressor (the 2" evaluated compressor).



2.1.1 4-Bed Molecular Sieve (4BMS) Carbon Dioxide Removal

Assembly (CDRA)

Throughout this paper different terminology will be used to reference the hardware that
was tested. The term Carbon Dioxide Removal Assembly (CDRA) refers to any system
that removes carbon dioxide from the breathing atmosphere of a spacecraft. This function
can technically be performed by a variety of technologies, however the name CDRA was
given to the CO2 removal system aboard the International Space Station, which is a 4-
bed molecular sieve (4BMS) technology.

2.1.1.1 4BMS Hardware Description

The carbon dioxide removal assembly tested in this development project is the same
technology and configuration as the hardware currently installed and operating on the
International Space Station (ISS). The ISS CDRA, developed by Honeywell (1), uses a
four-bed molecular sieve process that consists of two desiccant beds and two CO; sorbent
beds. Ancillary components include a blower, air-save pump, heat exchanger, valves, and
sensors. Figure 3 is a schematic representation of the major components of the four-bed
molecular sieve process. Cabin air is drawn through one desiccant bed to remove the
moisture then through one CO, sorbent bed to remove the CO,. This processed air is then
sent through the second, heated desiccant bed to re-humidify the stream before returning
the air back to the cabin. At the same time, the second CO, sorbent bed, which is loaded
with CO2, is heated and evacuated to desorb the CO,. Prior to exposing the loaded bed to
vacuum the air save pump removes ullage air out of the desorbing bed and vacuum
circuit and pumps it to the cabin. This is done in the first 10 minutes of the desorption
half-cycle. The vacuum circuit runs from the desorbing bed check valve to space vacuum,
shown as the yellow line in Figure 3. A half-cycle refers to the timed period in which one
bed is doing all of the CO2 removal function. At the start of the next half-cycle, all beds
switch to the opposite mode and cabin air flow ‘swings’ to the other set of adsorbent
beds; the alternate bed then performs the CO2 removal function. In this manner
continuous CO, removal is achieved.

The Performance and Operational Issues System Testbed (POIST) 4BMS unit located in
the ISS Laboratory Module Simulator (LMS) at MSFC was used for this testing. This
system has been extensively modified to achieve functionally flight-like performance for
ISS sustaining engineering ground support testing (2).

The CDRA uses a pressure and temperature swing adsorption cycle to remove carbon
dioxide from the crew breathing air. The CO2 removal beds are filled with 5A molecular
sieve that is packed between heater plates. At the start of an adsorption cycle, the mass
fraction of CO2 on the desiccant is very low and therefore the equilibrium concentration
of CO2 in the air returned to the cabin is practically zero. With prolonged exposure to
CO2, the bed adsorbs CO2 and “fills’, and the return air may contain small but increasing
amounts of CO2. At the end of the half-cycle, it is desorbed with both heat and vacuum.
The bed is heated electrically to 400°F during daytime operation when power on the ISS



is plentiful, but during nighttime operation, the heaters are turned off. The length of the
ISS orbit is approximately 90 minutes with the “day” portion running from 90 minutes
maximum to 53 minutes minimum, depending on the inclination of the orbit. For all
day/night cyclic testing, the worst case 53 minute day was used. The 5A molecular sieve
material has a high affinity for water vapor, which preferentially adsorbs and displaces
CO2. Because of this phenomenon, the two desiccant beds are included in the 4-bed
design. One desiccant bed removes water prior to the air stream entering the 5A bed,
while the other bed, previously loaded, replenishes the water to prevent over-drying of

the cabin air.
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Figure 3 - 4-Bed Molecular Sieve Schematic

2.1.1.2 4ABMS Integration Characteristics

One of the peculiarities of the 4BMS CDRA is that it is designed to operate on a 144
minute half cycle (10 cycles per 24-hour day). This becomes an issue only when
integrating CDRA with other systems designed to operate in synch with the 90 minute
diurnal orbit of the International Space Station. The 4BMS operates on the physics of
adsorption isotherms of 5A molecular sieve. As such, the temperature and pressure
achieved during the desorption period affects the capacity for air scrubbing on the
following cycle. This becomes an important factor when integrating with a downstream
system that affects the desorption pressure and when nighttime power saving protocols
limit the temperature the bed reaches. The two molecular sieve beds must have sufficient
capacity such that the high efficiency periods can carry it through the times when the
pressure and temperature are not so favorable for good desorption.

The 5A molecular sieve material also has adsorptive capacity for chemicals other than
CO2 and water. Some trace contaminants in the cabin atmosphere will be adsorbed on the
zeolite and desorbed along with the carbon dioxide. Some of these chemicals have been



shown to affect the operation of downstream systems, specifically the Sabatier reactor. A
summary of contaminant testing that was performed on the Sabatier catalyst is detailed in
J.D. Tatara and J.L. Perry; International Space Station Trace Contaminant Injection Test,
Revision A, NASA Test Requirements Document, January 1997.



2.1.2 Mechanical Compressor Engineering Development Unit and

Accumulator

2.1.2.1 Mechanical Compressor Hardware Description

A compressor is needed to provide a vacuum for 4BMS desorption as well as
compression of CO2 for efficient storage and controlled delivery to the Sabatier. The first
compressor design tested was a mechanical two-stage, reciprocating piston compressor
design with three in-line cylinders, which was developed by Southwest Research
Institute. There are two first stage pistons and one second stage piston. The compressor is
an oil-free design so that no oil contamination is introduced to the downstream Sabatier
reactor. A 2-micron filter on the inlet suction line traps any dust particles generated by
the 4BMS beds. The compressor is cooled with 65°F chilled water representative of the
medium temperature loop (MTL) on ISS. At median pressures of 4 psia suction and 70
psia discharge, the compressor delivers approximately 17.7 scfh (1.9 Ib/hr) of CO2.

To reduce compressor run time, the operating rules in Table 1 were established and
programmed into the integrated control system. Paccuwm IS the compressor discharge or
accumulator pressure while Psyction IS the compressor suction or 4BMS desorbing bed
pressure. These rules set the pressure limits for compressor activation and deactivation.
For example, when the accumulator is almost full, at 110 psia, the compressor will not
activate until the bed pressure exceeds 7.5 psia. These operating rules were developed
with the goal of minimizing the compressor operating time, minimizing compressor
power consumption and preventing starvation of the Sabatier. Starvation is defined as any
time when hydrogen is produced by the OGA, but no CO2 is available for reaction. The
performance goals are achieved by limiting the compressor operation to periods when
CO2 is plentiful or the pressure rise is low. These operating rules were established during
the model development period (described later) and were verified during this test activity.
The compressor rules successfully minimize Sabatier starvation.

Table 1 — Compressor Operating Rules

Compressor Transition Conditions
Transition Paccuwm (psia) Psuction (psia)
Standby to >=100 AND <120 |AND |>7.5
Operate >25 AND <100 AND | > Paccum/58 + 3.6
<=25 AND |>1.0
Operate to > 40 AND | <Paccum/58 +1.5
Standby <=40 AND <05
>130 NA
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2.1.2.2 Accumulator

Due to the chromatographic nature of CO2 desorption from molecular sieves resulting in
short duration ‘waves’ of CO2 flow, and the Sabatier requirement for constant inlet CO2
flow, a buffering capacity is needed to integrate a 4BMS and a Sabatier when using a
mechanical compressor. This is accomplished with a 0.73 ft3 accumulator. Due to space
limitations within the OGA rack where the CRA hardware would be located on orbit, the
total accumulator volume is achieved by ganging several small vessels together. The
accumulators used for this test matched those being installed in the OGS rack.

2.1.2.3 Mechanical Compressor /  Accumulator Integration

Characteristics

Since the mechanical compressor has no storage capacity, an accumulator is required to
buffer the short duration, high rate production of CO2 from the CDRA into the long
duration, low flow rate consumption of the Sabatier. The initial sizing of the accumulator
was to be one cubic foot. This resulted in an ultimate pressure of 90 psia needed to store
adequate CO2 to prevent starvation. This pressure level is under the 100 psia threshold
that requires additional analysis on pressure vessels. Due to the space limitations in the
OGS rack, the maximum volume accumulator that could be packaged was 0.73 ft3. This
results in a need for 120 psia storage pressure to prevent starvation.

The CDRA desorbs carbon dioxide from the molecular sieve first, followed by a wave of
water. Water vapor in the mechanical compressor could pose problems if condensation
occurs in either the compressor or the accumulator tank. A series of tests were conducted
to analyze the desorption flow from the CDRA for the concentration of water in the
carbon dioxide. The details of this test series are given in section 2.2.2.5. The results
indicated that there is not enough water vapor desorbed by the CDRA during the normal
desorption cycle to cause condensation in the compressor at pressures up to 120 psia.



2.1.3 Temperature Swing Adsorption Compressor (TSAC)

2.1.3.1 TSAC Hardware Description

The TSAC is a solid-state device that compresses CO2 using a temperature swing
adsorption process on a CO2 selective molecular sieve. The TSAC combines the
functions of a compressor and accumulator in one device.

2.1.3.1.1 Operating principle

Fundamental operating principles and designs of adsorption compressors have been
applied in adsorption refrigeration cycles and heat pumps. Similar to the heat pumps, the
TSAC operates based on thermal-swing adsorption compression.

An adsorption-based compression cycle

Jow temp

production

cycle starting point

loading (grams gas/gram sorbent)

pressure

Figure 4. Work cycle of the TSAC
The typical work cycle of the TSAC is shown in Figure 4. The cycle includes four steps.
[Ref. 1]
STEP1: Adsorption of the gas (or gas component from a gas mixture) of interest at a low
pressure and temperature. Adsorption is an exothermic process. Heat of adsorption is
removed during this step by cooling the sorbent bed.
STEP 2: Compression of the adsorbed gas by heating the sorbent. The bed volume is
isolated during this step. The set point pressure of the process determines the temperature
limit. The loading of the gas on the sorbent is reduced during heating, raising the pressure
in the bed.
STEP 3: Release of the compressed gas at the desired flow rate and pressure as required
by the processor downstream. Heat must be applied to maintain production as the sorbent
is depleted of the adsorbed gas.
STEP 4: Decompression of the gas is achieved by cooling the sorbent. The bed volume is
again isolated during this step. Temperature is reduced and gas pressure declines to the
initial point in the work cycle.

2.1.3.1.2 Process Description

11



12

The process flow diagram for the air-cooled TSAC is shown in Figure 5. T0O obtain

continuous operation, two identical adsorption chambers (beds) are used.
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Figure 5 - Flow diagram of the air-cooled TSAC
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The basic function of the TSAC is to remove the carbon dioxide from the CDRA at a
pressure varying roughly from vacuum to 12 psia and deliver the gas to the Sabatier
reactor at 21 psia. The carbon dioxide removal assembly (CDRA) includes two CO2
adsorption beds for removing the carbon dioxide vapor from the cabin air. Like the
TSAC, these beds function cyclically to switch between their adsorption and desorption
processes to ensure a continuous operation. The TSAC must be synchronized with the
CDRA‘s operation cycle to maintain complete regeneration of the CDRA beds and to
supply compressed CO?2 to the Sabatier reactor. The synchronization schedule for the
4BMS and the TSAC is shown in Table 2.

Table 2 - TSAC and 4BMS Synchronization Table

Half Cycle 1 Half Cycle 2
Time (min) | 0 10 134 144 154 278 288
4BMS Bed A Desorb to | Desorb to
Adsorb CO2 from Cabin Air | Air-Save | TSAC A space
TSAC Bed
A Produce CO2 Cool Adsorb Compress
Desorb
4BMS Bed B Air to TSAC | Desorb to
Save B space Adsorb CO2 from Cabin Air
TSAC Bed B
Cool Adsorb | Compress Produce CO2




Half Cycle 1 Half Cycle 2

production

TSAC Bed 1
Pressure
Temperature

TSAC Bed 2
Pressure
Temperature

Prax

CDRA Desorbing
Bed Pressure

Poin

0 144 288 432 576
time [minutes]

S S —

Step4 Step 1 Step 2 Step 3

Figure 6 — TSAC and 4BMS beds temperature and pressure profiles.

The correspondence for TSAC Bed 2 between Figure 6 and Figure 4 is as follows: Step 4,
cooling/decompression in preparation for the CO2 intake, occurs from 0 to 10 minutes.
Step 1 where the TSAC adsorbs CO2 from the 4BMS occurs from 20 to 134 minutes.
Step 2, compression in preparation for the production step runs from 134 minutes to 144
minutes. Finally, Step 3, the production step, runs from 144 minutes to 288 minutes.
Referring to the 4BMS desorbing bed in Figure 6, the segments are as follows: From 0 to
10 minutes is segment 1, when the desorbing bed is being evacuated to cabin via the air
save pump and the primary heater is energized. Segment 2 is from 10 to 134 minutes;
here primary and secondary heaters are energized. The bed is isolated for the first ten
minutes of segment 2 to allow cooling of the TSAC bed. For the remainder of the
segment, it is desorbing to the TSAC. Finally, during segment 3, the bed communicates
with space vacuum for more complete desorption at low pressure.

2.1.3.1.3 TSAC Development History

13



Development of the TSA CO2 compressor at NASA ARC was originally started under
the Mars In-Situ Resource Utilization (ISRU) program. An Engineering prototype of a
CO2 compressor was developed and tested at NASA ARC under the payload proposal
PROMISE, which was intended to fly in the 2005 Mars Surveyor Lander. The CO2
compressor prototype was designed to extract and separate atmospheric gases from the
Mars environment to produce buffer gases and pure, compressed CO2 for rocket
propellant production. The CO2 compressor operates based on the TSA technology to
separate, compress and produce CO2 at a specified rate. The concept of a CO2
compressor for closing the air loop of an ECLS system was spun-off from the Mars CO2
compressor design. Three different TSAC compressors were sequentially developed
during this program with process and equipment improvements implemented in each
successive build.

2.1.3.1.4 Water Cooled TSAC

The first compressor developed utilized water as the cooling medium. This compressor
was designed with a concept of using three sorbent beds to cyclically adsorb and desorb,
thus providing a constant sink for the 4BMS to exhaust to, and also a constant source of
CO2 for the Sabatier. These beds were synchronized to the 90 minute Sabatier cycle. A
single prototype bed of this configuration was fabricated and tested at NASA Ames
Research Center in August 2000.

The operation of each bed is scheduled such that when one bed is available for adsorption
of CO2 from CDRA, another is ready to produce CO2 for the CRA, and the third bed is
in a standby or a cooling mode. A flow diagram for the proposed three bed processor is
shown in Figure 7.

The complete cycle of this TSAC is 270 minutes, with each desorption cycle taking 90
minutes. Each TSAC bed is designed to accommodate the full load of CO2 required by
the CRA, which in this example is one-half the CO2 available from the CDRA.

— 1
—D><t— —D><t—
<t —><—
> —

space vacuum

Figure 7 - Flow diagram of a three-bed TSAC device. Internal pressure is controlled through a feedback

loop to the heater. Inert gas vent tubes are not shown.



The baseline design for the TSAC uses a zeolite adsorbent and a working cycle that is
shown in Figure 8. The intake cycle begins at a pressure of about 2.7 kPa (0.4 psi) and
ends at 27 kPa (3.9 psi). The spacecraft coolant loop is used to maintain the temperature
near 30°C during this step. During pressurization, the coolant flow is shut off and the
sorbent is heated to approximately 60°C; production occurs at a pressure of 100 kPa (14.5
psi) and temperatures rising to about 90°C. For depressurization, the coolant is again
allowed to flow through the device to bring the temperature back to about 30°C.
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Figure 8 - Adsorption isotherms and compression cycle.

This cycle provides a working capacity of about 4.6 wt%. From it, a three-bed TSAC was
sized to meet CDRA and CRA interface requirements for vacuum, CO2 pressure, and
buffering capacity.

A summary of the TSAC requirements is shown in Table 3.
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Table 3 - Production rates and resource requirements of TSAC sized for two kilograms CO, production per

day at 100 kPa.

Resource Requiremen
t
Production level 2 kg CO,/
day
Production pressure 100 kPa
Total mass 22.5 kg
Average power 150 W
Peak power 300 W
Average heat 150 W
rejection
Total volume 25L

2.1.3.1.5 Liquid Cooled TSAC

The next development in the TSAC design was a change of the cooling medium from
water to a heat transfer fluid known as Paratherm. This heat transfer fluid allowed the bed
operating temperature to increase thus increasing the working capacity. This comes at the
expense of added equipment to handle the heat transfer fluid, namely a pump, heat
exchanger and reservoir. The operating schedule was also modified to reduce the number
of beds to two. Rather than synchronizing with the Sabatier, the beds were synchronized
with the 4BMS beds. One TSAC bed was sized to absorb the entire capacity of one
4BMS bed.

The two-bed, liquid-cooled, TSAC consists of two identical sorption beds equipped with
a heater in the middle and cooling coils brazed on the outer surface of the canister. The
compressor canisters also contain multiple temperature sensors and pressure Sensors.
Pictures of the compressor canister with heating and cooling assemblies are shown in
Figure 9.



Figure 9 - Heating and cooling assemblies of the TSAC

A flow diagram for the 2-bed, liquid-cooled TSAC is shown in Figure 10.
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Figure 10 - Schematic of 2-bed, liquid-cooled TSAC

The compressor beds are conservatively designed for handling about 2 kg of CO2 per
day, which is half of the requirement of ISS. Similar to the CDRA, the TSAC beds
operate in a cyclical fashion. While one bed produces or desorbs CO2 for the Sabatier
reactor, the other bed continues to adsorb or extract CO2 from the desorbing CDRA bed.

2.1.3.1.6 Air Cooled TSAC

The most recent TSAC design iteration was the development of an air cooled bed. Air is
a safe and practical cooling medium in a spacecraft environment and eliminates all of the
extra hardware mentioned previously that was needed for the liquid cooled bed. The
disadvantage of the air cooled bed is that the bed itself is larger to accommodate the air
cooling passages. However, the bed temperature can be operated up to 250 degrees C
yielding higher working capacity.
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The air-cooled TSAC design consists of multiple air slots and heaters spaced within the
sorbent bed. A schematic of the TSAC design structure is shown in Figure 3.

_ TSAC

Figure 11. Schematic of the air-cooled TSAC prototype

The air-cooled TSAC prototype was designed to produce compressed CO, at a rate of 8.8
Ib/day at a CO-, loading pressure of about 4psia. The loading pressure of 4psia for TSAC
is the minimum downstream pressure required for CDRA to regenerate completely within
the scheduled cycle time (144 minutes). This is only a conservative estimate, derived
from the characterization data of the CDRA sorbent material.

The key objective that guided the design and material selection for the TSAC was to
minimize the heat loss from the compressor to the surroundings and maximize the heat
transfer from the heated sorbent core to the cooling surface.

.

=%

Figure 12. Air-cooled TSAC prototype



The mechanical design of the TSAC was facilitated with a thermal model to finalize the
size, material selection and coolant flow rate.

2.1.3.2 TSAC Integration Characteristics

In contrast to the mechanical compressor, the TSAC compresses and stores the carbon
dioxide at the same time, eliminating the need for an accumulator. The CO2 is delivered
to the Sabatier at a fixed pressure, which is controlled by regulating the temperature of
the desorbing bed. This fixed delivery pressure eases the requirements on the Sabatier for
CO2 flow control; i.e. the CO2 modulating valve would have only a 4:1 turndown
requirement rather than 4:1 on flow and 6:1 on pressure.

The 4BMS produces a high purity CO, stream, but it will be contaminated by a small
amount of nitrogen and oxygen. Because the TSAC is not a flow-through system, there is
a potential for a buildup of non-adsorbing gases in the compressor. These could form a
barrier to CO; adsorption during the intake step. This situation is prevented by
periodically venting this small amount of non-adsorbing gas to space vacuum via tubing
between the TSAC beds and the CO;, vent line.

2.1.4 Sabatier Carbon Dioxide Reduction Subassembly

2.1.4.1 Sabatier Hardware Description

The Sabatier Engineering Development Unit (EDU), developed by Hamilton Sundstrand,
was designed to simulate the proposed flight configuration of the Carbon Dioxide
Reduction Assembly (CRA) for ISS. As described previously, the CRA is an integral part
of a closed loop air revitalization system and makes use of waste products, CO, from a
4BMS/CDRA and H; from the OGA, which would otherwise be vented. The CO, and H;
combine to produce methane (CH,) and water (H,O) as shown in the reaction below. The
water and methane may then be used for other processes. In the case of ISS, the water
would be sent to the wastewater bus and processed to potable quality for use by the crew.
The methane would be vented overboard as a waste product. In future exploration
missions, the waste methane could be used as a fuel source, or further reduced to carbon
and hydrogen.

Equation 1

CO,+4H, < CH,+ 2 H,0

The Sabatier EDU consists of a Sabatier methanation reactor, a condensing heat
exchanger, a phase separator and accompanying valves and sensors necessary for safe
operation. The Sabatier EDU was modified substantially after being tested with the
mechanical compressor and before being tested with the TSAC. The overall function of
the system was not changed, but the individual component fidelity was improved. The
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most current Sabatier EDU schematic is shown here in Figure 13. A description of the
differences between the two test series is given in the appendix.
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Figure 13 — Sabatier Engineering Development Unit Schematic

The Sabatier EDU has two primary modes of operation: process and standby. In process
mode, inlet gasses flow through the system and methane and water are produced. In
standby mode, supply gasses are isolated, coolant air is stopped, the unit is evacuated to
below 1 psia, and the system is isolated. Reactor heaters cycle as required maintaining a
reactor temperature of approximately 300°F. The Sabatier EDU is operated with excess
CO2 (approximately 14%) to ensure that all hydrogen is reacted. The nominal molar ratio
(MR) is 3.5t0 1, H2 to CO2. A hydrogen cylinder and a flow controller were used to
simulate the delivery of hydrogen from an OGA. An operator sets the hydrogen flow rate,
and the Sabatier system controller calculates the required carbon dioxide and controls the
flow to achieve the desired molar ratio.

The inlet CO2 and H2 gasses react in the catalytic reactor to produce methane and water
vapor. This is an exothermic reaction that is self limiting at about 1000 F. The aft end of
the reactor is air cooled to reduce the product exit temperature in order to achieve higher
reactant conversion. Water vapor in the product stream is condensed in an air-cooled heat
exchanger. The methane gas and liquid water are separated in a rotary drum phase
separator. The rotation of the drum imposes an artificial gravity field that efficiently
separates the two phases. When the delta pressure in the phase separator indicates a high
level of liquid in the drum, the system controller increases the separator speed and the
separator pumps the accumulated water to a pressurized water storage tank. The methane
and excess, un-reacted gasses are vented to a facility combustible gas vent through a



combustible gas compatible vacuum system. The Sabatier system is operated at sub-
ambient pressures, as planned for the flight design, to ensure that combustible gasses do
not leak out to the surrounding atmosphere.

2.1.4.2 Sabatier Hardware Changes between Tests

The first series of fully integrated tests included the four bed molecular sieve, the
mechanical compressor and accumulator, and the Sabatier engineering development unit.
The Sabatier EDU, in its original configuration, matched the schematic shown here in
Figure 14. Some of the more prominent features that were upgraded between the first and
second test series are listed below:

Addition of the rotary drum separator and pump with two differential pressure
sensors for level monitoring. The original Sabatier used a tank as a 1-g separator
and a small gear pump to transfer the water to the water storage device when the
separator tank was full. The rotary separator included in the upgrade is of flight-
like quality and is the design basis that would be used for a flight installation of
Sabatier technology.

Addition of a liquid sensor in the methane vent line. The original Sabatier had no
liquid sensor. This sensor was included as a means to gather operational test data
on the liquid sensor design.

Incorporation of a multi-point thermocouple in the reactor bed for data collection.
The original Sabatier had only two temperature sensors that were used for heater
control and over-temperature protection. A flight system would rely on only the
two or three sensors in the hot end of the bed. The Sabatier EDU was upgraded to
include a multi-point thermocouple in order to gather additional reactor
performance data during operation, which will lead to improved reactor designs in
the future.

Addition of a flight like modulating valve for CO2 control. The original Sabatier
EDU used a commercial modulating valve with a stepper motor to control the
CO2 flow. While this technology performed adequately, it could not be
considered flight-like. The EDU was upgraded with a flight-like modulating valve
that uses a variable solenoid to position the valve stem to control the flow. This
valve was designed and manufactured with flight requirements in mind, including
redundant seals and manifold mounting.

Upgrade of the back pressure regulator to a flight-like design. Again, the original
back pressure regulator was a commercial-off-the-shelf design. The new regulator
was designed and manufactured to meet flight requirements including a welded
diaphragm, manifold mounting and double seals.
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Figure 14 — Original Sabatier EDU Hardware Configuration

2.1.4.3 Sabatier Integration Characteristics

The Oxygen Generation Assembly delivers its hydrogen byproduct to the Sabatier. The
OGA has two hydrogen valves, one that goes directly to the vacuum vent of the ISS and
the other that interfaces directly with the Sabatier. The control software includes a
handshake between the OGA and CRA, which requires that both systems have to be
ready to interact before the valve to the Sabatier is opened. This control software was not
part of this test series, but has been independently verified. The Sabatier requires carbon
dioxide pressurized at 18 psia or higher in order to operate. If the CO2 pressure available
at the interface is too low, or the OGA is not ready, the Sabatier system will transition to
Standby mode.

The Sabatier CRA is designed to operate below ambient pressure. This prevents leakage
of flammable gas to the cabin atmosphere after two failures. In order to test the system, a
vacuum must be drawn on the methane vent line. This vacuum source must be
compatible with methane and hydrogen and pose no explosion hazard. A water ejector
setup was used in this integrated testing to simulate the vacuum source. The water ejector
could only achieve about 4 psia under maximum flowing conditions; however, this did
not seem to affect the system operating parameters elsewhere in the Sabatier system.



2.1.5 Support Hardware Configuration

2.1.5.1 4-BMS Inlet ppCO2 Control — Metabolic Load Simulation

The metabolic load contribution to the integrated tests was created by injecting CO2

according to a mass flow schedule into the air stream at the inlet to the 4-bed molecular
sieve. Some of the testing was done with constant CO2 concentration, while other tests

were designed to mimic the time profile predicted for a volume with crew performing

various activities.

During testing, CO2 was injected into the 4BMS inlet per the test matrices in the two

following tables: Table 4 lists the conditions used for the mechanical compressor test and
Table 5 lists the conditions used for the TSAC test. Test conditions ranged from a 2.3-

person crew to an 8.3 person crew (CO2 partial pressure of 1.5 to 5.3 mmHg
respectively).

Table 4 - Test conditions for mechanical compressor test.

c o = . —
o 2 3 =1 8% |3 5T | 2.9 53| 3 _E
S.E5 E |£589_|s55L|8E |2, |85 | 558 |£5|28-|B«5|5E
a oL o 38T » 2= o ~N B ) Q2 ST | nE T XZ| E <
[= NWe g E Ngo S NS T N — o3 ~ ST = Zz 2o =t -0 38| =9
2 2O | 8507 | 288 |08 |9F |88 | 835 |sgo|5° | 802 8¢
2 5 g |T83)gf |5 |SE 898 |£215 J
1r* 15 3 off 2.461 3.5 0.703 cont 3 | 1000 53/37
2% 15 3 off 0 4.179 3.5 1.194 | day/night 4 | 1000 53/37
3rx 15 3 off 0 4.179 3.5 1.194 | day/night 4 800 53/37
4 3.5 7.25 on 2 4.289 35 1.225 | continuous 3 1000 53/37
5 3.5 7.25 on 2 7.282 3.5 2.081 | day/night 4 | 1000 53/37
6 35 7.25 on 2 7.282 35 2.081 | day/night 4 800 53/37
8 met 6 off 0 8724 | 35 | 2493 | daymight | 20 | 1000 | Node3 | 5337
profile hrs
10 met | ;o5 on 2 7282 | 35 | 2081 | daymight | 2C | 1000 | NOU€ | 5337
profile hrs 3
11 met 7.25 on 2 7.282 3.5 2081 | daymight | *® | 1000 | Lab | 53737
profile hrs

*includes air leakage compensation of 0.24 Ib/day air
** tests repeated after air leakage detected
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Table 5 — Test conditions for the TSAC test.

N o 5 g 5 £
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Integrated 4BMS/TSAC 133
baseline test 1 8 (17.6) -- 8 27.6 (4) (19.3) -- -- --
Integrated 4BMS/TSAC at 133
reduced CO2 loading 2 5(11) -- 5 27.6 (4) (19.3) -- - --
Integrated 4BMS/TSAC at 133
reduced CO2 loading 3 4 (8.8) -- 4 TBD (19.3) -- - --
Integrated 4BMS/TSAC at 133
reduced CO2 loading 4 4 (8.8) -- 4 TBD (19.3) -- - --
Integrated 4BMS/TSAC at 133
reduced CO2 loading 5 3(6.6) -- 3 TBD (19.3) -- - --
Integrated 4BMS/TSAC at
reduced CO2 loading 133
pressure 6 5(11) -- 5 41.4 (6) (19.3) -- -- --
Integrated 4BMS/ TSAC/
Sabatier at TSAC baseline
conditions for TSAC health 5.3 124 6.766 1.933
check 7 - (0.7%) 8.3 - (18) (0.0798) 35 (0.502)
Integrated 4BMS/ TSAC/
Sabatier for comparison to
mechanical compressor test 35 124 4.459 1.274
point #2 8 - (0.46%) 5.46 - (18) (0.053) 35 (0.331)
Integrated 4BMS/ TSAC/
Sabatier for comparison to
mechanical compressor test 15 124 1.925 0.550
point #3 9 - (0.2%) 2.34 - (18) (0.023) 35 (0.143)
Integrated 4BMS/ TSAC/
Sabatier Lunar night scenario,
non-optimal TSAC shutdown/ 2.52 124 3.273 0.935
startup 10 - (0.33%) 4 - (18) (0.037) 35 (0.243)
Integrated 4BMS/ TSAC/
Sabatier EVA full crew
departure scenario, CO2 Per 124 3.273 0.935
regenerated to cabin 11 -- profile 4 -- (18) (0.039) 3.5 (0.243)

The test points in Table 4 reflect the test conditions used for the mechanical compressor
testing. During cyclic operation (all test points except 1 and 3), the system mimics ISS
protocols for power savings during orbital night. During the “night” cycle the 4BMS
desorbing bed heaters are turned off and the OGA goes to standby, stopping H2
production and signaling the Sabatier to transition into standby as well.

For test points 1 through 6, the CO2 load was constant and was set at the average
metabolic load generation rate for the number of crew listed in the table. For test points 8,
10, and 11 in Table 4, 4BMS inlet CO2 levels were varied to simulate variations in ISS
atmosphere, which result from changes in crew locations and activities. These transient



cabin CO2 levels, or metabolic profiles, were generated using an integrated model
developed at NASA JSC. The model allows for atmosphere mixing and air revitalization
hardware analysis of multiple integrated modules as configured on ISS [3] or as a
potential Lunar base. Crewmember location and metabolic activity levels were based on
the location of sleep stations, work stations, galley, and exercise equipment. The CO2
metabolic generation rate was defined by NASA document SSP41000 [4].

The model provided transient cabin CO2 levels, or metabolic profiles, for the United
States Operating Segment (USOS) modules that will contain carbon dioxide removal
units (Lab and Node 3) when ISS assembly is complete. Testing was conducted to
evaluate integrated performance for the two different ISS CDRA locations. A generalized
representation of the model is shown below.
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Figure 15 - Nodal representation of ISS for CO2 concentration prediction.

Figure 13 is an example of a predicted crew metabolic profile including sleep, waking
and exercising periods. This graph represents the gross overall CO2 load generated
within the ISS for the 6 crew members. Figure 14 illustrates the predicted atmosphere
concentration resulting from the crew activities and the calculated injection flow rate
needed to simulate the mission profile.
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Metabolic Profiles - Max Crew Size
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Figure 17 - Example of Metabolic Load Profile CO2 Injection Rate
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The data in Table 5 reflects the test conditions used for the TSAC testing. For the TSAC
testing, the system was configured to be always in “daylight”, in other words, there was
no nighttime disabling of heaters and idling of the hydrogen generation. These conditions
were set to simulate a Lunar habitat. For test points 10 and 11, 4BMS inlet CO2 levels
were varied to simulate variations in a lunar habitat atmosphere based on crew locations
and activities. The model used for ISS CO2 concentrations was modified to represent a
Lunar habitat. Figure 16 shows the resulting CO2 concentration profile for the simulation
of the Lunar EVA activity.
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Figure 18 - CO2 Concentration for Siumulated Lunar EVA Profile
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2.1.5.2 4BMS venting

When a 4BMS bed is desorbing, the compressor operation is governed by a set of
operating rules based on the suction and discharge pressure. These rules have been
established to optimize the compressor operation, including minimizing compressor
power and compressor operating time without causing starvation of the Sabatier. These
compressor rules allow the compressor to turn off while the 4BMS bed is still desorbing.
Within the 4BMS, there are check valves that are closed when the bed is under vacuum
and open when the bed is flowing cabin air. These check valves will crack open and leak
CO2 back to the cabin atmosphere if the bed pressure gets too high. To prevent the check
valves from opening, the standoff vacuum valve is used to vent the bed pressure when the
compressor is not operating. The rules governing the operation of this valve are shown in
Table 6.

The desorbing sorbent bed pressure must remain low enough to maintain closing force on
the flapper-style check valve. (Refer back to Figure 2 in Section 2.1.1) This pressure was
set at 8 psia during the mechanical compressor testing and 12 psia during the TSAC
testing. During 4BMS venting, the valve V2, shown in Figure 17 below, functions as the
vent CO, valve listed in the table.

During high metabolic load cases, the accumulator often becomes full and the vent valve
has to open to relieve the pressure in the 4BMS desorbing bed. Figure 18 shows how the
vent valve is activated multiple times during each 4BMS half cycle. This would cause
unnecessary wear on the valve. The actual Space Station implementation of this venting
control will open the valve and leave it open until the end of the half cycle. This keeps
the number of valve cycles at one actuation per half cycle. More CO2 is vented to
vacuum, however, as seen in the chart, when the CO2 loading is high, there is more than
enough CO2 available and it is not necessary to capture all of the CO2 from the 4BMS.



Simplified Schematic of Ground Test Hardware
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Figure 19 - Integration of ARS Components
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Table 6 — Standoff VValve Operating Rules

Time in Vent Valve Command
Cycle Decision Criteria 1SS
; Integrated Test
(minutes) g Implementation
0-10 ALWAYS CLOSED CLOSED
Psuction <8 AND Compressor OFF CLOSED CLOSED
Psuction <10 AND Compressor ON CLOSED CLOSED
10-134 OPEN until end
Psuction > 8 AND Compressor OFF | OPEN for 20 sec
of half cycle
OPEN until end
Psuction > 10 AND Compressor ON OPEN for 20 sec
of half cycle
134-144 ALWAYS OPEN OPEN
Vent Valve Operation at High CO2 Rates
10 140
il | M~ — - M~ P ~
9 f— I i - T 1 120
8 -
7 + 100
o 67 +80
>
3 5
g
o 4 + 60
31 + 40
2
+ 20
1 L t
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Figure 20 - High CO2 rate requires excessive activation of vent valve.
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2.1.5.3 Sampling

Influent CO2 and product Sabatier gasses were sampled at least once per test point and
measured for purity. Sabatier product water was also collected once per test point for
analysis. Gas samples were taken of the CDRA inlet, Sabatier reactor inlet and reactor
outlet. Table 7 lists the test parameters for each sample type. This data is detailed in the
results section for each test configuration.

Table 7 - Fluid Composition Analysis

Sample Type Analysis

Sabatier Inlet Concentrated C02. 02. N2 (%)

CO2

Sabatier Product Outlet CO2, CH4, H2, 02, N2 (%)

Sabatier Product Water Total Carbon, Total Inorganic
Carbon, Total Organic Carbon,
pH, Conductivity

2.1.5.4 CO2 Moisture Content

Moisture content of the concentrated CO2 from the 4BMS is a concern for the
mechanical compressor since the moisture can condense in the chambers of the
compressor. Two independent tests were conducted to quantify the amount of moisture in
the CO2 from this test equipment.

One test used a low moisture analyzer to measure the quantity of water vapor in the CO2
as it was evolved from the 4BMS desiccant. The instrument is a tunable infrared diode
laser differential absorption spectrometer (TILDAS) provided by the NASA Glenn
Research Center. A schematic of the moisture measurement test setup is shown in Figure
21. The box labeled “Moisture Measurement” indicates the location where the TILDAS
instrument was connected to the system. The TILDAS was used to measure moisture
concentration in the CDRA product carbon dioxide during both continuous day and
day/night simulated operation.
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Figure 21 — Test setup of CDRA product CO2 moisture measurement using TILDAS.

The other test involved running the compressor from the desorbing CDRA to various
fixed discharge pressures and measuring the resulting dew point. The discharge pressure
was set to 20, 47.5, 75, 102.5 and 130 psia during different test points. The compressor
on/off operation was still controlled based on the Compressor Operating Rules defined in
Table 1 of Section 2.1.3.

2.2 Integrated Test Using the Mechanical Compressor

2.2.1 Overall Test Plan Objectives

The integration tests using the mechanical compressor were designed specifically to
determine how the hardware would operate in the Space Station configuration. The Space
Station currently has a 4BMS CDRA installed in the Lab Module. An Oxygen Generator
was launched July 2006 and activated in July 2007. The OGA is also installed in the Lab
Module. The operating conditions of the Space Station were used to develop the test
matrix in Table 1.



In addition to the missions operations described below, test parameters were also established as a result of
modeling of the systems that was being conducted in parallel to the test program. A FORTRAN program
was developed by the NASA Johnson Space Center to simulate the 4BMS, mechanical compressor and

accumulator. During the course of testing, the test data was correlated to the model predictions.

2.2.1.1 Test Requirements Based on ISS Implementation

The Sabatier design points detailed in Table 8 define operating conditions that serve as a
simple baseline around which the Sabatier was designed to optimize water recovery
performance. The Sabatier must be capable of responding to the variability of the full
flow regime of both feed gases and continue operating robustly without compromising
the life of any components. The interface conditions described next set the boundary
conditions for the operation of the different subsystems and were used to define the test
conditions.

The following assumptions were used as the basis for the flow rates and settings used in
the test points:

Oxygen / Hydrogen Generation Rates

The OGA is required to produce oxygen for the station at a commanded rate between
0.212 and 0.85 Ib/hr. The command to the OGA will be from the station level controller
that will request 25% to 100% of the maximum power setting. Crew consumption of
oxygen is nominally 1.84 Ib O2/crew-day. This translates to 0.23 Ib/crew-day of
hydrogen that is delivered by the OGA to the Sabatier. Air leakage from the station is
also made up by oxygen from the OGA and nitrogen from storage tanks. A nominal
leakage rate of 0.24 Ib/day of air (0.05 Ib/day O2) was assumed, which translates to an
additional 0.0063 Ib/day of hydrogen delivered. The nominal crew size expected when
the Sabatier is initially installed on station is 3 crew, the max expected is 6 crew plus 1.25
EP worth of animals.

Since the OGA is a high power user, it will likely only operate during the daylight time of
the Space Station orbit. At the worst case azimuth, the available operating time is 53
minutes out of a 90 minute period. The daily average hydrogen flow rate is therefore
multiplied by 90/53 to arrive at the instantaneous flow rates given in Table 8.

CO2 Generation / Removal

CO2 generation by the crew is 2.2 Ib CO2/crew-day. CO2 is desorbed from the 4BMS
and is compressed by the compressor into an accumulator. The beds of the TSA
compressor act as an accumulator and no external device is necessary. The mechanical
compressor stores CO2 in a tank so that the wave of CO2 desorbed from the 4BMS over
a short time span can be delivered to the Sabatier at a fixed rate over a longer duration.
The CO2 feed rates given in Table 8 are based on the crew size and the operating
schedule (continuous or day/night). The day/night flow rates are 90/53 times the
continuous rates per crew member. The contribution of CO2 lost due to station leakage is
considered insignificant and not included in the calculations.

The concentration of CO2 at the inlet of the 4BMS to achieve the desired rate of CO2
removal was obtained from a Fortran model of the 4BMS. The model and CO2 inlet
control are described in more detail in Section 2.1.5.1. The model predicted the
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atmospheric steady state concentration given a specific crew size and the actual operating
conditions of the 4BMS. The model did not include adsorption/desorption of CO2 onto
the desiccant beds. The initial prediction of 1.5 mmHg for a crew size of 3 turned out to
be low, and the CO2 removal rate did not match the flow rate of hydrogen available to
the Sabatier for the first three test points. These test points were later repeated with a
different CO2 feed concentration.

The graph below shows the CO2 concentration at the inlet of the 4BMS for one of the
metabolic load cases. The concentration is calculated from the predicted crew activity
and location coupled with the effectiveness of the 4BMS. The tall spikes in
concentration are the result of the daily sensor calibration. The small spikes are due to the
valves changing position between adsorbing bed cycles.

Metabolic Profile CO2 Concentration to 4BMS

1.2

0.8

0.6

59.5 60 60.5 61 61.5 62
Time (days)

CO2 Concentration (%)

Figure 22 — CO2 inlet concentration fed to 4BMS for metabolic load profile case.

Load Sharing between US and Russian Hardware

Some assumptions had to be made to establish the load sharing of Russian and US life
support equipment on the Space Station. Since the Russian and US CO2 removal devices
will be operating from the same mixed atmosphere aboard the Space Station, the split of
CO2 concentrated by each system is a function of each one’s removal efficiency and the
total amount of CO2 available. The Russian CO2 removal system (Vozdukh)
specification requires that the CO2 partial pressure be maintained at 5.3 mmHg with a
CO2 load of 3 EP. This can be considered the worst case performance point as actual
Station data indicates that the CO2 partial pressure with the Vozdukh only operating is
between 3.5 and 4.0 mmHg. The Station CDRA performance gives 3.0 mmHg pCO2



with a 5.29 EP CO2 load. The following equation is used to calculate the removal split
when both systems are operating at a given metabolic load:

metabolic _ | flow _, removal molar fraction flow removal ., molar fraction
load rate rate of CO2 rate rate of CO2
Vozdukh

CDRA
Solving for the removal fraction yields approximately 25% Vozdukh and 75% CDRA,
given the previous minimum Vozdukh performance. At actual performance levels of the
Vozdukh, the split is really about 32.5% and 67.5%.

Crew Size

The crew sizes selected for ISS simulation testing include the current 3 person crew, a
future planned 6 person crew when the station assembly is completed and a load of 7.25
EP which reflects 6 crew plus animals.

2.2.2 Description of Test Plan Details

2.2.2.1 Integrated Test Schematic
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Simplified Schematic of ISS Life Support Hardware
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Figure 23 — Simplified Schematic of CDRA and CRA as intended to be integrated on ISS.

Figure 23 above shows simplified schematics of the CDRA and the CRA as they would
be installed on the International Space Station. The highlighted components are shown
with the component numbers as used in the ground integration testing. Figure 24 below
is a schematic of the ground-integrated system with the same control components
highlighted.



Simplified Schematic of Ground Test Hardware
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Figure 24 — Integrated Test Schematic — 4BMS, Mechanical Compressor, Accumulator, Sabatier

These components control the interaction between the different systems as follows:

V209 - this 3-way valve switches the desorbing 4BMS bed from air-save to vent.
Air save is the first 10 minutes of the desorbing half cycle before CO2 is evolved
from the bed. After air save, the valve switches to deliver CO2 to the vent line.
V2 — this shut-off valve is in the standoff of the space station. When this valve is
open, the desorbing CO2 is vented to space vacuum. This valve must be
commanded closed by the supervisory controller in order for the compressor to be
able to draw the CO2 from the bed. If there is excess CO2 in the 4BMS that is not
removed by the compressor, this valve opens to direct the excess to vent.

PO0O0 — this pressure sensor is located within the CO2 Management Subsystem
(CMS) within the CO2 Reduction Assembly (CRA). This sensor measures the
pressure of the desorbing bed, which is also the compressor suction pressure.

V3 - this valve is also in the CMS portion of the CRA on the suction side of the
compressor. Whenever the compressor is commanded to operate, V3 is opened.
P002 - this pressure sensor is in the CRA and is used by both the CO2
Management Subsystem (CMS) and Sabatier Reactor Subsystem (SRS). This
sensor measures the quantity of CO2 in the accumulator. It is used to tell the
compressor when to turn on and off, and also tells the Sabatier when there is
enough CO2 in the accumulator to process.

SVCO007 - Valve SVCO007, inside the Sabatier, opened to allow CO2 to flow when
the Sabatier was in its processing state.

CO2 Bottle - for tests that did not utilize the 4BMS (compressor mapping, for
example), bottled CO2 was used as the source by closing HV6 and opening HV4.
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e Accumulator - The compressor delivered CO2 to the Sabatier/Accumulator inlet.
The accumulator is simply a buffer volume that fills and empties when the
compressor flow is greater or less than the Sabatier usage rate.

The 4BMS was operated in the nominal ISS CDRA mode. Half-cycle time was 144
minutes and process air flowrate was 95 Ibs/hour average. For the last 10 minutes of the
desorb cycle, the desorbing bed was exposed directly to the space vacuum simulator
pump. This would be the recommended operating procedure for ISS in order to fully
desorb the 4BMS bed prior to its next adsorption cycle. The CO2 loading profile to the
4BMS is described in Section 2.1.5.1.

2.2.2.2 Single Component Tests

22221 4BMS

The 4 bed molecular sieve system was tested alone to verify that it met the removal
capability that had been demonstrated in prior baseline cases. The test conditions are
listed in the table below. The baseline testing was repeated throughout the project to
ensure that there was no performance degradation as a result of the integration.

Test Case # ppCO2 Inlet CO2 Removal Test Duration
torr Rate

Lb/hr
4BMS Baseline, 3 | 1.48 0.23 8 hour min
EP
4BMS Baseline, 6 | 3.39 0.52 8 hour min
EP
2.2.2.2.2 Mechanical Compressor

This configuration tested the compressor as a stand-alone item. The test results would be
compared to the vendor test results prior to delivery of the compressor to NASA. This
testing is referred to in the test plan as “Compressor Health Check.” The Table below list
the test conditions.

Test Suction Discharge Pump
Point Pressure Pressure Speed

(psia) (psia) (RPM)
1 4 20 1000
2 4 130 1000
Each test point will last a minimum of 5 minutes.




2.2.2.2.3

Sabatier

Sabatier stand alone tests were performed to generate a baseline of the Sabatier efficiency
for comparison to previous Sabatier testing and to compare to the performance achieved
during the integrated tests. The test conditions used are listed in the table below.

Test | JSC Test CO2 Day | Night | US US | H2/CO2 | Sabatier | Sabatier | Cyclic or
Point Point Supply | Cycle | Cycle | H2 H2 Molar Co2 CO2 | Continuous
Reference | Pressure | Time | Time | Feed | Feed Ratio Feed Feed
(psia) | (min) | (min) | Rate | Rate Rate Rate
(Ib/hr) | (slpm) (Ib/hr) | (slpm)
1 3 85 - - 0.031 | 2.660 3.5 0.197 0.760 | Continuous
2 7 25 53 10 | 0.106 | 9.000 3.5 0.567 2.570 Cyclic

2.2.2.3 4BMS + Mechanical Compressor + Accumulator

Two test objectives were completed in this configuration. The purpose of the first test
was to measure the dew point of the product CO2 to determine if there would be
condensation in either the compressor or the accumulator during operation. The 4BMS
was operated with constant 0.2% CO2 inlet concentration. The compressor operated with
the varying inlet pressure as produced by the 4BMS and with fixed outlet pressures and
set by a backpressure regulator. The outlet pressures were set to 20, 47.5, 75, 102.5, and
130 psia.
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Simplified Schematic of Ground Test Hardware
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Figure 25 — Hardware configuration for 4BMS and compressor only tests.

In this test configuration, the 4BMS and compressor were integrated together with no
other systems operating. The hand valves that connect the CO2 tank (HV4) and the
accumulator (HV5) were closed. The Sabatier was powered on, but not processing so that
it could monitor the compressor inlet (PO00) and outlet (P002) pressures, and operate the
compressor and inlet valve (V3). The back pressure regulator (BPRV1) was set to
varying pressures according to the test plan. A closed hand valve isolated the
accumulator.

The other test was to start up the compressor under vacuum. Normally, the compressor
discharge pressure ins never less than 18 psia, however a system self check is being

considered that would evacuate the accumulator and compressor exit. The purpose of the
test was to determine if there were any operational issues with the compressor.

2.2.2.3.1 4BMS + Mechanical Compressor + Accumulator +

Sabatier

Table 8 below details the test conditions used for the integration of the mechanical
compressor with the 4BMS and the Sabatier. The column data in the table is as follows:



Column 1 is the test point number used for recording test conditions and resulting
data.

Column 2 is the constant CO2 concentration fed to the 4BMS at the cabin air flow
inlet. These tests were run open loop, therefore the feed concentration to the
4BMS was set by a CO2 mass flow controller with measured CO2 concentration
feedback to the mass flow control setpoint.

Column 3, EP, is Equivalent Persons. Early mathematical modeling of the 4BMS
predicted that 1.5 mmHg partial pressure of CO2 fed to the inlet of the 4BMS
would result in the equivalent CO2 removal rate of 3 EP generation rate. After
testing this condition and analyzing the data, it was found that 1.5 mmHg inlet
resulted in only 2.3 EP worth of CO2 collected and delivered to the Sabatier for
processing. The correction to the inlet feed rate was made in later tests.

Column 4 indicates the status of a virtual Vozdukh, the Russian CO2 removal
system. When the VVozdukh is off, all of the CO2 from the entire crew is collected
and concentrated by the US CRDA equipment and available for processing by the
Sabatier. When the Vozdukh is on, 25% of the crew load of CO2 is collected by
the Russian equipment and therefore not available to the Sabatier.

Column 5 indicates the status of a virtual Elektron, the Russian oxygen generator.
The contributing level of the Elektron is given in EP of oxygen delivered by the
Elektron. When the Elektron is producing oxygen, the US OGA production level
is lowered by the same amount and therefore the hydrogen available to the
Sabatier for processing is decreased. These contributions from other hardware
become important when determining the amount of water recovery available from
the Sabatier system.

Column 6 is the US hydrogen feed rate to the Sabatier. This value is the amount
of hydrogen generated along with the rate of oxygen generated to make up for
losses. The oxygen consumption rate is calculated from the crew size, the
contribution supplied by the Elektron (subtracted out) and a component for make
up oxygen for station air leakage amounting to 0.24 Ib/day. The value of
hydrogen in column 6 is used as the set point of the hydrogen mass flow
controller in the Sabatier EDU.

Column 7 is the set point for hydrogen/CO2 molar ratio. While this number is a
variable in the Sabatier control program, it was set to a constant 3.5 for these tests.
The Sabatier calculates the control set point for its CO2 control valve based on the
hydrogen feed rate and the molar ratio.

Column 8 is the CO2 feed rate. This is the average feed rate of CO2 that the
Sabatier should be calculating for the set point of its control valve.

Column 9 indicates day/night cyclic or continuous operation. When the integrated
system is operating in day/night mode, the OGA transitions to a standby mode
when the space station is in the dark side of the orbit and power is scarce. When
the station is back in the daylight side of the orbit, the OGA transitions back to
Process mode. Hydrogen is only available to the Sabatier when the OGA is in
Process mode. The times used for the duration of the day and night portions of the
orbit are given in Column 13.
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Column 10 indicates the minimum number of half cycles (HC) required to reach

nominal steady state conditions for the test point. These values were used to
schedule the test point in order to complete the series.

Column 11 is the compressor speed. Determining the correct size for the
mechanical compressor was one of the objectives of this test program. Adjusting

the speed of the compressor was a simple method of adjusting the compressor
capacity to see its effect on integration. A compressor designed for the flight

application of this system would be made with smaller pistons if necessary rather
than slower speed. Motor speeds under 1000 rpm have major impacts on sizing of
EMI filters in the controller.
Column 12 indicates the location of the CDRA (the station 4BMS) in the model

used to develop the metabolic profile. The location of the CO2 removal

equipment with respect to the location of crew members during different activities

affects the instantaneous concentration of CO2 seen at the 4BMS inlet.

Column 13, as described previously, is the duration in minutes of the daylight and
night portions of the space station orbit.

Table 8 — Integrated Test Matrix Input Parameters, Mechanical Compressor Test
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i 15 3 off 2.461 3.5 0.703 cont 3 | 1000 53/37
2% 15 3 off 0 4.179 3.5 1.194 | day/night 4 | 1000 53/37
e 15 3 off 0 4.179 3.5 1.194 | day/night 4 800 53/37
4 35 7.25 on 2 4.289 35 1.225 | continuous 3 1000 53/37
5 35 7.25 on 2 7.282 3.5 2.081 day/night 4 1000 53/37
6 35 7.25 on 2 7.282 35 2.081 | day/ight 4 800 53/37
8 met 6 off 0 8.724 3.5 2493 | daymight | 2° | 1000 | Node3 | 53/37
profile hrs
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profile hrs 3
11 met 7.25 on 2 7.282 3.5 2081 | daynight | 28 | 1000 | Lab | 5337
profile hrs

*includes air leakage compensation of 0.24 Ib/day air
** tests repeated after air leakage detected




2.2.3 Discussion of Test Results

2.2.3.1 Description of Result Metrics for Fully Integrated Tests

Table 2.2-2 lists the parameters used to evaluate the performance of the subsystems during the integration
tests. The parameters are listed as Set points or Performance. Set points are input parameters that are
established for each test case. They are the input variables to which the systems respond. Parameters are the
responses of the subsystems. The input parameters include the items discussed in Section 2.2.3.2 as well as
some additional items not included on the previous tables. Some of the additional parameters were not
changed between test points, but would have to be considered in the development of an Air Revitalization

System for other exploration mission scenarios.

Summary plots of each Test Point are assembled in Appendix A.

Table 2.2-9 — Integration Test Metrics

Integration Test Parameters
Set point | Performance
Overall System Test
Test Duration Frequency of Vacuum Vent
Day/Night or Continuous Sabatier Starvation
Crew Size
4BMS
CO2 Inlet Concentration or Feed Rate CO2 Removal Efficiency
Half Cycle Duration Power
Mechanical Compressor
Compressor Speed Power
Accumulator Working Pressure Range Number of Start/Stop Cycles
Accumulator Volume Duty Cycle
Sabatier
Hydrogen Feed Rate (based on crew size) | Water Recovery Efficiency
Molar Ratio Actual Water Production
Day/Night Cycle Times Power
Theoretical Water Production (based on | Reactor Temperatures
H2 available)
Reactor Pressure Drop
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The significance of the Set points and Performance parameters are discussed in detail below:

Overall System Test

4BMS

Test Duration — the duration of each test was pre-established to attempt to reach steady state
operation within the 4BMS. The tests with constant CO2 concentration fed to the 4BMS were run
for three or four half cycles. The tests that incorporated a metabolic profile to simulate the
movement of crew within the habitat were run for 50 hours or more to include repetition of the
profile.

Day/Night or Continuous — Day/night vs. continuous operation affects the availability of power. It
is assumed that when the ISS is in the night portion of the orbit that power consuming devices
must be tuned down or off. This affects the Sabatier operation and the heater power allowed in the
4BMS.

Crew Size — crew size is used as an indicator of overall load on the systems. Crew consumption of
oxygen (reflected in hydrogen flow rate) and crew production of carbon dioxide drive the sizing
requirements for the subsystems.

Frequency of Vacuum Vent — the vacuum vent is controlled at the system level based on what is
going on with the 4BMS. Excessive venting is an indication of poor CO2 management and likely
is associated with Sabatier starvation.

Sabatier Starvation — the overall goal of the system integration is to recover as much water as
possible. Sabatier starvation means that there is hydrogen produced ready to be converted, but
there is not enough carbon dioxide available to run the reaction. The overall mass balance of
hydrogen and carbon dioxide is such that there is always excess CO2 available, so starvation is

another indicator of poor CO2 management.

Inlet CO2 concentration or feed rate — The feed rate of CO2 to the 4BMS falls out of the crew size
parameter and sets the operating envelope for the integrated systems.

Half Cycle Duration — A half cycle refers to the length of time that all beds of the 4BMS system
are in either adsorb or desorb. The length of the half cycle affects how well the molecular sieve

beds adsorb and desorb CO2. The integration tests were all performed with a 144 minute half



cycle, however some of the stand alone tests were done with 155 minute half cycles to compare to
the manufacturer’s baseline tests. Shorter half cycle times increase the CO2 removal performance.
CO2 Removal Efficiency — CO2 removal efficiency is a measure of the amount of CO2 actually
captured by the 4BMS compared to the amount fed to it. Most of the tests were done open loop,
which means that the scrubbed air from the 4BMS was not returned to the inlet. Because the
testing was open loop, there was no buildup of CO2 concentration that would otherwise be seen
with a poor performing 4BMS. CO2 removal efficiency is affected by the desorption pressure, a
significant artifact of integration with a compressor instead of space vacuum venting.

Power — The 4BMS heaters consume power to desorb CO2 and water from the zeolite. The power
requirement is a function of the CO2 loading isotherms. The lower the vacuum pressure available

for desorption, the lower the power requirement to drive off the CO2.

Mechanical Compressor

Compressor Speed — In this series of testing, the compressor speed was varied to effectively
change the flow rate capacity of the compressor. In reality, the piston size and stroke would be
optimized to achieve the desired volumetric flow rate. The speed change allowed an easy way to
change flow conditions and observe the results.

Accumulator Working Pressure Range — The accumulator used in the mechanical compressor tests
was restricted to operation between 18 and 120 psia. There are several factors that influence this
range that could change for other than and ISS application. The low set point pressure is based on
the pressure drop allocation for the control components in the Sabatier at maximum flow rate. This
pressure drop is added to the reactor inlet pressure and the minimum pressure of 18 psia is
achieved. The actual pressure drop of the EDU hardware was lower than the allocation because
there were no filters installed in the lines. The upper pressure limit is based on pressure ratio
achievable by the compressor, inlet dew point and the resulting dew point of the gas once
compressed, and the pressure rating of the downstream components. The accumulator vessel can
withstand over 2000 psia, however, not all of the shutoff valves can be exposed to that pressure.
The maximum operating pressure selected for these tests was 120 psia, which was sufficiently low

enough to prevent condensation.
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e Accumulator Volume — The accumulator volume for the ISS application is 0.73 ft3. This is the
largest volume of accumulator bottles ganged together that could fit in the Space Station rack
designated for Sabatier installation. All of the integration tests using an accumulator used similar
size bottles to simulate the ISS available volume.

e Power — Power is one of the key performance variables of the mechanical compressor. The power
consumption is based on the work done to compress the carbon dioxide and also the mechanical
and electrical efficiency of the compressor and motor.

e Number of Start/Stop Cycles — The number of start/stop cycles resulting from the integration
dynamics is an important factor in the life of the compressor. The number of start/stops affects
wear of moving parts and life of electronic components.

e Duty Cycle — Duty cycle is the most important factor affecting life of the compressor. The life
limiting component of the compressor is the piston rings, and their life is directly attributed to run
time.

Sabatier

e Hydrogen Feed Rate — The hydrogen feed in these tests was delivered from gas cylinders. In a real
ARS application, the hydrogen would come from an oxygen generator and would be a function of
the oxygen produced for crew consumption. The hydrogen feed rate can be any value for other
mission scenarios.

e Molar Ratio — Molar ratio is the ratio of hydrogen to carbon dioxide fed to the Sabatier reactor.
The stoichimetric ratio is 4 moles hydrogen to 1 mole CO2. In these tests, the molar ratio was set
to 3.5. In the space station application, CO2 is in excess of hydrogen. The reactor works more
efficiently when the molar ratio is not at the stoichiometric value. In other applications, Mars for
example, the reactor might be run at molar ratios greater than 4.

e Day/Night Cycle Times — The day night cycle time for most of the tests was set to 52 minutes day,
37 minutes night. This corresponds to the longest night duration of the ISS orbit. The length of the

night cycle affects how much the reactor cools off before being restarted.



Theoretical Water Production — This value is the amount of water that could be generated by the
Sabatier if every mole of hydrogen was consumed, and all of the water was collected. The molar
ratio of water generated to hydrogen consumed is 1:2.

Actual Water Production — This is actual mass of water collected over each test duration. The
water production is affected by the reactor efficiency, the separator waste heat and the number of
shutdown cycles for night time operation.

Water Recovery Efficiency —This is the ratio of actual water to theoretical water. It is the most
telling of the Sabatier performance metrics for overall system performance.

Power — Power is consumed by the Sabatier to preheat the reactor and to operate the separator, in
addition to valves and sensors.

Reactor Temperatures — The reactor temperatures indicate the general health of the Sabatier
reaction and vary with different inlet feed rates and molar ratios.

Reactor Pressure Drop — Reactor pressure drop varies with feed flow rate, unless there is
excessive water condensation in the reactor bed. A high value would indicate a

performance issue that would require adjustment.

2.2.3.2 4BMS Baseline Test

The table below lists the results of 4-BMS stand alone testing that was performed after the integrated tests

were completed.

Test Case # ppCO2 Inlet CO2 Removal In — Out

torr Rate CO2
Lb/hr Removal
Efficiency

4BMS Baseline 3.79 0.52 74%

4BMS Baseline TP2 1.48 0.23 84%

Conditions

4BMS Baseline TP4 3.39 0.52 81.5%

Conditions

4BMS Baseline TP5 3.40 0.52 81.8%

Condition
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2.2.3.3 Mechanical Compressor Baseline Test

The mechanical compressor was tested in a stand-alone configuration to compare its
performance against the baseline data recorded by the manufacturer. The compressor was
tested at 4 psia inlet pressure, 130 psia outlet pressure and produced about 2 Ib/hr. The
compressor was also tested at 4 psia inlet pressure and 20 psia outlet pressure. The flow
rate varied between the three runs, with approximate averages of 1.2, 1.4, and 2 Ibs/hr.
Large variations in inlet pressure were observed.

Test Suction Discharge Pump Flow

Point Pressure Pressure Speed Achieved
(psia) (psia) (RPM)

1 4 20 1000 1.2-2 Ib/hr

2 4 130 1000 2 Ib/hr

Each test point will last a minimum of 5 minutes.

2.2.3.4 4ABMS + Mechanical Compressor

The purpose of these integrated tests was to measure the dew point of the product CO2 to
determine if there would be condensation in either the compressor or the accumulator
during operation. The 4BMS was operated with constant 0.2% CQO?2 inlet concentration.
The compressor operated with the varying inlet pressure as produced by the 4BMS and
with fixed outlet pressures set by a back pressure regulator. The outlet pressures were set
to 20, 47.5, 75, 102.5, and 130 psia. Dew point of the compressed CO2 remained below
31 F for all conditions tested. During extended compressor operation, the dew point
remained around 0 F. CO2 removal from the 4BMS using the mechanical compressor
was the same as using the space vacuum simulator within the measurement accuracy of
the tests.

Test Case # ppCO2 Inlet CO2 Removal In—Out
torr Rate CO2
Lb/hr Removal
Efficiency
4BMS CEDU 1.48 0.24 87%
4BMS CEDU 3.37 0.54 85%
4BMS CEDU 3.38 0.58 92%
4BMS Stand Alone 1.48 0.23 84%
4BMS Stand Alone 3.39 0.52 81.5%
4BMS Stand Alone 3.40 0.52 81.8%

Dew Point Data

Test Day | Compressor outlet Max Dew Point
pressure
Day 7 20 31F




Day 8 50, 75, 100 30, 29, 27

Day 9 130 31

2.2.3.5 Mechanical Compressor Startup Under Vacuum

One of the safety checks envisioned for the Sabatier CRA system required vacuum
venting of the entire Sabatier system including the mechanical compressor and
accumulator. The mechanical compressor was tested by starting it with vacuum at both
the inlet and outlet to determine if there were any performance issues. Three successive
tests were conducted with no problems encountered. No unusual noises or other unusual
behavior were observed.

2.2.3.6 4BMS + Mechanical Compressor + Accumulator + Sabatier

This section describes the test results for the 4BMS, Mechanical
Compressor/Accumulator and Sabatier integration test series. Eleven different test points
were run, each with a different set of operating conditions. The summary of test results is
given below in Table 2.2-3.

Test points 1,2 and 3 were conducted at the minimum crew loading of 3 Equivalent
Persons, with all of the CO2 removal performed by the 4BMS (no Vozdukh simulation).
Test Point 1 was continuous operation, or no day/night cycling. This means the Sabatier
and the 4BMS heaters were allowed to operate all of the time. Test Points 2 and 3 used a
53 minute day/37 minute night cycle. Test Point 3 was run with the slower compressor
speed (800 rpm) compared to 1 and 2 with the 1000 rpm speed. Test Points 4,5 and 6
mimicked 1,2, and 3 except they were run at the maximum crew loading of 7.25
Equivalent Persons with simulation of 2 EP of CO2 removal and H2 production by
Russian hardware. Test Points 8, 10 and 11 were run with metabolic profile inputs for the
CO2 feed to the 4BMS. Test Point 8 was 6EP with no Russian hardware, 10 and 11 were
7.25 EP with 2 EP of Russian hardware. Test Points 8 and 10 were simulated with the
ARS components installed in the Node 3 location of the ISS. Test Point 11 was simulated
with the components in the Laboratory Module of ISS.

Table 2.2-10 — Mechanical Compressor CO2 Capture Performance Data
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S| o S8 5 > 552 | 58| 82 S E e5S| 28 ]
a w - S o O o=s2Z Eol-Ws) sSB ol ZF Sacae|l o4 - S~
Z |3 es |55 | 522 | 552|588 85 | £5¢E8| 52 | E5¢
(5] — i
= | O EQ | 2T Z830 | 200| 8O0 P LO0FQ| 08 F&E
1 3 16.10 6.75 21 3.11 168 25 17 15
2 3 3.78 15 2.75 5 3.33 42 28 19 9
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3 3 22.50 9 15 25 2.78 324 36 25 9
4 5.4 7.80 3.25 - 11 3.38 67 21 15 0
5 5.4 14.43 6 9.75 23 3.83 136 23 16 0
6 5.4 27.35 11.5 18 42 3.65 251 22 15 0
8 6 (met) 40.78 17 275 68 4.00 399 23 16 0
10 | 5.4 (met) 28.78 12 19 50 4.17 235 20 14 0
11 | 5.4 (met) 43.20 18 28.5 80 4.44 355 20 14 0
S
S n o E —_
2. |25 | 588 5

£ SIS R - P

g | Zog| 05| ESS| ERE

| O F<sO| <> | <<a| <<=

1 3 0 0 20 60

2 3 0 0 20 40

3 3 0 0 20 55

4 5.4 6 1.85 50 130

5 5.4 7 1.17 50 130

6 5.4 13 1.13 60 130

8 | 6 (met) 11 0.65 50 130

10 | 5.4 (met) 9 0.75 60 130

11 | 5.4 (met) 23 1.28 55 130

The number of compressor cycles and compressor duty did not vary greatly from
between test conditions. The greatest difference noted is at the lower CO2 loading, there
is a marked difference between the low and high speed compressor tests. As expected, the
lower speed had a higher duty cycle. This difference is not seen in the higher CO2
loading cases. The compressor rules are less demanding on the compressor when the
accumulator is near its full mark, and therefore the compressor operation is nearly the
same for both cases. Some of the test periods evaluated were quite short and therefore

there is significant round off error associated with the results.
The minimum EP cases (1, 2 and 3) experienced periods of Sabatier starvation when H2 was being

produced by the OGA but there was not enough CO2 in the accumulator for processing. The accumulator
pressure dropped to the minimum operating pressure of 20 psia and only reached to a maximum pressure of
60 psia. There were no vent cycles, which indicates that no CO2 was wasted. At these low rates, the impact
of leakage is more significant, and it may not be possible to avoid starvation.

The higher EP cases (test points 4, 5 and 6) did not experience any starvation. There were numerous vent
cycles and overall high accumulator pressures. The overall water production efficiency was generally
higher, since all of the hydrogen was processed.

The compressor duty cycle for all cases was on the order of 13-21% with the higher CO2 loading cases
having the lower duty cycle. There was not a large difference in duty cycle between the cases with the

different compressor speeds (Test points 2 vs. 3 and 5 vs. 6).



Figure 2.2-26 below is a typical example of performance data collected during the mechanical compressor
integration tests. The performance data described above is shown in this plot of one CDRA half cycle. The
top purple line is the accumulator pressure. In this test case, the accumulator is regularly near the upper
limit of 130 psia. When the accumulator pressure is at this maximum value, the compressor rules do not
allow the compressor to turn on to pump CO2 from the CDRA. In time, the CDRA bed pressure, indicated
by the pink line, reaches the maximum allowable pressure of 8 psia and the vacuum vent valve is opened.
The vent valve opening is noted by the sharp increase in pressure of the vacuum tank indicated by the dark
blue line. The aqua line indicates when the Sabatier is in Process mode, and the green line indicates when
the compressor is activated. For this test case, the compressor activates between 3 and 4 times per CDRA

half cycle.

Test Point 6, 5.4 EP, Day/Night, 800 RPM

Compressor runs until
max accumulator
ressure is met

Sabatier operation
uses CO2 from

accumulator, then
14

] w -
10 100
Accumulator Pressure

6 60 CDRA Discharge Pressure

Deta

40 Vacuum Tank Pressure

Compressor Activation

=
AN

\
B
o

Compressor
Operation

Pressure relief by
vacuum vent valve,
ccumulator is fu

Sabatier
Process
Mode

Figure 2.2-26 — Typical Performance Data for Mechanical Compressor Integration Tests

The following four plots show the characteristic water recovery data for some of the test points. In Test

Point 4, the overall water recovery was 95%. This test point was at continuous operation at the higher CO2
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loading. There was no starvation of the Sabatier during this test point. This is the highest water recovery
expected from the Sabatier system at these operating conditions. In contrast, Test Point 1, which was
continuous at the lower CO2 loading, showed signs of Sabatier starvation and yielded only 89% water
recovery. The offset of the blue line with the two small steps from the straight gray line is the loss of water
due to insufficient CO2 available to the Sabatier. The water recovery of the Sabatier based on its operating
time is 91%, the two percent difference is due to starvation.

Test Point 6 is a cyclic day/night case. The water recovery suffers more in this mode due to the cyclic
operation. Each time the Sabatier transitions to and from Standby, the system is evacuated and steam is lost
to the vacuum vent. The reactor also is not at the optimal temperature due to the constant change of flow
rate. The efficiency drops from the high of 94% in Test Point 4 down to 89% in Test Point 6 due to cyclic
operation. Further, the recovery worsens in Test Point 3, which is cyclic at the lower CO2 loading.
Starvation occurs in this scenario dropping the water recovery to 82% overall.

The three metabolic load cases (Test Points 8, 10 and 11) did not experience any Sabatier starvation. Their

water recovery numbers are slightly lower than the equivalent fixed CO2 feed cyclic case (Test Point 6).

Test Point 6, 5.4 EP, Day/Night, 800 RPM

1000 Water recovery
efficiency is 89%
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Production
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Actual Water
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on H2 delivered to
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Actual water

200 . .
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phase separator
0 T
459 4595 46 46.056 461 4615 462 46.25 463
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Test Point 4, 5.4 EP, Continuous, 1000 RPM
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Test Point 3, 3 EP, Day/Night, 800 RPM
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Table 2.2-11 - Sabatier Water Production Rate Efficiencies
Actual Water Theoretical Water Actual Water
Time Period Collected (gm) Production Rate Production Rate Water Production
Test Point CO2 EP Evaluated (hrs) (gm/min) (gm/min) Efficiency
1 3 16.10 876.3 0.99 0.85 89%
2 3 3.78 197.1 0.99 0.85 84%
3 3 10.85 574.6 0.99 0.81 82%
4 54 5.97 576.0 1.72 1.6 94%
5 5.4 6.65 637.7 1.72 1.6 93%
6 5.4 15.05 1341.8 1.72 15 89%
8 6 (met) 14.90 1590.3 2.06 1.8 88%
10 5.4 (met) 19.97 1836.6 1.72 1.4 87%
11 5.4 (met) 19.98 1713.9 1.72 15 86%

The water production performance is presented in Table 2.2-4. As expected, the steady
state cases (Test Points 1 and 4) had the highest water recovery rates as there was no
water vapor lost due to venting during Standby operation. The higher EP cases had
slightly higher water recovery as there were no periods of Sabatier starvation.




2.2.4 Conclusions from This Test Section

The integration test of the 4-Bed Molecular Sieve, Mechanical Compressor and
Accumulator and Sabatier was a successful test program. The testing showed that these
systems could be properly integrated together. There is no significant, detrimental impact
on the 4-Bed CO2 removal system when desorbed with a compressor instead of space
vacuum. 4-BMS CO2 removal efficiency was well above requirements for the wide range
of CO2 inlet concentrations tested. The compressor control logic in place during this test
program supported the wide range of conditions tested. Modifications were made in the
flight CO2 compressor control logic to accommodate pressure sensor accuracy
requirements. Also, the 4-BMS vent valve flight control strategy is different than what
was tested and results in fewer valve cycles.

As a result of this testing, the compressor simulation model was modified to better
predict flow at low suction pressures. The 4-BMS model was also updated to incorporate
a leakage factor to estimate air leakage into the system components that operate at
vacuum.

2.3 Integration Test Using the TSA Compressor

2.3.1 Description of Tests

2.3.1.1 4BMS + TSAC

The TSAC integration tests were conducted in three phases at MSFC. The first phase
included the integration test of the 4BMS and TSAC only with constant 4BMS CO2
loading. Phases 2 and 3 included the Sabatier with constant and variable CO2 loading of
the 4BMS. The primary objective of the first phase was to demonstrate the TSAC
performance in a realistic environment where the CO2 flow and pressure from the 4BMS
varied with time. The objectives of these tests were to gather data for the validation and
optimization of the air-cooled TSAC design, and for development of a low power CO2
removal system that incorporates the functions of the 4BMS and the TSAC.

Figure 1 below shows a simplified schematic of the 4BMS and the TSAC configured for
the initial phase of the stand alone tests. The Sabatier simulator was a mass flow
controller set to draw a fixed flow rate of CO2 from the TSAC.
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Figure 27 - Simplified Schematic of 4BMS and TSAC Integration Test



2.3.1.2 4BMS + TSAC + Sabatier

Simplified Schematic of Ground Test Hardware
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Figure 28 — Integrated Test Schematic — 4BMS, TSAC, Sabatier

Figure 2 above is a simplified schematic of the 4BMS integrated with the TSAC and the
Sabatier. The same V209 and V2 valves were used as with the mechanical compressor
test. The two beds of the TSAC and the associated valves that allow switching are not
shown in this diagram. These are all contained in the box labeled TSAC. The V209 valve
again is used to allow the desorbing 4BMS bed to first perform the air-save function
(removing ullage air volume back to the cabin). This valve then switched to the vent
direction (to compressor or vacuum) once air-save was completed. The V2 valve, again
was used to pressure relieve the 4BMS beds if the desorbing CO2 pressure was too high.
The logic for this valve operation is described in Section 2.1 (Hardware Description).
The integrated hardware shown above in Figure 2 operated as follows:

e During bed desorption, the 4BMS (labeled CDRA in the figure) delivers CO2
through valve VV209.

e Excess CO2 is vented through valve V2 to the space vacuum simulator. The
venting logic is described in more detail in Section 2.1.5.2, 4BMS Venting.

e CO2 for processing is delivered through valve V3 to the suction of the TSAC.
The TSAC controlled all of the valves necessary to switch between the two
sorbent beds and isolate the TSAC from the 4BMS and Sabatier. The Sabatier
controller did not perform this function.

e A separate vent line from the TSAC to the space vacuum simulator was used to
allow the TSAC beds to bleed diluent gases (nitrogen and oxygen) from the beds.
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Without the bleed stream, these diluents would build up and the compression
capacity would diminish.

The compressor delivered CO2 to the Sabatier inlet. The TSAC sorbent beds act
as both accumulator and compressor. A separate accumulator is not needed with
this compressor configuration.

Valve SVCO007, inside the Sabatier (not shown), opened to allow CO2 to flow
when the Sabatier was in its processing state.

As with the mechanical compressor integration, during the TSAC integration the 4BMS
was operated in the nominal ISS CDRA mode. Half-cycle time was 144 minutes and
process air flow rate was 95 Ibs/hour average. For the last 10 minutes of the desorb
cycle, the desorbing bed was exposed directly to the space vacuum simulator pump. The
CO2 loading profiles for the different test points are described in detail in Section 2.0.

2.3.1.3 Test Conditions

Table 5 below details the test conditions used for the integration of the TSA compressor
with the 4BMS with and without the Sabatier. The column data in the table is as follows:

Column 1 is a description of the conditions being simulated.

Column 2 is the test point number for recording test parameters and resulting data.
Column 3 is the target CO2 loading on the 4BMS for the TSAC/ABMS parametric
tests without the Sabatier.

Column 4 is the target CO2 inlet concentration to the 4BMS for fully integrated
tests with the Sabatier. These tests were run open loop, therefore the feed
concentration to the 4BMS was set by a CO2 mass flow controller with measured
CO2 concentration feedback to the mass flow control set point.

Column 5 is the number of equivalent persons in the crew. The test points used
for comparison of the two compressors were set with the same number of crew.
For the test points that simulated a Lunar Base, the crew was set to 4. The
compressor parametric tests used various crew sizes to achieve the desired
loading values.

Column 6 is the TSAC loading or suction pressure. This value is controlled in
each test.

Column 7 is the TSAC production or discharge pressure. The pressure was set at
19.3 psia for the 4BMS/TSAC only tests. The pressure was set at 18 psia for the
ABMS/TSAC?Sabatier tests.

Column 8 is the US H2 feed rate. This designation was carried over from the ISS
simulation tests even though there currently is no concept of multiple life support
hardware components for Lunar operations. The H2 feed rate is calculated from
the crew O2 consumption with an allotment of 0.24 Ib/day of air leakage.

Column 9 is the H2/CO2 molar ratio. While this value is a variable in the Sabatier
control logic, it was set to a constant value of 3.5 for all tests.



Column 10 is the feed rate of CO2 from the compressor to the Sabatier. This
value is calculated by the Sabatier controller from the indicated hydrogen flow
rate and the desired molar ratio.

The following describes the different test points and objectives:

Test Points 1 through 5 were performed with the 4BMS and TSAC only, without
the Sabatier

Test Point 1 was a maximum loading test with 8 kg/day loading on the 4-BMS
and TSAC loading at 4 psia. The TSAC production rate was 4.2 kg/day.

Test Point 2 was to determine the maximum TSAC production capacity at 5
kg/day 4-BMS loading.

Test Point 3 was to determine the maximum TSAC production capacity at 4
kg/day 4-BMS loading .

Test Point 4 was to determine the maximum TSAC production capacity with the
4-BMS loaded to 4 kg/day, but the 4-BMS was not desorbed to vacuum at the end
of the half cycle. This test would provide data pertinent to LPCOR development.
Test Point 5 was to determine the maximum TSAC production capacity at 3
kg/day 4-BMS loading.

Test Point 6 was a parametric test with the TSAC loading pressure intended to be
6 psia.

Test Points 7 through 11 were integrated tests including the Sabatier.

Test point 7 was a baseline configuration that mimicked conditions of a
previously run 4BMS/TSAC only test. The purpose of this test was to verify that
the integration of the Sabatier did not impact the performance of the TSAC and
4BMS.

Test points 8 and 9 were designed to mimic previous integration tests with the
4BMS/Mechanical Compressor and Sabatier. The purpose of these tests was to
obtain direct comparisons of the compressor technologies as they relate to the
integration requirements.

With the current focus on the Vision for Space Exploration, the team decided to
develop test conditions that would reflect possible future exploration mission
scenarios. These missions simulate a manned outpost at the Lunar south pole. Test
Point 10 simulated the extended Lunar night and Test Point 11 simulated EVA
activities. The basis for these test points is described in more detail in the next
section.

In all of these tests, the objectives also included measurement of the effects of integration
on the efficiencies of the stand-alone components.
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Table 12 - Integrated Test Matrix — TSAC Test
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kg/day 2 5(11) - 5 27.6 (4) (19.3) - - -
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pressure 6 5(11) -- 5 41.4 (6) (19.3) --
Integrated 4BMS/ TSAC/
Sabatier at TSAC baseline
conditions for TSAC health 5.3 124 6.766 1.933
check 7 - (0.7%) 8.3 - (18) (0.0798) 35 (0.502)
Integrated 4BMS/ TSAC/
Sabatier for comparison to
mechanical compressor test 35 124 4.459 1.274
point #2 8 - (0.46%) 5.46 - (18) (0.053) 35 (0.331)
Integrated 4BMS/ TSAC/
Sabatier for comparison to
mechanical compressor test 15 124 1.925 0.550
point #3 9 - (0.2%) 2.34 - (18) (0.023) 35 (0.143)
Integrated 4BMS/ TSAC/
Sabatier Lunar night scenario,
non-optimal TSAC shutdown/ 2.52 124 3.273 0.935
startup 10 - (0.33%) 4 - (18) (0.037) 35 (0.243)
Integrated 4BMS/ TSAC/
Sabatier EVA full crew
departure scenario, CO2 Per 124 3.273 0.935
regenerated to cabin 11 -- profile 4 -- (18) (0.039) 3.5 (0.243)

2.3.1.4 Mission scenario development

This section describes the operating conditions set for each series of integration tests.
Section 0 explains the reasons for choosing the test point in the matrices and how each
series of tests relates to future missions. Section 2.3.1.3 details the input parameters in
terms of crew size, processing duration, etc.

Specific, quantitative test conditions, like any requirement, must be traceable back to

some realistic higher level requirement, which in turn is traceable to a mission scenario.

Rather than starting “at the bottom” with candidate test points the test point definitions




can be derived “top down” from the mission scenarios. This process ultimately links the
tests and the data produced to the mission need.

Because of the configuration of the Sabatier scar in the OGS rack, the TSAC compressor
is a less likely candidate for the ISS application, however its technical merits make it a
viable candidate for other space exploration missions where interface conditions have not
already been set. The TSAC test conditions were based on possible Lunar mission
operating parameters. Various scenarios were explored that taxed the systems’
capabilities over a range of conditions. These Lunar mission scenarios were used to
develop the input parameters of Table 5.

Lunar Base CRA Installation

With the current focus on the VSE, it was decided that test points should be included to
reflect possible future mission scenarios. Three basic mission scenarios were developed:
1) Impact of lunar day/night cycles at the south pole, 2) Lunar mission EVA, and 3)
Reduced pressure cabin atmosphere. For this test series, the third mission scenario was
ruled out since time constraints would not allow the reconfiguration of test hardware for
sub-ambient operation.

Impact of Lunar Day/Night Cycles at the South Pole

Lunar missions will operate with very different power cycle availability than the more
familiar ISS power-cycle profile. Due to a reduction in resupply water capability, the use
of a CDRA/TSAC/Sabatier system is most advantageous as part of an Outpost life
support system, which will most likely be positioned at the Lunar South Pole. At the
South Pole, solar power is available nearly continuously for most of the month, with
periods of 24 to 48 hrs where no solar power is available and stored battery power is
required. Reduced power operations will probably be necessary during this night period.
Since OGA provides hydrogen to Sabatier, one test point included shutting down the
Sabatier production during what would be the Lunar night. With the Sabatier shut down
during Lunar night, TSAC need not operate to produce CO2. Depending on the TSAC
state when the system shuts down, the start-up could be simple or more complex. The
CDRA would continue operating to maintain CO2 levels in the habitat.

Due to time constraints, the most challenging scenario was selected where the lunar night
cycle begins relatively early in a CDRA half cycle and ends towards the end of a CDRA
half cycle. This results in the TSAC shutting down when only a fraction of the adsorbing
bed has been loaded and only a fraction of the desorbing/producing bed has been
unloaded. Hence, when the lunar night is over and the TSAC/Sabatier re-started, for the
first TSAC cycle after the half cycle change, there is too much CO2 on the adsorbing
TSAC bed for the CDRA to fully desorb.

Preliminary testing found that by approximately 70-80 min into the 4BMS 144 min cycle,
about 25% of the available CO2 was adsorbed onto TSAC. Hence for this test point,
Lunar night or TSAC/Sabatier shutdown occurred at this time. Due to time constraints,
the Lunar night cycle was reduced to a minimum of 6 hrs, about the time it takes to fully
cool down the TSAC and Sabatier systems. After the lunar night cycle, the TSAC and
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Sabatier were started back up at roughly 120 min into the current 4BMS cycle. Since
there is almost no CO2 remaining on the 4BMS desorbing bed at this time, the TSAC
was not able to adsorb any additional CO2. Since the TSAC requires roughly 20 min to
heat up before it can provide CO2 to the Sabatier, the desorbing TSAC bed at first was
not able to unload any additional CO2 to Sabatier. Hence, when the CDRA half cycle
change occurred, the TSAC was essentially in a worst-case configuration with both beds
partially loaded with CO2. The results of this test configuration will be discussed below.

Lunar Mission EVA

Lunar Exploration missions will be highly EVA intensive, with crews of two to four
making trips on the lunar surface multiple times in a week. The number of crewmembers
actually in the habitat can change significantly during the day or the week, changing the
load on each of the air systems. It was assumed that if an OGA were used for oxygen
generation, it would also be used to generate oxygen that is stored for consumption
during EVAs resulting in continuous H2 availability. It was also assumed that the CDRA
would remain operational even if all crew were on EVA since this is the most likely flight
configuration due to its simplicity.

Multiple possible EVA scenarios were evaluated. These included: 1) 4 crew EVA where
CO2 exhausted on EVA is stored and later regenerated back to the cabin, 2) 4 crew on
EVA but CO2 is vented during EVA, 3) 4 crew on EVA but depart habitat in groups of
two offset by 4 hrs, and 4) 2 crew on EVA and 2 remain in habitat. METOX
regeneration was used as a model for the regenerable EVA CO2 removal technology.

Overall, approximately ten different possible EVA scenarios were developed. Several of
the configurations were modeled in JSC’s integrated model discussed previously. In
comparing the predicted cabin ppCO2 profiles, it was concluded that the most dynamic
and therefore worst case test scenario was defined as a 4 crew, single departure EVA
where CO2 is stored and later regenerated to the cabin. Based on modeling, the most
realistic EVA CO2 regeneration scenario involved 2 crew worth of CO2 being
regenerated starting 2 hours post EVA followed by the remaining 2 crew’s worth of CO2
regenerated the following day. Figure 3 depicts the cabin ppCO2 results of this scenario.
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Figure 29 - Lunar EVA Mission Scenario Cabin ppCQO2

2.3.2 Discussion of Test Results — Integration Test with TSAC

2.3.2.1 Results - 4BMS + TSAC

The 4BMS and TSAC were tested together over a range of CO2 feed rates to better
define the TSAC operating envelope and to provide data for further design
improvements. In order to understand the impact of the TSAC on the 4BMS, a test plan
was developed to compare operating effects. The 4BMS was operated in a stand-alone
open loop mode, and then integrated with the TSAC under similar input conditions. Table
2 below lists the test conditions and the results for the two different operating modes. The
CO2 removal efficiency of the 4BMS was an average of 2.75% less when integrated with
the TSAC than in open-loop mode, desorbing to vacuum. The worst effect was in the
middle of the range of input CO2 concentration, 2.6 mmHg ppCO2, where the efficiency
dropped 5% when the TSAC was added. Figure 4 below shows the difference between
the two sets of operating conditions.

Table 13 - Operating parameters for ABMS / TSAC comparison tests

Inlet CO2 CO2 4BMS CO2 | Efficiency

Data File Concentration | Removal Removal Loss with
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(mmHg) Rate (Ib/hr) | Efficiency TSAC
(%)

4BMS Compare #1 5.30 0.73 69

2%
TSAC Test #1 5.27 0.71 67
4BMS Compare #3 | 3.31 0.56 85 30
TSAC Test #2 3.28 0.54 82
4BMS Compare #4 | 2.63 0.44 84 504
TSAC Test #3 2.65 0.41 79
4BMS Compare #5 | 1.96 0.32 84 1%
TSAC Test #4 1.94 0.32 83

Effect of Adding TSAC to 4BMS CO2 Removal Efficiency
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Figure 30 - Graphical presentation of integration effects on 4BMS efficiency
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One objective of the 4BMS / TSAC testing was also to obtain parametric data for the
TSAC for sizing and evaluation. Table 3 lists the test parameters for these tests along
with the performance targets and actual results. These tests were described in the ICES
paper 2006-01-2271 “Integrated Test and Evaluation of a 4-Bed Molecular Sieve,
Temperature Swing Adsorption Compressor, and Sabatier Engineering Development

Unit.”

Table 14 - TSAC Performance Target and Actual Results

Test Point | Test | 4BMS | 4 BMS TSAC TSAC TSAC | Comments
Description | # Inlet C0O2 '};"ad'”g Production | Delivery
ppCO2 | Removal re;;ure Rate Pressure
kg/day Target / kg/day mmHg
mmHg | Target/ Result Target/ | Target/
Result Result Result
| d i
;‘éﬁlg;‘%m 1 5.27 81717 4/7?? 4.214.24 1000/ | This




baseline test 1002 | condition is
not listed in
the ICES
paper
|
;‘é‘;/?;ﬁesdm at 2 3.28 5/5.39 4/7?? | Max/4.24 | 1000/ | ICES Test
reduced CO2 1002 #1
loading, 5
li)g?dglg 4.2 kg/day
3 2.65 4145 4/?? | Max/4.07| 1000/ | ICES Test
1004 | #3
Integrated 11/18/05
4BMSITSAC at 9:06 AM to
I“Edé‘ce" coz 11/19/05
ing, 4
kglday 6:13 AM
4 2.58 4/4.16 4/?? | Max/2.89 | 1000/ | ICES Test
1004 | #4
Integrated 11/21/05
+ kgicay and 9:06 AM to
20 vaguufm 11/22/05
4OMS. 7:12 AM
5 1.94 3/3.49 4/?? | Max/3.99| 1000/ | ICES Test
1003 | #5
Integrated 11/19/05
4BMS/TSAC at 4:28 PM to
[Ed(‘;.ceo' coz 11/20/05
aldey 11:41 AM
Integrated 6 3.26 5/5.96 6/?7? | Max/4.75| 1000/ | ICES Test
nereased CO2 / 1004 | #2
loading 4.8 kg/day
pressure

2.3.2.2 Results - 4BMS + TSAC + Sabatier

This section describes the test results for the 4BMS, Temperature Swing Adsorption
Compressor and Sabatier integration test series. Five different test points were run, each
with a different set of operating conditions. The summary of test results is given below in
Table 3 along with the summary data from 4BMS + TSAC parametric testing.

2.3.2.2.1 Integrated Test Results - Nominal Steady State Operation

Some of the TSAC integration tests were conducted at nominal steady state inlet
conditions to baseline the performance of the systems together. These first three test
points were conducted with steady CO2 feed flow to the CDRA and continuous operation
of the Sabatier. These cases resulted in sufficient CO2 capture by the TSAC so that there
were no periods of Sabatier starvation. The excess CO2 not needed by the Sabatier was
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vented by the CDRA directly to the vacuum vent. Figure 5 below illustrates typical
TSAC performance for Test Point #1. This test point was run with very high CO2
loading, 8.3 EP. The pink and blue lines are the alternating TSAC bed pressures. There is
instrumentation error between the pressure sensor measuring the 4BMS bed and the
pressure sensor measuring the TSAC bed. The CDRA discharge pressure must be higher
in order to flow to the TSAC. The saw tooth lines at about 10 psia are the equilibrium
pressures when each TSAC bed has completed adsorbing CO2 from the desorbing CDRA
bed. The saw tooth pressure is the result of the 4BMS bed heater cycling to maintain
temperature while the CO2 is desorbing. The smooth lines at about 20 psia are each of
the desorbing TSAC beds providing continuous flow to the Sabatier. As long as the green
line at the top of the graph (Sabatier inlet CO2 pressure) remains above 18 psia, then the
Sabatier is allowed to operate (shown by the purple line at the bottom of the graph). The
brown line is the vacuum tank pressure. The large spike at each TSAC bed change is
from the CDRA going into the 10 minute space vacuum desorb portion of its operating
cycle. The smaller peaks in the middle of each half cycle are from the vent valve opening
to relieve the CDRA pressure.

Test Point 1 4BMS/TSAC Comparison

Sabatier Inlet
pressure is always
above 18 psia

20 U N\ Sabatier Inlet CO2 Pressure
\
End of
adsorption
5 equilibrium

pressure

TSAC Bed A Discharge Press

" TSAC Bed B Discharge Press

CDRA Discharge Pressure

\ (\' Vacuum Tank Pressure

Sabatier Operating Status
T T ¥‘
1075 L 1085 109 1095
Sabatier is
always on Large peak, 10

minute vacuum
desorb

Small peak, vent
valve relief

Figure 31 - Typical TSAC Performance Data
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Test points 2 and 3 were designed to copy the operating conditions of the previously
completed mechanical compressor integrated tests. The 3 and 5.4 EP CO2 loading cases
with continuously operating Sabatier were chosen to replicate (refer to cases 1 and 4 of
the Mechanical Compressor tests). As expected, the equilibrium pressure of the adsorbing
TSAC bed for each case is related to the CDRA inlet CO2 concentration. This
equilibrium data is summarized below in Table 5 and illustrated in Figure 6.

TSAC Performance at Various CO2 Loading

8.3 EP 5.46 EP 2.34 EP

1200 —

Production
pressure of

desorbing - I
1000 - TSAC bed
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TSAC bed o]
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— ]
\ \
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200 -
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Figure 32 - TSAC equilibrium loading pressure is dependent on CO?2 feed to CDRA.

Table 5 below lists water production efficiency data for the various scenarios tested with
the 4BMS, TSAC and Sabatier. The Sabatier was upgraded from the previous
configuration that was tested with the mechanical compressor, so the efficiency data
cannot be directly compared. The upgraded Sabatier EDU has a rotary phase separator,
which spins all the time to separate the gas and liquid phases in micro-gravity. Some of
the excess heat from the separator motor goes into evaporating the product water, which
lowers the recovery efficiency. The previous version of the Sabatier EDU had a tank
separator with a pump that only operated when the tank was emptied. For a gravity based
mission, such as a lunar habitat, a tank and pump would be the preferred separator.



Table 16 - Sabatier Efficiency Data when Integrated with TSAC

Sabatier Hot Sabatier
Sabatier Zone Water
. . Reactor Hot Sabatier Temperature | Production
Test Description Sliaet:;“eRra't_|e2 SSt:R/Zttliirn Zone Water with ; Efficiency in
Point (slpm) Period (min) Temperature | Production | Mechanical | Equivalent
(©) Efficiency | Compressor | Mechanical
(P © Compressor
(F) Test
Compare to 534
1 4BMS/TSAC baseline 6.76 0 993 94%
Compare to Mech. 527 510
2 Comp TP4 4.45 0 981 92% 950 94%
Compare to Mech. 472 454
3 Comp TP1 1.91 0 882 87% 850 89%
Lunar night scenario 518
4 3.26 41 965 89%
Full crew EVA 517
5Partl departure 3.20 14 962 96%
Full crew EVA return 512 86%
5 Part 2 and regenerate 3.16 174 953 (peak 91%)
Stand alone Sabatier
EDU Test prior to Mech 535
NA Comp. Integration 9.0 NA 995 92%
Stand alone Sabatier
Upgrade EDU test prior 504
NA to TSAC Integration 2.65 NA 940 92%
2.3.2.2.2 Integrated Test Results - Simulated Mission Profiles

In addition to the steady state tests, lunar mission cases described previously in Section
2.2.3.1.2 were tested. The simulated cabin CO2 concentration profile, which was the
result of the cabin atmosphere simulation model, was used as the input profile of CO2 fed
to the CDRA.

Test point number 4 was a lunar night scenario. At the South Pole, the lunar night lasts 24
to 48 hours straight, once per month. Since operations would depend on battery power
when no solar power is available, it is likely that the oxygen generator would be turned
off. Without hydrogen, the Sabatier would also shut down and the TSAC compressor,
likewise. A scenario was simulated in which the TSAC and Sabatier were turned off part-
way through a CDRA cycle, and allowed to completely cool down before restarting.
Figure 7 below shows the results of the simulation when the systems were turned off,
allowed to cool, then turned back on.
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Lunar Night Cycle Simulation with CDRA/TSAC/Sabatier
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Figure 33 - Results of simulated Lunar night

During the simulation, the CDRA continued to operate as it would be required to
properly maintain the atmosphere in the habitat. The CO2 desorbed from the CDRA was
vented to the vacuum system as long as the TSAC was turned off. The systems were
turned back on 120 minutes into the CDRA cycle, when there was essentially no more
CO2 to transfer to the TSAC. The bed that had been adsorbing during the shutdown had
only received a partial fill and during the following cycle there was not enough CO2
captured to operate the Sabatier continuously. The systems recovered to normal operation
following one full CDRA cycle. The starvation effect could be minimized by starting up
the TSAC one half cycle ahead of the oxygen generator and Sabatier as long as the
atmosphere oxygen concentration would allow further delay.
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Figure 34 - Simulated Lunar EVA Excursion profile results in long periods of Sabatier starvation.

Figure 8 above shows the results of a simulated lunar EVA mission. The CO2
concentration feeding the CDRA is the result of a simulation of a habitat with 4
crewmembers with periods of EVA followed by regeneration of the EMU CO2 collection
canisters in the habitat. There is a time delay of one CDRA cycle (4.8 hours) between
when the CO2 concentration in the cabin drops and when the CO2 delivered to the
Sabatier is insufficient. This effect could possibly be corrected with intelligent software
that lowers the O2 production rate (therefore lowering the Sabatier processing rate)
during periods when the TSAC bed loading is low. The final loading pressure of the
TSAC bed in its previous half cycle is an indicator of the total bed loading and what the
delivery capability will be in the next half cycle.

2.3.3 Conclusions from This Test Section

The testing described herein was the first integrated test of a 4-Bed Molecular Sieve,
Temperature Swing Adsorption Compressor, and Sabatier Reactor. Five successful tests
were completed with these three systems. These tests provided enhanced understanding
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of both nominal, steady-state operation and dynamic, transient scenarios that can be
expected to occur on a Lunar base. Six additional 4BMS-TSAC tests explored widely
varying 4BMS loading conditions and the corresponding response of the TSAC. In
general, the three systems were proved compatible and able to perform their intended
functions for a wide range of input conditions.

These specific conclusions are drawn from these test results:

e The dynamic transients expected in a Lunar EVA scenario were played out in
Test Point 5. The CO2 concentration changes due to crew movement into and out
of the habitat. The response of the systems is delayed, one system to the next, as
each system progresses through half cycles. The hydrogen generation rate (by-
product from oxygen generation) is current with crew activity. The CO2 delivery
rate is delayed by one half cycle. This mismatch results in Sabatier starvation.
Adaptive software may be a solution to better match the hydrogen and CO2 rates
to feed the Sabatier. There should be sufficient oxygen concentration buffer to
allow delayed oxygen production while waiting for the CO2 to be concentrated.

e Large variations between half cycles were noted during the Lunar EVA scenario.
The causes for these variations need to be understood and rectified.

e The TSAC had, on average, less than 5% negative impact on the 4BMS
performance. However, much higher deviation was noted at 2.6 torr inlet ppCO2
and bears further review.

e A 4BMS heater ramp control algorithm can save about 50 watts (time averaged
power). However, refinements to the TSAC operation will be required to prevent
gaps in the CO2 production to the Sabatier.

e Additional work is required to prevent TSAC exposure to humidity from room
air. The TSAC material’s sensitivity to humidity required it to be extensively
purged after inadvertent exposure to room air. Isolation mechanisms should be
implemented and tested to prevent air leakage during 4BMS shutdowns.

e Additional refinements to the overall control software are required for better
communication between the 4BMS, TSAC and Sabatier.

e The Sabatier software performed a vacuum leak check during every transition to
Standby. If the water level was sufficiently high, the separator would be instructed
to pump out the water during the vacuum leak check. The separator cannot create
enough pressure rise when at vacuum to satisfy the pump out requirement, which
then causes a system shutdown. An adjustment to the Sabatier control is required
to prevent separator triggered shutdowns during standby mode.

e The Sabatier required CO2 pressure deadband should be a minimum of 3 psi
when integrated with a TSAC. The low pressure for Standby should be 16 psia
and the high pressure should be 19 psia when operating at the conditions used in
this test program. A smaller deadband results in valve chatter while the TSAC is
heating up and generating pressure.

e The TSAC and 4BMS need sufficient communications to synchronize their half
cycles and to signal each when shutdowns and initiated.



3 Conclusions

The testing described herein was the first integrated test of a Four-Bed Molecular Sieve,
Sabatier Carbon Dioxide Reduction Assembly with the interfacing CO2 compressor. Two
compressor technologies were tested, a mechanical oil-free piston compressor, and a
temperature swing adsorption compressor. The mechanical compressor was tested under
simulated International Space Station parameters. The TSAC was tested under simulated
Lunar Base parameters. Both sets of tests provided enhanced understanding of both
nominal steady operation and dynamic, transient scenarios that can be expected to occur
in an integrated Environmental Control and Life Support System.

Additionally, the compressors were tested independently and with only the 4BMS over
varying CO2 loading conditions. The corresponding compressor response to changing
conditions was observed.

In general, the 4BMS, Sabatier and both compressor technologies were proved
compatible and able to perform their intended functions for a wide range of input
conditions.

3.1 Overall Conclusions from the Integration Test Experience

The integration test of the 4-Bed Molecular Sieve with two different compressors and a
Sabatier reactor was a successful test program. The testing showed that these systems
could be properly integrated together. There is no significant, detrimental impact on the
4-Bed CO2 removal system when desorbed with a compressor instead of space vacuum.
4-BMS CO2 removal efficiency was well above requirements for the wide range of CO2
inlet concentrations tested. The different systems’ control logic in place during this test
program supported the wide range of conditions tested. These tests provided enhanced
understanding of both nominal, steady-state operation and dynamic, transient scenarios.
In general, the three systems were proved compatible and able to perform their intended
functions for a wide range of input conditions.

3.2 Summary of Observation from the Integration Test

These specific conclusions are drawn from the test results:

. Both compressors (TSAC and mechanical) had a small but measurable effect
on the CO2 removal performance of the 4BMS. Since the vacuum level is not as low
as space vacuum, some residual CO2 remains on the CO2 removal beds, which in
turn reduces their capacity on the next adsorb cycle. During the mechanical
compressor testing, the performance reduction was 5.4%. During the TSAC testing,
the performance reduction ranged from 1-9% with an average of 4.2%. The integrated

73



74

performance may be improved with longer space vacuum desorb time or higher
temperature. This subject is a candidate for further testing.

As a result of this testing, the mechanical compressor simulation model was modified
to better predict flow at low suction pressures.

The 4-BMS model was also updated to incorporate a leakage factor to estimate air
leakage into the system components that operate at vacuum.

The dynamic transients expected in a Lunar EVA scenario were evaluated in the
TSAC testing. The test results showed a significant time delay from crew activity to
system performance. Adaptive software may be a solution to better anticipate system
changes and to alter production rates to maintain system balance.

Both compressors had, on average, less than 6% negative impact on the 4BMS
performance.

A modified 4BMS heater ramp control algorithm was tested and resulted in power
savings, however gaps in CO2 delivery occurred. The prospect of power
improvements is likely and future testing of modifications to the heater schedule is
warranted.

Additional work is required to prevent TSAC exposure to humidity from room air by
implementing isolation mechanisms.

Additional refinements to the overall control software are required for better
communication between the 4BMS, TSAC and Sabatier.

The TSAC and 4BMS need sufficient communications to synchronize their half
cycles and to signal each other when shutdowns are initiated.

The current compressor operation/control logic appears to support a wide range of
test conditions, but modifications may need to be made in order to reduce starvation
during the low EP cases as well as reduce the number of brief operation cycles during
high EP loading.

Also, the impact of increased cycles on the 4BMS vacuum vent valve should be
evaluated to determine if these operating rules could be improved.

The data collected over the course of integrated testing is currently being compared
with predictions from existing models to validate the model against test data. The
model is being adjusted as required to duplicate test results. Thus far it has been
determined that the current compressor model does not adequately predict flowrate
through the compressor at low suction pressures. A curve fit has been added to the
compressor model based on test results. In addition, the impact of vacuum circuit in-
leakage has become very evident upon comparison of test results with model



predictions. Efforts are underway to estimate the current bed leak rates and
incorporate them into the model as a “worst case”. An operational flight system, once
leakage due to sorbent dusting is eliminated, is expected to have a much lower leak
rate.

The impact of in-leakage on the system and its operating rules cannot be ignored
since in-leakage results in increased compressor run time as well as decreased
Sabatier efficiency. While it may be difficult to implement, any future plans regarding
the integration of a flight CDRA with a CRA should also involve re-evaluating
existing protocols for verifying CDRA as well as CRA leak rates. As observed in this
test, current CDRA/ABMS leak test procedures could result in significant in-leakage
that impacts CRA performance.

The dynamic transients expected in a Lunar EVA scenario (TP 5) provided insight on
the delayed response of both the 4BMS and TSAC. Consideration of adaptive
software to better utilize large influxes of CO; is suggested.

Large variations between half-cycles were noted during the Lunar EVA scenario. The
specific causes for this trend need to be understood and rectified.

The TSAC had, on average, less than 5% negative impact on the 4BMS performance.
However, much higher values were measured at about 2.6 torr inlet pp CO,, and bear
further review.

A 4BMS heater ramp control algorithm can save about 50 watts (time-averaged
power). However, refinements to the TSAC operation will be required to prevent gaps
in CO, production to the Sabatier.

Additional work is required to prevent TSAC exposure to room air. An isolation
valve, or other appropriate solution, should be implemented and tested.

Additional refinements to the overall control software are required for better
communication between the 4BMS, TSAC, and Sabatier.

An adjustment to the Sabatier control is needed to prevent separator-triggered
shutdowns following standby mode.

4BMS performance was well above requirements for the range of inlet CO2
concentrations tested.

In general, the current TSAC operation/control logic appears to support a range of test
conditions, but a more robust test matrix should be explored in future.

Upgraded components within the Sabatier EDU performed as expected.
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e Lessons learned from this test can, should, and will be incorporated into future
revisions of the CDRS hardware.

3.3 Lessons Learned

3.3.1 Lessons Learned from the Integration Testing

This section documents the Lessons Learned, Anomalies and Resolutions that were
implemented as part of the integrated testing.

e Hydrogen flow rate inconsistent across various measurement means, system mass
balance not in check. Sabatier water production efficiency calculation is based on
hydrogen flow rate.

o Critical parameters that are used to evaluate system performance against
requirements must be accurate and verified against accepted standards.

e Loss of network communication from the Sabatier system led to a crash of the
overall control computer, which in turn led to shutdown of the other subsystems.

o Control systems need to be designed such that subsystems can continue to
operate independently if they lose contact with the main controller. In the
case of the ARS, the CDRA is considered critical life support and needs to
have the capability to continue operation in the absence of higher level
commands. The Sabatier software must be designed to not propagate
errors outside its boundaries.

e The Sabatier system rapidly cycled from Process to Standby during operation
with the TSAC compressor during low CO2 production rates. The transition was
keyed off of CO2 supply pressure limits. The Sabatier operating bands designed
initially for the mechanical compressor operation were too tight for TSAC
operation. Pressure bands were widened to allow smoother, slower mode
transitions and avoid rapid cycling.

o System triggers that initiate logic decisions (such as changing operating
mode, activating control loops, etc) must be examined and exercised over
the widest range of operating conditions possible. The problem during the
testing was resolved by changing the set points for the transition
commands. These type of set points should also be variable in the control
software so they can be adjusted to optimize operation.

e The Sabatier phase separator pump attempted to pump water out of the system
when in standby while the pressure was very low. The pump could not overcome
the differential pressure to pump out water when the system pressure was so low.

o0 The Sabatier flight software was designed to prevent the separator from
pumping water during any low-pressure conditions. The software also
performs a pump-out prior to transitioning to Standby while there is still
pressure in the system to aid the pumping.

e The Sabatier system rapidly between Standby and Process such that the Standby
evacuation was not completed. VValves were chattering during the transition. The



action of the valves cause pressure changes that in turn changed status in the
software that caused the valves to change position again. This was another artifact
of control ranges set too close together. The transitions were taking place prior to
completion of purge steps and the software ended up caught in an indeterminate
state.

o Software logic should be designed such that sequences are completed
before subsequent operating state changes are allowed to occur. Checks
should be incorporated to verify that procedures (such as purges) are
completed.

If the Sabatier had gone through a shutdown and was still hot, upon restart it
would go directly to Process without performing the required purge in Standby
first. Apparently the temperature requirement was met and the software did not
wait for the purge requirement to be met.

o Software must be written to ensure that all requirements are met, not just
the first requirement. Careful testing is often needed to flush out these
types of errors in code, as it is often only a unique set of circumstances
will create the right conditions for these anomalies.

Sabatier reactor thermal soak back — when flow to the reactor stops (as in Process
to Standby transition) the heat of the reactor soaks back to the inlet. This was
accommodated in the Sabatier EDU by increasing high temperature shutdown
limits. The flight reactor design also acknowledged this phenomenon and
designed the inlet end instrumentation to tolerate high temperature.
o Component and controls design must consider all conditions, including
non-operational conditions.

4MBS heater ramp rate — during the TSAC testing, the 4BMS heater control was
modified from a fixed temperature setpoint control to a ramp rate in which the
temperature linearly increased from 60 to 400 F. The result of this test was a
savings of 50 W time averaged over the desorption cycle, however, less CO2 was
desorbed from the 4BMS to the TSAC during the cycle. The overall integration
result was starvation of the Sabatier reactor for steadily increasing durations. Due
to the potential power savings, further evaluation of modified desorption
schedules is warranted.

TSAC sensitivity to leaks — during testing, the TSAC was inadvertently exposed
to room air several times. Since the adsorbent material is very sensitive to
humidity, the TSAC had to be taken offline and purged for an extended period of
time before resuming testing.

0 Future integrated designs must include means of isolating the TSAC to
prevent accidental exposure to cabin air. Subsystem design must consider
operating and non-operating states that may be damaging to the
hardware.

Integrated TSAC / Sabatier control pressure — as a result of the testing, it was
determined that a minimum of 3 psid is needed for the Sabatier setpoints for CO2
pressure. When the Sabatier transitions to Process, the initial draw of CO2 lowers
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the TSAC pressure by more than 2 psid. If the transition setpoints are too close
together, the systems will cycle rapidly between Process and Standby.

Air effects on Sabatier performance — temperature anomalies were noted in the
Sabatier profile during the mechanical compressor testing. It was concluded that
the temperature spike at the reactor inlet was due to higher than normal
concentration of air during a 4BMS bed switching event. The Sabatier reactor is
robust to the presence of air and its known temperature profile proved to be a
good indicator of altered operating conditions.
0 A future test item would be to determine if the reconfigured Sabatier
reactor temperature sensors are as sensitive to detecting air inclusion as
the EDU Sabatier.

Sabatier Phase Separator operation at vacuum — testing determined that the rotary
phase separator cannot pump water out when the gas pressure is at vacuum. The
flight operating control is configured to empty the separator at the beginning of a
Standby transition when the gas pressure in the system is still relatively high.

CDRA leak check — A significant observation made during integrated testing was
that hardware leakage could be masked if the hardware is leak checked while not
in operation. For example, during initial integration testing, the 4BMS passed
leakage testing, yet significant air in-leakage was observed during testing. The
root cause was a selector valve that was cold-soaked during operation that caused
the soft goods to shrink and allow leak paths. The valve was not cold during the
static system leak check, and therefore passed the test.

o Systems need to be leak checked in their operating environment to ensure

trouble free operation.

3.3.2 Lessons Learned from the Sabatier Flight Program

This section documents Lessons Learned that were incorporated into the flight Sabatier
design as a result of the integration testing.

3.3.2.1 Hardware Changes Required

Hydrogen Vent Tee — the space station OGS rack was initially designed with a
scar for the Sabatier Assembly to be added at a later date to the Oxygen
Generation Assembly, but the Sabatier design was not very far advanced at the
time the rack was launched. The initial plan was for the Sabatier to vent in the
same line as the CDRA. This was later changed to having the Sabatier use the
hydrogen vent from the OGA instead.

o The implementation of this change required the addition of a tee line that

would be inserted at the interface panel quick disconnect. The change also



imposed restrictions on the rate of discharge of the Sabatier to meet the
restrictions of the shared vent line.

3.3.2.2 Software Changes Required

e CDRA Control Software — the flight CDRA software did not have provisions for
interface commands related to a Sabatier system. The software had to be modified to
keep the bulkhead vent valve closed so that the Sabatier could extract the CO2 from
the desorbing CDRA beds. The CDRA venting logic, as noted earlier, is different for
the flight system than the ground test system. Once the flight system bed pressure
exceeds 8 psi, indicating that the compressor has not been activated, the vacuum vent
valve is opened and left opened for the remainder of the desorption cycle. The loss of
recovered CO2 is acceptable at this point since the accumulator is likely full or the
system is not operational. This modification keeps the total number of cycles on the
vacuum vent valve the same as that for which they were originally designed.

e OGA Evacuation Check — the OGA will check the pressure in the Sabatier hydrogen
delivery line before opening the valve to deliver hydrogen. If the pressure is high, the
Sabatier could potentially have air in it. The OGA will not deliver if the pressure is
too high to avoid a potentially hazardous condition. The pressure limit was initially
0.3 psia. This limit was too low, as the Sabatier pressure would at least be that of the
vapor pressure of water in the phase separator, plus any instrumentation error in the
pressure sensor. The limit was raised to 3.0 psia and the change made to the OGA
software.

e Phase separator pumpout — as a result of the integrated testing, the flight Sabatier
software included provisions to pump out the phase separator at the very beginning of
a transition to Standby while there is still sufficient gas pressure in the separator. The
software then does not allow the separator to pump out any other time in Standby.

3.4 Recommendations for Subsystem Modification if Designing

a New System

e CDRAJ/TSAC combined design
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Can there be weight/power/volume savings if the CDRA and TSAC were
designed as a single system? LPCOR

e CDRA/OGA cycle mismatch

The ARS system on ISS is designed with the OGA operating on a 90
minute diurnal cycle, which matches the station orbit. The OGA would be powered and
producing hydrogen during the “day” when power is plentiful and in standby during the
“night” when power is scarce. The CDRA operated on a 144 minute half cycle. The
mismatch in cycle times requires the use of storage volume to collect CO2 when
hydrogen is not available to process.

This would be a good area to investigate in the future, either through
modeling or testing, to see if matched cycles results in less starvation or smaller
accumulator volume.

e CDRA Power Usage — Desorption Rate

The current design of the 4MBS has the heaters turn on full power during
the desorption phase if the station is in the daylight portion of the orbit. Testing with both
compressors has shown that the 4BMS can retain CO2 in the bed for a significant period
of time as long as the bed is evacuated to space vacuum for the final 10 minutes of the
cycle. The 4BMS may possibly be operated such that the bed is pressure controlled
instead of temperature controlled to save power when the compressor is not ready to
receive CO2. This would prevent venting of the CO2 from the 4BMS to space vacuum.

Investigate by modeling or testing.

e CO2 tank proof pressure

During the period of time leading up to the Integration Test program, the
OGA for the International Space Station was designed and built. Coincidental
development of the Sabatier led to incorporation of accumulator tanks into the OGS rack
prior to its launch. The volume available for these tanks was smaller than desired, but
development testing of the mechanical compressor showed that the compressor could
meet the higher pressure demand required to offset the smaller volume. Although these
tanks were designed and manufactured to accommodate very high pressures, they were
only proof tested to 160 psia. The application of sensor inaccuracies and control bands to
the operating system requirements resulted in a usable maximum operating pressure of
only 115 psia. In practice, this lower operating pressure will result in greater venting of
CO2 overboard and likely associated Sabatier starvation. Interfacing systems should be
proofed to as high a pressure as possible per the results of trade studies. The CO2
accumulator for ISS was proofed to 145 psig (160 psia), but the application of sensor
accuracies to overpressure protection reduces the actual maximum operating pressure to
100 psig (115 psia).

e Shared Vent Lines - Restriction on flow, temperature, MDP,
In the ISS design, the Sabatier shares the vent line with the OGA. The vent
line was sized and proof tested to meet the requirements of the OGA alone. During
integrated operation, there are times when both systems must be able to vent gases



through this line at the same time. The line is not sized to accept this much flow without
creating excessive back pressure. The Sabatier must therefore restrict the rate at which it
allows venting gases to flow into the line.

Future integrated designs must consider all operating scenarios, including
startup and shutdown, as input to designing interfacing systems (i.e. vent line).

e Coolant Interface
The coolant temperature directly affects the percent of water recovery of
the Sabatier system by setting the dew point temperature at the phase separator. Coolant
temperature should certainly be included in any trade study for future ARS designs. The
additional water recovery would have to be traded against issues of external condensation
on coolant lines if installed in a habitable volume of the spacecraft or habitat.

e OGA Interface — Pressure Check

The design of the ISS controls requires that the OGA verify that the
Sabatier had been vented prior to allowing hydrogen to flow to the system. This is done
for system safety to prevent introduction of hydrogen to the Sabatier if it was full of air.
The target pressure value had been set to 0.1 psia to verify evacuation. However, this
value is not achievable when the Sabatier system has water in the phase separator. When
evacuated, the inlet pressure will be something more than the vapor pressure of water at
the phase separator temperature. For ISS installation, a modification will have to be made
to the OGA software to raise the pressure limit used for the interface check.

This system check also requires that the Sabatier be evacuated during
every standby. This results in some product water loss. The water recovery gained by not
venting would have to be traded against other methods of preventing flammable
mixtures.

e Waste Water Bus MDP
The waste water bus on ISS has a MDP of about 90 psig. The Sabatier
system was designed with an MDP of 268 psig to provide containment as a final means
of protection against damage due to detonation. The interface of the phase separator to
the waste water bus was an area of concern due to the possibility of transmitting a
pressure wave through the water lines. | will get the details on how this was resolved.

e Location in Habitable VVolume

The ISS ARS is designed with all components in the habitable volume.
This then requires that all of the components that contain flammable gas have either
secondary containment (the OGA dome) or be operated at sub-ambient pressure to
prevent leakage of gas out into the cabin. The sub-ambient operation results in a water
recovery penalty, as the lower system pressure increases the volume fraction of water
vapor that is vented with the methane product gas. For exploration systems, locating the
flammable gas components outside the habitable area would allow operation at higher
pressure, and therefore increase water recovery. There may be other benefits of volume
and mass savings achieved by operating at higher pressure.
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e Acoustics and EMI Restrictions
Acoustics and EMI are not insurmountable requirements, but add weight
and volume to systems for attenuation. Location of the system outside the habitable
volume may lessen the burden of acoustic and EMI requirements.

4 Recommendations

4.1 Recommended Future Testing

This integrated test program has shown that a closed loop Air Revitalization System is
achievable and practical. However, there is insufficient data from either integrated test to
draw conclusions about the long term effects of each compressor on the 4BMS operation,
and vice-versa. The testing uncovered possible areas for improvement, and areas where
more information is needed. The testing has shown that the systems can be integrated
with acceptable reduction of performance of the 4BMS and the resulting water recovered
is as much as 90% of what is theoretically possible. Long duration experiments under
controlled conditions, in terms of 4BMS loading, TSAC loading, compressed CO2
production, CO2 purity, vacuum levels, etc.., should be performed to better understand
long term performance.

4.1.1 Recommended Test Objective

Any future development should focus on improving the systems’ equivalent system mass
(ESM - weight, power and volume), efficiency and reliability. Many observations were
made of potential improvements in ESM and reliability. These potential improvements
should be the focus of follow on testing or modeling work.

Due to software control limitations, the integrated tests to date were performed at preset
operating schedules. Upon adding a more sophisticated and flexible control system, the
integrated systems should be tested under dynamic operating conditions where the system
parameters such as CO2 inlet, cycle time, standby time, etc are varied in a non-uniform
pattern (that are realistic to mission-specific scenarios).

4.1.2 Specific Recommended Tests

The following specific test recommendations are made with a focus on discovering
potential areas for improvement to system weight, power, volume, efficiency or
reliability.
e Test integrated combinations of compressors and the 4BMS with different lengths
of vacuum desorb time and different desroption temperatures to determine if the



4BMS CO2 removal efficiency can be improved. The integrated testing showed
an average loss of CO2 removal efficiency of about 4-5%. This loss may be
recovered by modifying operating times.

Test adaptive software for the overall ARS system to better match CO2 and
hydrogen availability. This would lead to minimizing instances of Sabatier
starvation and improved overall water recovery.

Test variations of heater ramp algorithms to determine if power savings can be
achieved in both 4BMS and TSAC components.

Test the TSAC with lower pressure cooling air (as might be a design requirement
for a Lunar base or future spacecraft) or with alternate cooling medium (liquid) as
might be available in future application. Each will have design impacts on the
cooling rate and overall efficiency.

Use the ground based hardware to verify protocols for evaluating leakage rates of
in-flight hardware to improve flight system reliability.

Further test variable loads, such as the Lunar EVA scenario tested here, to flush
out the reason for the large variations noted between half cycles. This will lead to
better understanding of the system operations and ultimately improve efficiency
and reliability.

Investigate the large performance impact noted at 2.6 torr inlet CO2 pressure and
not at other CO2 concentrations during TSAC/4BMS testing. Perform addition
tests if warranted. It remains unknown whether this stems from a testing anomaly,
analysis error, or is indicative of a true performance sensitivity. Additional
testing will provide a basis for overall system repeatability and measurement
accuracy.

Review test results to determine specific combinations of factors that cause
subsystem shutdowns and make necessary control modifications. An example is
the Sabatier separator attempt to empty at vacuum pressure. This protocol was
corrected in the Sabatier flight software.

Perform testing over a more robust range of operating conditions. The wider the
acceptable operating range, the more flexibility for future loop closure.

4.2 Recommended Future Hardware Development

4.2.1 Subsystem Development

These are some possible development tasks that would result in improvements in ESM
and reliability based on the results of the completed testing. Additional improvements
may be discovered as a result of additional future testing outlined above.

Develop a heater ramp algorithm for the 4BMS that will save power, yet
accomplish the CO2 desorption needed.
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4.2.2

4.2.3

Develop isolation mechanism and associated control to prevent room air humidity
from entering TSAC beds.
Improve heat transfer design of the TSAC and the 4BMS in order to reduce power
usage by investigating the following factors:

0 Arrangement of heaters and cooling ducts to minimize the thermal mass;

o New adsorbents or adsorbent structures with reduced thermal resistance;

o Improved package insulation; and

o Flexibility in design to allow utilization of waste heat.
Design TSAC for moisture management which may include system isolation,
moisture sensing and on-line regeneration.
Improve TSAC controls which allow flexibility in startup, operation and
shutdown, and allow better subsystem communication and synchronization.
Implement adaptive software which will allow optimization of product delivery
based on previous cycle loading, purge control, compression time, and available
power.
Develop subsystems that are modular, that operate more efficiently at reduced
loading and can be stacked for higher loading.
Develop low volume, lightweight, high temperature components.
Continue development of the LPCOR system that combines the CO2 removal and
CO2 compression functions of the 4BMS and TSAC.
Through modeling or testing, evaluate the impact of different cycle times for the
4BMS and Sabatier. Determine if there is an optimum cycle time for each that
minimizes the accumulator volume and/or overall system power.
Evaluate the impact of powering the 4BMS heaters to control bed pressure rather
than temperature.
Evaluate the length of vacuum desorb time needed to fully clear the 4BMS beds if
the bed is pressure controlled prior to desorption.
Determine the water recovery cost/benefit as a result of higher or lower Sabatier
operating pressure, and the associated system level impacts.

Component Development

Consider all operating and non-operating conditions (such as temperature and
pressure extremes) when designing components.

Test flight-like Sabatier reactor to determine if the temperature sensors are
sensitive enough to detect excessive air in the CO2 as was noted with the EDU
reactor.

Develop a liquid cooled Sabatier phase separator for maximum water recovery.

Controls Development

Improve communication links between integrated subsystems for synchronizing
cycles and reporting system anomalies and shutdowns.

Improve mechanical compressor operating logic to minimize short cycles and
reduce starvation at low CO2 loading.



Improve operating rules for 4BMS vent valve to minimize cycles on the valve.
Develop protocols for verification of accuracy of key measurement sensors.
Develop software protocols that prevent propagation of failures to other systems,
and the ability to operate independently if needed.

Evaluate system triggers that initiate logic decisions and exercise them over the
widest practical range of operating conditions. This will prevent issues such as
rapidly cycling caused by pressure dead bands.

Develop controls protocols that can be adjusted by crew intervention or by
“smart” controls. This will allow a system to acclimate to its environment (for
example, microgravity) and make necessary adjustments.

Design software logic such that sequences are completed before subsequent
operating state changes are allowed to occur. Checks should be incorporated to
verify that procedures (such as purges) are completed.

Design software such that all conditions are met before transitions occur. Careful
testing over a wide range of operating conditions is needed to locate errors in
code.

Optimize Sabatier/TSAC pressure control logic and operating limits for
transitions between Process and Standby that are based on TSAC delivery
pressure.

Develop protocols for leak checking components in their operating environment
so that so that non-operating conditions (temperature or pressure) do not mask the
detection of leakage.
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5 Appendices

Calculations

This section details the calculations used to evaluate the performance of the subsystems during
the Integrated Test Program.

Raw Data — Sensor for Mechanical test only in green, for TSAC test only in red, for both tests in
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black.

Tag Name Units
CDPGas124 4BMS Inlet Air CO2 Concentration %C0O2
CDPGas125 4BMS Outlet Air CO2 Concentration %C0O2
AFCGas126 Lab Air CO2 Concentration %C0O2
CDPDP_120 4BMS Inlet Air Dewpoint F
CDPDP_121 4BMS Outlet Air Dewpoint F
AFcDP_120 Lab Air Dewpoint F
CDPTmp120 4BMS Inlet Air Temperature F
CDPTmp121 4BMS Outlet Air Temperature F
AFcTmp120 Lab Air Temp. Middle F
CDPmt13 5A Bed 308 Heater Temp A F
CDPmt14 5A Bed 308 Heater Temp B
CDPmtl16 5A Bed 309 Heater Temp A F
MSAFIw022 Lab CO2 Inject Flowrate SLPM
CDPMpde 4BMS Operating Mode

0OF 1SH 2A1 3A2 4A3 5B1 6B2 7B3 8WP
CDPmw12 5A Bed 308 Primary Heater Power Watt
CDPmw13 5A Bed 309 Primary Heater Power Watt
CDPmw14 5A Bed 308 Secondary Heater Power Watt
CDPmw15 5A Bed 309 Secondary Heater Power Watt
CDPFIw121 4BMS Inlet Air Flowrate (TSI Meter) SCFM
CDPTmp086 4BMS Precool Inlet H20 Temp F
CDPFIw080 4BMS Precooler Inlet H20 Flow GPM
CDPPrs120 4BMS Inlet Air Pressure PSIA
CDPPrs122 4BMS Outlet Air Pressure PSIA
CDPDP_023 Dessicant Bed Outlet Air Dewpt F
MSAMas020 Facility CO2 Tank Weight Lbs
CDPPrs021 Fac Vacuum Tank Air Inlet Pressure Torr
CDPPrs023
CDPPrs022 Fac Vacuum Tank Air Pressure Torr
CDPPrs024
CDPmt1l Desiccant Bed Outlet Temperature F
THCFIw120 THC CHX Outlet Air Flowrate SCFM
VenFlw120
CDPPrs123 Sorbent bed 308 pressure PSIA
CDPTmp125 Desiccant bed 104 Outlet Air Temp F
CDPFIw120 4BMS Inlet Air Flowrate (Sierra Meter) SCFM
CDPFacCIk 4BMS cycle Elapsed Time
CDPmdns 4BMS Day/Night Status
AfcPrs120 Lab Pressure PSIA
MSAFIw023 Lab High CO2 Inject Flowrate LBS/HR
CDPPrs121 Precooler Outlet to Ambient PSIA
CDPTemp133 Precooler Inlet Air Temp Deg F
MSA3WV020 OisInlet1is THC
CDPmpl2 Pump Inlet Air Pressure PSIA
CDPVIt120 2-Stage Pump (Air Save) Voltage Volts
CDPCur120 2-Stage Pump (Air Save) Current Amps
CDPmpl0 Blower Delta Pressure In H20
CDPmz16
CDPTmp640




Tag Name Units
CDPSpro03
MEDDP_020 Mechanical Compressor Outlet Dewpoint F
MEDFIw020 Compressor Outlet Flow after DP Ib/hr
MEDPrs020 Compressor Inlet Pressure PSIA
MEDTmp020 Manifold Outlet or Crankcase HX inlet F
MEDTmp021 Crankcase HX Outlet or CP HX inlet F
MEDTmp022 Manifold Inlet F
MEDTmp023 Cold Plate Outlet F
MEDTmp024 Crankcase External Motor End F
MEDTmp025 Lower Guide Cylinder Stage 1 Motor End F
MEDTmp026 Crossover Head Stage 1 Motor End F
MEDTmp027 Crossover Head Stage 2 F
SEDCO2 cmd Sabatier CO2 Command SLPM
MEDFIw021 Sabatier CO2 Flow SLPM
SEDMFMO006
SEDCompressor Compressor command 1=on 0=off
TSAF prod TSAC outlet CO2 flowrate Sccm
TSAP1 Bed A Internal pressure Torr
TSAP2 Bed B internal pressure Torr
TSAExtWalA Bed A External Wall Temperature C
TSAHAL Bed A Heater 1 Temperature C
TSAHA3 Bed A Heater 3 Temperature C
TSATouchA Bed A Touch Temperature C
TSAExtWalB Bed B External Wall Temperature C
TSATouchB Bed B Touch Temperature C
TSAHB1 Bed B Heater 1 Temperature C
TSAHB3 Bed B Heater 3 Temperature C
TSAPower Heater power for Bed A and Bed B Watts
TSAF cdra TSAC Inlet CO2 flowrate Sccm
TSAAIrInA Bed A Cooling Air Inlet Temperature C
TSAAIrinB Bed b Cooling Air Outlet Temperature C
TSAAIrOutA Bed A Cooling Air Inlet Temperature C
TSAAIrOutB Bed A Cooling Air Outlet Temperature C
TSAP cdra Inlet pressure Torr
SEDP106 H2 Inlet pressure Psia
SEDH2 SP ent OGA H2 setpoint
SEDP002 CDRA pressure psia
SEDCRA READY Status 1=on 0=off
SEDCurrent Current from OGA 0-4095 counts 0-100 Amps
SEDDP405 Reactor Delta Pressure PSID
SEDDP409 Separator Delta Pressure "H20
PSID
SEDEOGAREADY Ethernet write 1=on 0=off
SEDH2 cmd SLPM
SEDHtr A 1=on 0=off (Y20)
SEDHtr B 1=on 0=off (Y21)
SEDMas020 Sabatier EDU Water Grams
SEDMFC H2 Mass Flow SLPM
SEDMolar User selected molar ratio
SEDOGA READY Status 1=on 0=off
SEDPO000 Compressor suction Pressure PSIA
CDRA Pressure
MEDPrs021 Accumulator Pressure or CO2 inlet PSIA
SEDP006 Reactor inlet pressure PSIA
SEDP206 Nitrogen inlet pressure PSIA
SEDP304 Product water pressure PSIA
SEDP601 Reactor outlet pressure PSIA
SEDProcess Process Mode (C102)
SEDPUMP301 Water pump 1=on 0=off
SEDSEP_run
SEDPurge Purge Mode
SEDsthy purge
SEDReactCool 501 Cooling Air Valve 1=closed 0=open
SEDSVO501
SEDShutdown Shutdown Mode
SEDStandby Standby Mode
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Tag Name Units
SEDStop Stop Mode

SEDASD

SEDT CHXout A Heat Exchanger Outlet Temperature degF
SEDT407-1

SEDT CHXout B Heat Exchanger Outlet Temperature degF
SEDT407-2

SEDT React A Reactor Hot Zone degF
SEDT403_1 Reacto Temperature 1

SEDT React B Reactor Hot Zone degF
SEDT403 2 Reacto Temperature 2

SEDT React C Reactor Inlet degF
SEDT403_3 Reacto Temperature 3

SEDT React D Reactor Inlet degF
SEDT403 4 Reacto Temperature 4

SEDT React Out Reactor Outlet degF
SEDT404 1

CDPSV_160 Vacuum Solenoid

CDPSV_640 (0 Closed 1 Open) TSAC

CDPSV_641 (0 Closed 1 Open) Space Vacuum

CDPSV_642 (0 Closed 1 Open) MPC

CDPmz16 Valve Pos. 209 (T = Ener. = B Pos.) Volt

CDPTmp640 Re-positional Instr. Cluster Temp F
CDPSpro03 Sabatier Inlet Hydrogen Flowrate SLPM
SEDFCV003_cmd CO2 flow command SLPM
SEDsep_spd Separator speed Rpm
SEDfan Cooling fan status

SEDMFC103_cmd H2 flow command

SEDH402 1 Heater status

SEDsep_curr Separator current Amps
SEDMas020 Sabatier EDU Water Grams
SEDMFC103 Actual hydrogen flow SLPM

SEDmolar_ratio

User selected molar ration




Calculated Data for Mechanical Compressor Test

Name Units Calculation
Time Hours (current time — initial time) *24
FMG62 4BMS Inlet Air mmHg (inlet air CO2 concentration/100 * inlet air pressure) *760/14.7
CO2 Pressure
CO2in Ib/hr (inlet CO2 pressure/air pressure) * (flow*60) * 14.7*144 *44 | (R * (T+460))
FFG69 4BMS Outlet Air mmHg (outlet air CO2 concentration/100 * inlet air pressure) *760/14.7
CO2 Pressure
CO2 out Ib/hr (outlet CO2 pressure/air pressure) * (flow*60) * 14.7*144 *44 | (R * (T+460))
4BMS CO2 Removal Ib/hr CO2 rate in — CO2 rate out
Rate
FMG10 Lab Air CO2 mmHg (lab air CO2 concentration/100 * inlet air pressure) *760/14.7
Pressure
4BMS CO2 Removal 1-CO2 out/CO2 in
Fraction
Total Heater Power Watts Sum of 4 heaters, bed 308, 309 primary and secondary
Total Watts Sum of 4 heaters plus air save pump power
FMD13 Desiccant bed mmHg Dew point converted to saturation pressure
outlet
H20 lost Ib/min Air flow rate * sat pressure * 18 * 14.7 * 144 / (760 * R * (T +460))
Air-Save Pump Power, Watts Pump voltage * current (> 0)
CO2 Injection scfm CO2 injection (slpm) * 0.035315
Flow Rate from CO2 Scfm (CO2 injection flow * (1- outlet CO2 %))/((inlet — outlet CO2%)/100)
injection
CDPmp12 Pump Inlet Air | torr Pump inlet air pressure / 2
Pressure corrected
CDPPrs123 Sorbent bed | torr Bed 308 pressure psi * 760 / 14.7
308 pressure
CDPmp12 Pump Inlet Air | torr Pump inlet pressure psi *760 / 14.7
Pressure
CDPDP_023 Dessicant C Dewpoint degrees F converted to C
Bed Outlet Air Dewpt
CDPDP_120 4BMS Inlet | C Dewpoint degrees F converted to C
Air Dewpoint
CDPTmp120 4BMS Inlet | C Dewpoint degrees F converted to C
Air Temperature
CRA Ready (11=on CRA ready status + 10
10=0ff)
OGA Current/10 SEDH2 SP_ent/ 10
TSAC Power/10 TSAPower / 10
OGA Ready (9=0n 8=0ff) OGA ready status + 8
Compressor Status Compressor status + 12
(13=0n 12=0ff)
Calc MR from Actual Corrected H2 flow / Sabatier CO2 flow
Flow
H2 Rate adjusted, SLPM Recorded data * slope + offset
| (@0°C)
Calc H20 Prod @ 100% gram H2 flow/ 22.4 / 2 * 18 * timestep + previous summed value
Eff
Calc H20 Prod @ 90% gram Calculated 100% efficient water * 0.9
Eff
Calc H20 Prod @ 80% gram Calculated 100% efficient water * 0.8
Eff
H20 Prod Efficiency % Actual water produced / calculated 100% efficient water * 100
(valid with W/D calc)
H20 Production grams Current mass water (scale) — initial mass water
H2 Useage Rate Liters H2 flow * timestep + previous summed value
Day/Night Status (7=day, Day night status + 6
6=night)
Desired CO2 Flow (SLPM) H2 flow / selected molar ratio

Starvation (Standby
when OGA Ready)

=1 when OGA ready is true and Sabatier is standby

4BMS CO2 Dump in A2
(mpl12>7.95 and
segment=A2)

=1 if 4BMS mode is 3 and pump inlet pressure > 11.5
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Name

Units

Calculation

4BMS CO2 Dump in A2
(mpl12>7.95 and
segment=B2)

=1 if 4BMS mode = 6 and pump inlet pressure > 11.5

CEDU Cycle Counter
(flag step changes)

Checks for change in CEDU status from one time step to next

Water Dump Event

Checks for water mass change > 17 grams from one time step to next

Subsystem Efficiency Calculations

4BMS

4BMS CO2 Removal Rate (Ib/hr) = CO2 Inlet (Ib/hr) — CO2 Outlet (Ib/hr)
4BMS CO2 Removal Efficiency = 1- CO2 Inlet (Ib/hr)/CO2 Outlet (Ib/hr)

Sabatier

H2 Usage = Average H2 Flow * Total time of test

Theoretical Water Production Rate = H2 Usage / 22.4 /2 * 18

Actual Water Production Rate = Scale reading at end of test — scale reading at beginning of test
Sabatier Water Recovery Efficiency = Actual Water Production / Theoretical Water Production *100
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