Systems Integration, Modeling, and Analysis (SIMA)

FY04 Advanced Life Support Architecture and Technology Studies: Mid-year Presentation

Kevin Lange (speaker), Molly Anderson, Bruce Duffield, Tony Hanford, and Frank Jeng Lockheed Martin Space Operations

SIMA Telecon April 15, 2004

Image: NASA/JPL/Cornell/MSS

Long-Term Objective

Identify optimal advanced life support system designs that meet existing and projected requirements for future human spaceflight missions.

- Include failure-tolerance, reliability, and safe-haven requirements.
- Compare designs based on multiple criteria including equivalent system mass (ESM), technology readiness level (TRL), simplicity, commonality, etc.
- Develop and evaluate new, more optimal, architecture concepts and technology applications.

2

FY04 ALS Architecture and Technology Studies: Mid-Year Status

Complimentary Activities

- Advanced Life Support Requirements Definition
 - Draft ALS Requirements Document update due at end of FY04.
- Analysis Tool Development
 - Development of methodologies and software tools for performing more efficient and expanded system analyses.
- Advanced Life Support Architecture Studies
 - Integrated flowsheet development and optimization.
- Advanced Life Support Technology Studies
 - Atmosphere-Related
 - Water-Related
 - Food-Related
 - Waste-Related

3

FY04 ALS Architecture and Technology Studies: Mid-Year Status

April 15, 2004

3-year Roadmap **New Space Exploration Vision** FY03 FY04 FY05 Include more technology Focus on system Include more technology interfaces. and architecture options. and architecture options. Perform detailed mass Improve equipment Continue to improve and water balances. sizing calculations component-based sizing calculations. (component based). Include low-water-use hygiene options. Include lunar mission Implement massbalance-based failure Include redundancy and tolerance analysis. Define system design contingency. Implement integrated requirements. Calculate radiation reliability, redundancy, shielding ESM credit. Investigate massand sparing analysis. balance-based failure Limited technologies; tolerance analysis. Investigate system simplified sizing. optimization algorithms. Investigate reliability- Brute-force optimization. based redundancy and sparing analysis. FY04 ALS Architecture and Technology Studies: Mid-Year Status April 15, 2004

Carryover FY03 Hygiene Options (with full accounting of each option's consumables)

Option	1	2	3	4	5	6
Hygiene Supplies						
Disposable Prewetted Wipes - HF	1		1			
Disposable Prewetted Wipes - WB	1					
Disposable Non-prewetted Wipes - HF		1		1		
Disposable Non-prewetted Wipes - WB		1				
Washable Washcloths			1	1	1	1
Washable Towels	1	1	1	1	1	1
Bar Soap					1	1
No-Rinse Body Bath			1	1		
No-Rinse Shampoo	✓	1	1	1	1	1
Hygiene Facilities						
Handwash Station - OH					1	1
Shower						1

HF = hand/face wash; WB = whole body wash; OH = with oral hygiene wastewater collection

FY04 ALS Architecture and Technology Studies: Mid-Year Status

April 15, 2004

Carryover FY03 Technology Options

- Oxygen Storage
 - Cryogenic
 - High Pressure
- Oxygen Generation
 - SPE Water Electrolysis (ISS OGA)
- **Carbon Dioxide Removal**
 - 4-Bed Molecular Sieve (4BMS; ISS CDRA)
 - Functionalized Carbon Molecular Sieve (FCMS) with Membrane Water Recouperator
 - FCMS with Lower Water Loss Membrane Recouperator
- **Carbon Dioxide Reduction**
 - Sabatier
- **Temperature & Humidity Control**
 - Common Cabin Air Assembly (ISS CCAA)

- Laundry
 - Washer/Dryer with Condenser
- **Combined Wastewater Processor**
 - Vapor-Phase Catalytic Ammonia Removal (VPCAR; uses generated oxygen if available)
 - VPCAR with Stored Oxygen
 - VPCAR with Variable Water Recovery (based on water balance)
 - VPCAR with Stored Oxygen and Variable Recovery
 - VPCAR with Lyophilization (for water recovery from VPCAR brine)
 - VPCAR with Stored Oxygen and Lyophilization
- Food/Hygiene Waste Processor
 - Air Dryer

FY04 ALS Architecture and Technology Studies: Mid-Year Status

Other Carryover Options and Capabilities

Other Options

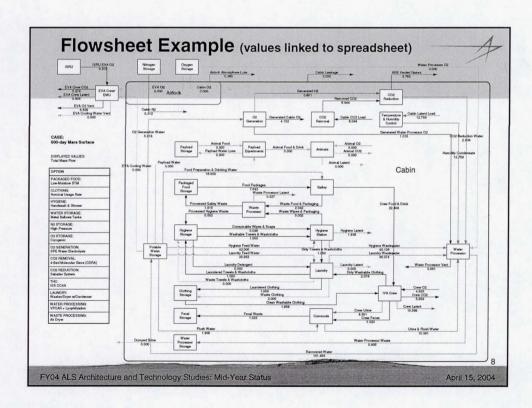
- 3 Packaged Food Systems
- 3 Clothing Usage Rates
- 4 Habitat Structures
- 9 Radiation Shielding Materials
- 4 Internal Atmosphere Compositions
- Store/Dump Water Processor Brine
- Day/Night Operation
- Number of Active (Operational) Units
- Number of Inactive (Standby) Units

Automated Trade Studies

- Macro runs combinations of options and allows ranking of cases based on equivalent system mass (ESM).
- 14,000+ combinations takes < 1 hr.

Radiation Shielding ESM Credit Calculation

- Equivalent mass of dedicated radiation shielding material saved as a result of shielding provided by life support materials.
- Assumed equivalency based on hydrogen mass content.
- Example: 600 day mission; crew of 6; low-moisture STM food system; polyethylene radiation shielding
 Food Storage Mass/Vol. ESM: 5870 kg


Radiation Shielding Credit: 3500 kg
Net Food Storage ESM: 2370 kg

Flowsheet Mass Balance Verification and Visualization

- Expanded from FY03.
- Example on next slide.

0004

FY04 ALS Architecture and Technology Studies: Mid-Year Status

FY04 Technology Studies

- Improve FY03 technology data and relations.
- Investigate additional technologies.
 - Obtain technology information necessary for mass balance and sizing calculations.
 - Detailed Process Schematic
 - Input/Output Stream Definitions (including affected constituents)
 - Performance Data and Relations
 - Component Equipment List
 - Component Sizing Data and Relations
 - Basis for including technologies in FY04 studies:
 - Consultation with ALS Element Leads (preliminary list presented 11/17/03)
 - Potential Applicability to Nearer-term Moon/Mars Missions
 - Desire to Include Diverse Concepts
 - Data Availability
 - No technology readiness level (TRL) cutoff.
 - Many promising technologies remain to be investigated.

9

FY04 ALS Architecture and Technology Studies: Mid-Year Status

April 15, 2004

Atmosphere-Related Technology Studies and Potential Trades

Carbon Dioxide Removal and Reduction

Option	Technology	Added FY04
4BMS + Sabatier	4-Bed Molecular Sieve (4BMS; ISS CDRA)	
	Sabatier Carbon Dioxide Reduction System (with compressor and accumulator)	
Integrated CO ₂ Removal & Reduction	Integrated Carbon Dioxide Removal and Reduction System (fan replaces compressor; no accumulator; thermal integration; humidity removal capabilities)	1

Trace Contaminant Control

Option	Technology	Added FY04
ISS TCCS	ISS Trace Contaminant Control System (uses expendable activated carbon bed)	1
Regenerative Regenerative Trace Contaminant Control System (uses regenerative sorbent bed)		1

10

FY04 ALS Architecture and Technology Studies: Mid-Year Status

Atmosphere-Related Technology Studies and Potential Trades

(continued)

Cabin and Extravehicular Mobility Unit (EMU) Oxygen Supply¹

Option	Technology	Added FY04
High-Pressure O ₂	High-Pressure Oxygen Storage Tanks	
Cryogenic O ₂	Cryogenic Oxygen Storage Tanks	
Cryogenic O2 with Cryocooler	Cryogenic Oxygen Storage Tanks	
	Pulse-Tube Cryocooler	1
Low-Pressure H ₂ O Electrolysis + Compressor	SPE Water Electrolysis (ISS OGA)	
	Oxygen Compressor	1
High-Pressure H ₂ O Electrolysis	High-Differential-Pressure Water Electrolysis	1

¹EMU application depends on EMU oxygen storage technology (cryogenic or high-pressure).

11

FY04 ALS Architecture and Technology Studies: Mid-Year Status

April 15, 2004

Water-Related Technology Studies and Potential Trades

Wastewater Processing

Option	Technology	
VPCAR	Vapor-Phase Catalytic Ammonia Removal (VPCAR)	
ISS UPA + WPA	Vapor Compression Distillation (VCD) (for primary urine processing)	1
	Multifiltration	V
	Volatile Removal Assembly (VRA)	1
BWP + RO + AES	Anaerobic Bioreactor (for organic degradation)	1
+ PPS	Aerobic Nitrification Bioreactor (for ammonia oxidation)	1
	Reverse Osmosis (RO; for inorganic removal)	1
	Air Evaporation (AES; for RO brine water recovery)	1
	UV Photooxidation (for post-processing)	1
	Ion Exchange (for post-processing)	1

FY04 ALS Architecture and Technology Studies: Mid-Year Status

Water-Related Technology Studies and Potential Trades (continued)

Wastewater Processing

Option	Technology	Added FY04
BWP + DOC	Anaerobic Bioreactor (for organic degradation)	1
	Aerobic Nitrification Bioreactor (for ammonia oxidation)	1
	Direct Osmotic Concentration (DOC; for inorganic removal)	1
Others? Other combinations of included technologies to achieve required water quality or more optimal configurations.		1

FY04 ALS Architecture and Technology Studies: Mid-Year Status

April 15, 2004

Food-Related Technology Studies and Potential Trades

Packaged and Produced Food^{1,2}

Option Technology		Added FY04	
STM	Shuttle Training Menu (STM)		
Low-Moisture STM	Shuttle Training Menu Substituted with Increased Low-Moisture Content Items		
STM + Frozen	Shuttle Training Menu Substituted with Frozen Food Items		
STM + Salad Machine	Shuttle Training Menu Substituted with Grown Salad Items	1	
Low-Moisture STM + Salad Machine	Shuttle Training Menu Substituted with Increased Low-Moisture Content Items and Grown Salad Items		

¹Options include necessary food production, processing, and preparation equipment.

²STM-based food system data provided by Julie Levri/ARC (Food Data Spreadsheets 1-29-03.xls).

FY04 ALS Architecture and Technology Studies: Mid-Year Status

Food-Related Technology Studies and Potential Trades (continued)

Packaged and Produced Food¹

Option	Technology	Added FY04	
High Bulk Packaging + Salad Machine	High Degree of Bulk Food Packaging with Grown Salad Items (includes bread maker and powdered drink dispenser)	1	
Moderate Bulk Packaging + Salad Machine	Bulk Packaging of Dehydrated Drinks and Flour with Grown Salad Items (includes bread maker and powdered drink dispenser)	1	
Individual Individually Packaged Food with Grown Salad Items Packaging + Salad Machine		1	

¹Options include necessary food production, processing, and preparation equipment.

FY04 ALS Architecture and Technology Studies: Mid-Year Status

April 15, 2004

Waste-Related Technology Studies and Potential Trades

Physicochemical Waste Processing

Option Technology		Added FY04	
Air Dryer	Air Dryer (for non-hazardous food/hygiene wastes; employs heat and water exchange with cabin air)		
Batch Incineration	Batch Incineration (initially considered for feces only; includes necessary pre and post processors)	1	
Pyrolysis	Pyrolysis (initially considered for feces only; includes necessary pre and post processors)		
Sublimation	ublimation Sublimation (or lyophilization; for feces, toilet paper, food wastes, and waste brines)		

¹Sublimation (lyophilization) included in FY03 for VPCAR brine only.

FY04 ALS Architecture and Technology Studies: Mid-Year Status

Waste-Related Technology Studies and Potential Trades

(continued)

Biological Waste Processing¹

Option	Technology	Added FY04
Aerobic Composting	Aerobic Composting	1
Anaerobic Composting	Anaerobic Digestion/Composting	*

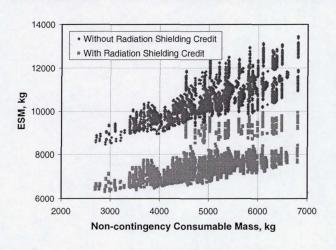
¹For feces, compatible food/hygiene wastes, biomass, paper, and waste brines. Options include necessary pre and post processors.

17

FY04 ALS Architecture and Technology Studies: Mid-Year Status

April 15, 2004

FY04 Trade Studies

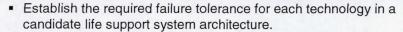

- FY04 ALS architecture and technology trade studies will be completed by June 30 in time to provide recommended design configurations for the FY04 ALS Metric.
- Technologies included in these studies will be prioritized based on the following criteria:
 - 1. Availability and quality of required performance/sizing data and relations.
 - 2. Assessed potential for greatest reduction in system ESM based on updated FY03 results.
 - Ability of the technology to provide a required or potentially required system capability (e.g., waste sterilization) not included in FY03 studies.

8

FY04 ALS Architecture and Technology Studies: Mid-Year Status

Example FY03 Results for Mars Transit Mission

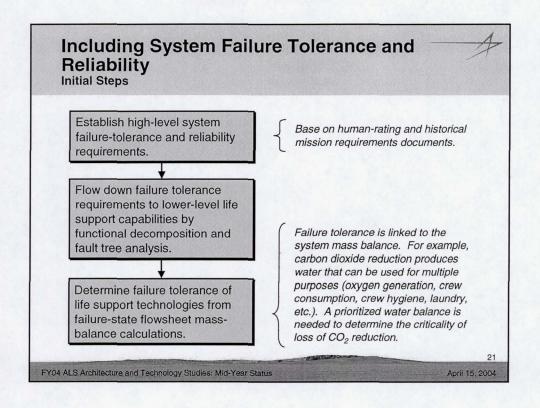
- Multiple system configurations examined based on combinations of FY03 technology and interface options.
- ESM does not include some non-traded functions (e.g., pressure control).
- Many configurations yield close to lowest ESM. Some trade consumables against equipment.
- Simplicity, reliability, development cost, etc. may drive selection.

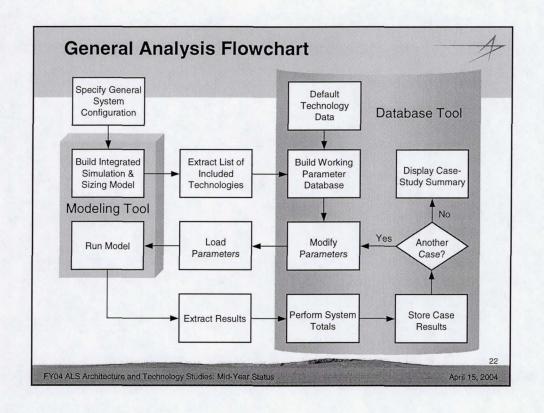

19

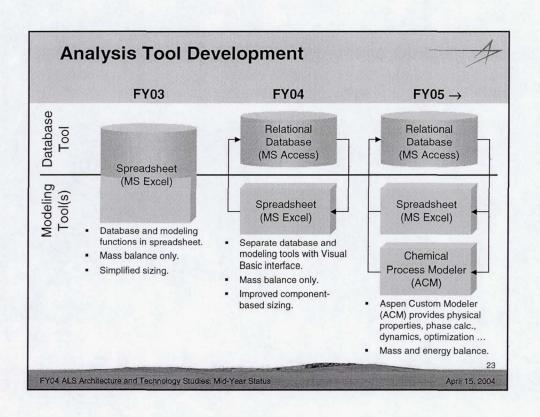
FY04 ALS Architecture and Technology Studies: Mid-Year Status

April 15, 2004

Including System Failure Tolerance and Reliability


General Approach




- Define relations between system reliability and technology reliability as a function of success/failure criteria, system design (including redundancy approach), and mission length.
- Define relations between technology reliability and number of component spares.
- Integrate with sizing analysis to compare the total ESM of systems (including redundancy and spares) that meet failure tolerance and reliability requirements.

20

FY04 ALS Architecture and Technology Studies: Mid-Year Status

