

February 2011

NASA/TM-2011-217054

A Self-Stabilizing Distributed Clock
Synchronization Protocol for Arbitrary
Digraphs

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

 Since its founding, NASA has been
dedicated to the advancement of aeronautics
and space science. The NASA scientific and
technical information (STI) program plays a
key part in helping NASA maintain this
important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA‟s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA‟s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question via the Internet to

help@sti.nasa.gov

 Fax your question to the NASA STI Help Desk

at 443-757-5803

 Phone the NASA STI Help Desk at

443-757-5802

 Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

http://www.sti.nasa.gov/
../../../Desktop/help@sti.nasa.gov

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

February 2011

NASA/TM-2011-217054

A Self-Stabilizing Distributed Clock
Synchronization Protocol for Arbitrary
Digraphs

Mahyar R. Malekpour

Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Acknowledgments

This effort was conducted under the Integrated Vehicle Health Management (IVHM) project of
NASA‟s Aviation Safety program and was made possible by the support from Eric G. Cooper,
Associate Principal Investigator for NASA‟s IVHM Project. The author would like to thank the
reviewers for their helpful comments. The author would like to especially thank Cesar Munoz
for his in-depth review and constructive comments.

The use of trademarks or names of manufacturers in this report is for accurate reporting
and does not constitute an official endorsement, either expressed or implied, of such
products or manufacturers by the National Aeronautics and Space Administration.

v

Abstract

This report presents a self-stabilizing distributed clock synchronization protocol

in the absence of faults in the system. It is focused on the distributed clock

synchronization of an arbitrary, non-partitioned digraph ranging from fully

connected to 1-connected networks of nodes while allowing for differences in the

network elements. This protocol does not rely on assumptions about the initial

state of the system, other than the presence of at least one node, and no central

clock or a centrally generated signal, pulse, or message is used. Nodes are

anonymous, i.e., they do not have unique identities. There is no theoretical limit

on the maximum number of participating nodes. The only constraint on the

behavior of the node is that the interactions with other nodes are restricted to

defined links and interfaces. We present an outline of a deductive proof of the

correctness of the protocol. A model of the protocol was mechanically verified

using the Symbolic Model Verifier (SMV) for a variety of topologies. Results of

the mechanical proof of the correctness of the protocol are provided. The model

checking results have verified the correctness of the protocol as they apply to the

networks with unidirectional and bidirectional links. In addition, the results

confirm the claims of determinism and linear convergence. As a result, we

conjecture that the protocol solves the general case of this problem. We also

present several variations of the protocol and discuss that this synchronization

protocol is indeed an emergent system.

vi

Table of Contents

1. HISTORIC PERSPECTIVE ... 1

2. SYSTEM OVERVIEW .. 5
2.1. DRIFT RATE () AND THE LOGICAL CLOCK (LOCALTIMER) ... 5
2.2. COMMUNICATION DELAY (D), NETWORK IMPRECISION (D), AND ... 6
2.3. TOPOLOGY (T) ... 6

3. PROTOCOL DESCRIPTION ... 9
3.1. HOW DOES THE PROTOCOL WORK? .. 10
3.2. THE GRAPH THRESHOLD (TS) ... 11
3.3. SYNC MESSAGE ... 11
3.4. MESSAGE VALIDITY ... 11
3.5. THE MONITOR .. 12
3.6. THE SYNCHRONIZER .. 12

4. THE PROTOCOL .. 13
4.1. PROTOCOL FUNCTION .. 13
4.2. PROTOCOL ASSUMPTIONS .. 13
4.3. THE SELF-STABILIZING DISTRIBUTED CLOCK SYNCHRONIZATION PROBLEM .. 13
4.4. THE SELF-STABILIZING DISTRIBUTED CLOCK SYNCHRONIZATION PROTOCOL FOR ARBITRARY DIGRAPHS 15

5. PROOF OF THE PROTOCOL... 17
5.1. PROPOSITIONS .. 20

6. DISCUSSIONS.. 23
6.1. VARIATIONS OF THE SYNCHRONIZATION PROTOCOL .. 24

6.1.1. Variation #1, Reset .. 25
6.1.2. Variation #2, Jump Ahead ... 26

6.2. BOUND ON THE DRIFT RATE, Ρ.. 27
6.3. DIRECTED GRAPHS AND DYNAMIC GRAPHS .. 29

7. CONCLUSIONS ... 30

REFERENCES .. 32

APPENDIX A. SYMBOLS .. 35

1

1. Historic Perspective

How can a distributed system solve a problem that is inherently global by executing a set of rules
locally? For millennia people have witnessed in awe flocks of birds fly in unison, hundreds of
frogs croak in harmony and thousands of fire flies flash in synchrony and wondered how such
collective (or mass) synchrony comes about. In Southeast Asia, a large number of Malaccae
fireflies routinely flash on and off in synchrony. Do these insects follow a leader or do they have
an inherit sense of rhythm? This question was asked by George Hudson in 1918 [Hud 1918] [Str
2003]. The synchronization phenomenon, whether a natural occurrence or artificially induced,
still fascinates us today and has become one of the most interesting scientific problems of our
time. In a recent survey, Arenas [Are 2008] reports on the advances in the understanding of
synchronization phenomena by oscillating elements in a complex network topology. He
concludes that: “Synchronization processes are ubiquitous in nature and play a very important
role in many different contexts as biology, ecology, climatology, sociology, technology, or even
in arts.” But, how does collective synchrony emerge from chaos? The answer to this question
has intrigued mankind, in particular, some of the greatest minds of the twentieth century,
including Albert Einstein, Richard Feynman, Norbert Wiener, Brian Josephson, Edward Lorenz,
and Arthur Winfree. Many questions still persist today. Is synchrony inevitable? If so, how
exactly does it happen? When and under what circumstances is it possible or impossible to
achieve? What are the ramifications of either case? What are the theoretical and practical
implications of either case?

Besides being an intellectual curiosity and a theoretical problem in computer science and
engineering, synchronization has practical significance as a fundamental service for higher-level
algorithms that solve other problems. For example, in safety-critical TDMA (Time Division
Multiple Access) architectures [Kop 1997] [Min 2002] [Tor 2005A, 2005B], synchronization is
the most crucial element of these systems.

Clock synchronization algorithms are essential for managing the use of resources and controlling
communication in a distributed system. We define synchronization of a distributed system as
the process of achieving and maintaining coordination among independent local clocks by
exchanging local time information. We define bounded-synchrony as the exchange of local
time information by the nodes in unison but within a given bound. True synchrony, as operating
and exchanging messages in perfect unison, is only possible under strictest assumptions and ideal
conditions. Bounded-synchrony on the other hand is a more general term that encompasses
imperfections in the network. Hereafter in this report, we use the term synchrony to mean
bounded-synchrony.

Charlie Peskin [Pes 1975] posed the self-organization idea around 1975 while working on
cardiac pacemakers and, at about the same time, Edsger Dijkstra [Dij 1974] presented the self-
stabilization problem in a distributed system. These two scientists asked whether it would be
possible for a set of oscillators or machines to self-organize and self-stabilize their collective
behavior in spite of unknown initial conditions and distributed control.

2

A distributed system is defined to be self-stabilizing if, from an arbitrary state, it is guaranteed to
reach a legitimate state in a finite amount of time and remain in a legitimate state. A legitimate
state is a state where all parts in the system are in synchrony.

The self-stabilizing distributed-system clock synchronization problem is to develop an algorithm
(i.e., a protocol) to achieve and maintain synchrony of local clocks in a distributed system after
experiencing system-wide disruptions in the presence of network element imperfections.
Hereafter in this report, we use the term synchronization to mean self-stabilizing clock
synchronization in distributed systems.

There is a vast literature on synchronization phenomenon exhibited by humans, animals, and
even inanimate objects. There are also many proposed solutions for synchronization of a large
number of entities based on models inspired by nature or abstract ideas. In [Are 2008] Arenas et

al. reports on the advances in the comprehension of synchronization phenomena in the context of
a complex network topology and presents extensive numerical work as well as analytical
approaches to the synchronization problem and reviews several applications of synchronization
to complex networks in various disciplines from biological systems to social sciences.

There exist many solutions for special cases and restricted conditions. For example, Strogatz et

al. provide a solution when the oscillators are nearly identical, perturbations are absent, and all
oscillators are coupled equally to one another [Mir 1990] [Str 2003]. In other words, the network
is a fully connected graph under ideal conditions. Such restrictions were necessary to make the
dynamics of the system mathematically tractable. In [Nis 2006A, 2006B] the solution assumes
an unidirectional information flow so that the networks become optimally synchronizable. Other
solutions require embedding a directed spanning tree or rewiring the network in order to achieve
synchrony [Gle 2006] [Nis 2006A, 2006B] [Bre 2008]. In [Ear 2003], a solution for the general
case is presented, but a closer examination reveals that it only addresses maintaining
synchronization (stability of stable in-phase synchronization) and not how to achieve it.
Furthermore, although their solution applies to a random graph, they require each node to be
connected to four other nodes. In computer science and computer engineering terminology,
stability is referred to as the closure property. The convergence and closure properties address
achieving and maintaining network synchrony, respectively (see Section 4.3 for a formal
definition of these parameters). There are many solutions that deal with the closure property
[Lam 1985] [Sri 1987] [Wel 1988] and either do not address convergence or provide an ad hoc
solution [Dav 1978] for initialization and integration, separately. Typically, the assumed
topology is a regular1 graph such as a fully connected graph or a ring. These topologies do not
necessarily correspond to practical applications or biological, social, or technical networks.
Furthermore, the existing models and solutions do not always achieve synchrony and, therefore,
do not solve the general case of the distributed synchronization problem. Even when the
solutions achieve synchrony, the time to achieve synchrony is very large for many of the
solutions.

Another key factor in a proposed solution is whether or not it deals with faults. A fault is a
defect or flaw in a system component resulting in an incorrect state [Gir 2005] [Tor 2005A] [But

1 A regular graph is a graph where each vertex has the same number of neighbors, i.e., every vertex has the same
degree or valency. A regular graph with vertices of degree k is called a k-regular graph or regular graph of degree k.

3

2008]. Large-scale distributed systems have become an integral part of safety-critical computing
applications, necessitating system designs that incorporate complex fault-tolerant resource
management functions to provide globally coordinated operations with ultra-reliability. As a
result, robust clock synchronization has become a required fundamental component of fault-
tolerant safety-critical distributed systems. The requirement to handle faults adds a new
dimension to the complexity of the synchronization of fault-tolerant distributed networks. Ultra-
reliable distributed systems are designed to deal with variety of faults that reflect the desired
degree of reliability of the system. Although the solutions for other systems consider
perturbations, they do not necessarily address faulty behaviors in the network. We define the
fault spectrum as a range of faults that span from no faulty nodes at one extreme end to
arbitrary (Byzantine) faulty nodes at the other extreme end.

A fundamental property of a robust distributed system is the capability of tolerating and
potentially recovering from failures that are not predictable in advance. In [Lam 1982, 1985]
various ideas for overcoming failures in a robust distributed system are addressed that include
tolerating Byzantine faults. There are many algorithms that address permanent faults [Sri 1987],
where the issue of transient failures is either ignored or inadequately addressed. There are many
efficient Byzantine clock synchronization algorithms proposed that are based on assumptions on
initial synchrony of the nodes [Sri 1987] and [Wel 1988] or existence of a common pulse at the
nodes, e.g., the first protocol in [Dol 2004]. There are many clock synchronization algorithms
that are based on randomization and, therefore, are non-deterministic, e.g., the second protocol in
[Dol 2004]. In [Mal 2006A] a counterexample is presented to a clock synchronization algorithm
[Dal 2003] that is based on the existence of a common pulse at the nodes.

A Byzantine-Fault-Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization
Systems was reported in [Mal 2006B]. Claims about the protocol were validated via mechanical
verification of a system consisting of one permanent Byzantine faulty node [Mal 2008]. This
protocol synchronizes a fully connected network of two or more nodes in the absence of faults.
A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization Protocol was reported in
[Mal 2009]. This protocol also synchronizes a fully connected network of two or more nodes in
the absence of faults. Instances of these protocols are demonstrated to self-stabilize from any
state, in the presence of at most one permanent Byzantine faulty node, and deterministically
converge in linear time with respect to the synchronization period. These protocols, however, do
not solve the general case of the problem in the presence of multiple Byzantine faults.

A thorough understanding of the synchronization of a distributed system has proven to be elusive
for decades. The main challenges associated with distributed synchronization are the complexity
of developing a solution and proving the correctness of the solution. It is possible to have a
solution that is hard to prove or refute. Such a solution, however, is not likely to be accepted or
used in practical systems. The proposed solutions must restore synchrony and coordinated
operations after experiencing system-wide disruptions in the presence of network element
imperfections and, for ultra-reliable distributed system, in the presence of various faults. In
addition, a proposed solution must be proven to be correct. If a mathematical proof is deemed
difficult, at a minimum, the proposed solution must be shown to be correct using available
formal methods. Furthermore, addressing network element imperfections is necessary to make a
solution applicable to realizable systems.

4

In this report, we present a solution for an arbitrary, non-partitioned network (digraph) in the
absence of faults. The networks range from fully connected to 1-connected networks of nodes,
while allowing for differences in the network elements. Some networks of interest include grid,
ring, fully connected, bipartite, and star (hub) formation. We do not require any particular
information flow nor imposes changes to the network in order to achieve synchrony. However,
we focus on one extreme of the fault spectrum and only consider distributed systems in the
absence of faults. The assumption of an absence of faults is equivalent to the assumption that all
faults are detectable. This departure from the Byzantine extreme of the fault spectrum is in part
because of the niche use and the extra cost associated with the Byzantine faults. Also, using
authentication and error detection techniques, it is possible to substantially reduce the effects of
variety of faults in the system. Furthermore, the classical definition of a self-stabilizing
algorithm assumes generally that there are no faults in the system. To summarize, the rationale
for this approach was 1) to reduce the problem to a more manageable size, 2) to search for a
general solution in the absence of faults before attempting to solve the problem in the presence of
various faults, 3) and to solve the problem that is applicable to a majority of applications.

In section 2 of this report, we provide a system overview. We present the protocol description in
section 3 and present the protocol in section 4. In section 5 we present results of mechanical
proof of the protocol via model checking. In section 6 we discuss variations of the protocol
including the general case of the protocol that encompasses dynamic node count and dynamic
topology. We also discuss the bounds on the drift rate of the oscillators. Finally, we present
concluding remarks in section 7 and enumerate possible applications.

5

2. System Overview

We consider a system of pulse-coupled entities (e.g., oscillators, pacemaker cells) pulsating
periodically at regular time intervals. These entities are said to be coupled through some
physical means (wire or fiber cables, chemical process, or wirelessly through air or vacuum) that
allows them to influence each other. We model the system as a set of nodes that represent the
pulse-coupled entities and a set of communication channels that represent their interconnectivity.

The underlying topology considered here is a network of K ≥ 1 nodes that exchange messages
through a set of communication channels that represent their interconnectivity. Nodes are
anonymous, i.e., they do not have unique identities. All nodes are assumed to be good, i.e.,
actively participate in the synchronization process and correctly execute the protocol. The
communication channels are assumed to connect a set of source nodes to a set of destination
nodes with a source node being different than a destination node. All communication channels
are assumed to be good, i.e., reliably transfer data from their source nodes to their destination
nodes. The nodes communicate with each other by exchanging broadcast messages. Broadcast
of a message to other nodes is realized by transmitting the message to all connected nodes at the
same time. The communication network does not guarantee any relative order of arrival of a
broadcast message at the receiving nodes, that is, a consistent delivery order of a set of messages
does not necessarily reflect the temporal or causal order of the message transmissions [Kop
1997]. There is neither a central system clock nor an externally generated global pulse or
message at the network level. The communication channels and nodes can behave arbitrarily
provided that eventually the system adheres to the protocol assumptions (see Section 4.2).

2.1. Drift Rate () And The Logical Clock (LocalTimer)

Each node is driven by an independent, free-running local physical oscillator (i.e., the phase is
not controlled in any way) and a logical-time clock (i.e., a counter), denoted LocalTimer, which
locally keeps track of the passage of time and is driven by the local physical oscillator. An
oscillator tick, also called a clock tick or a system tick, is a discrete value and the basic unit of
time in the network [Tor 2005A].

An ideal oscillator has zero drift rate with respect to real-time, perfectly marking the passage of
time. Real oscillators are characterized by non-zero drift rates with respect to real-time. The
oscillators of the nodes are assumed to have a known bounded drift rate, , which is a small
constant with respect to real-time, where is a unitless non-negative real value and is expressed
as 0 << 1. The maximum drift of the fastest LocalTimer over a time interval of t is given by
(1+)t. The maximum drift of the slowest LocalTimer over a time interval of t is given by
(1/(1+))t. Therefore, the maximum relative drift of the fastest and slowest nodes with respect
to each other over a time interval of t is given by the following equation.

δ(t) = ((1+) - 1/(1+))t (1)

6

2.2. Communication Delay (D), Network Imprecision (d), And

The communication latency between the nodes is expressed in terms of the minimum event-
response delay, D, and network imprecision, d. These parameters are described with the help of
Figure 1. As depicted in this figure, a message transmitted at real time t0 is expected to arrive at
all destination nodes, be processed, and subsequent messages are generated within the time
interval of [t0+D, t0+D+d]. Communication between independently clocked nodes is inherently
imprecise. The network imprecision, d, is the maximum time difference among all receivers of a
message from a transmitting node with respect to real time. The imprecision is due to the drift of
the oscillators with respect to real time, jitter, discretization error, temperature effects and
differences in the lengths of the physical communication media. These two parameters are
assumed to be bounded such that D 1 and d 0 and both have discrete values with units of real
time clock tick. The communication latency, denoted , is expressed in terms of D and d, and is
constrained by = (D+d).

t +D0 t +D+d0
t0

D d

time

Figure 1. Event-response delay, D, and network imprecision, d.

2.3. Topology (T)

The general topology considered is a strongly connected directed graph (digraph) consisting of K
nodes, where each node is connected to the graph by at least one channel, there is a path from
any node to any other node, and the channels are either unidirectional or bidirectional.
Furthermore, we assume there is no direct path from a node to itself, i.e., no self-loop, and there
are no multiple channels directly connecting any two nodes in any one direction.

In this report, we use the terms network and graph interchangeably as well as the terms link,
channel and edge. The number of strongly connected directed graphs for a given set of nodes
have been studied by Liskovets [Lis 1970]. Since the number of digraphs is exceedingly large
for small values of K, for model checking purposes we‟ve also considered subsets of the
digraphs. In particular, the set of graphs with only bidirectional links is a subset of all digraphs.
An even smaller set is the set of x-connected graphs where x ≥ 1. Of particular interest is the set
of 1-connected graphs where each node is connected to the graph by at least one bidirectional
channel. Table 1 provides a count of possible graphs with bidirectional links for K = 1 through
19 nodes [Sloane] and the corresponding count of digraphs. As is evident from the table, the
number of possible 1-connected graphs, a(K), grows exponentially as K increases linearly. The
number of digraphs grows at even much faster rate compared to a(K).

7

Table 1. Number of graphs for a given K.

 Number Of Graphs With Only

Bidirectional Links

(Sloane’s A001349)

Number Of

Digraphs

K a(K) -

1 1 1
2 1 1
3 2 5
4 6 83
5 21 5048
6 112 1047242
7 853
8 11117
9 261080

10 11716571
11 1006700565
12 164059830476
13 50335907869219
14 29003487462848061
15 31397381142761241960
16 63969560113225176176277
17 245871831682084026519528568
18 1787331725248899088890200576580
19 24636021429399867655322650759681644

The following graph specific terms are used in the subsequent sections of this report.

 Two nodes are said to be adjacent to each other or neighbors if they are connected to
each other via a direct communication link.

 L denotes the largest loop in the graph, i.e., the maximum value of the longest path
lengths from a node back to itself visiting the nodes along the path only once (except for
the first node which is also the last node).

 W signifies the width or diameter of the graph, i.e., the maximum value of the shortest
path connecting any two nodes.

8

Table 2 provides a list of selected graphs with bidirectional links and their corresponding L and
W values. In general, for digraphs, L and W are at their maximum, i.e., L = K and W = K - 1.

Table 2. L and W for graphs with only bidirectional links.

Graph

(bidirectional links)
L W

A single node 1 0
Linear 2 K - 1
Star 2 2
Ring, singly connected K K / 2
Ring, doubly connected K K / 4
Grid (a × b, a ≤ b) K a + b - 2
Full Grid (a × b, a ≤ b) K b - 1
Fully Connected K 1
Random 1 ≤ L ≤ K 0 ≤ W ≤ K - 1
Bipartite K - 1 2

9

3. Protocol Description

In this section we provide a description of the protocol and provide an intuitive depiction of its
behavior. The system has two synchronization states: synchronized and unsynchronized. The
system is in the unsynchronized state when it starts up, i.e., at power-on. The system is in the
synchronized state when the nodes are within an expected bounded precision. The system
transitions from the unsynchronized state to the synchronized state after the execution of a
synchronization protocol. Therefore, the clock synchronization protocol is expected to enable
the system to transition to the synchronized state and remain there. When a system reaches and
operates in the synchronized state, it is said to be synchronous or in synchrony. Due to the
inherent drift in the local times, a synchronization protocol must be re-executed at regular
intervals to ensure that the local times are kept synchronized. The rate of resynchronization is
constrained by physical parameters of the design (e.g., oscillator drift rates) as well as precision
and accuracy goals. The protocol presented in this report addresses achieving and maintaining
the precision goal of the system. Achieving the clock accuracy goal is beyond the scope of this
report and is addressed separately as described in [Mal 2006B]. Therefore, the clock
synchronization protocol enables the system to achieve and maintain synchrony among
distributed local logical clocks, i.e., LocalTimers (not local physical oscillators).

The following definition for resynchronization process is from [Mal 2009] and is rephrased here
for reference. The clocks need to be periodically synchronized due to their inherent drift with
respect to each other. In order to achieve synchronization, the nodes communicate by
exchanging Sync messages. The periodic synchronization after achieving the initial synchrony
is referred to as the resynchronization process whereby all nodes reengage in the
synchronization process. A node is said to time-out when its LocalTimer reaches its maximum
value. The resynchronization process begins when the first node (fastest node) times-out and
transmits a Sync message and ends after the last node (slowest node) transmits a Sync message.
For ρ << 1, the fastest node cannot time-out again before the slowest node transmits a Sync
message (see Section 6.2 for more discussion on ρ). A node is said to be interrupted when it
accepts an incoming Sync message before its LocalTimer reaches its maximum value, i.e., before
it times-out.

A node consists of a synchronizer and a set of monitors. A Sync message is transmitted either
as a result of a resynchronization timeout, or when a node receives Sync message(s) indicative of
other nodes engaging in the resynchronization process. The messages to be delivered to the
destination nodes are deposited on communication channels.

The following definitions and terms are used in the description and operation of the protocol
presented in this report. All protocol parameters have discrete values with the time-based terms
having units of real time clock ticks. The discretization is for practical purposes in implementing
and model checking of the protocol. Although, the network level measurements are real values,
locally and at the node level, all parameters are discrete.

10

 The resynchronization period, denoted P, has units of real time clock ticks and is
defined as the upper bound on the time interval between any two consecutive resets of the
LocalTimer by a node.

 Drift per t, denoted δ(t), has units of real time clock ticks and is defined as the maximum
amount of drift between any two nodes for the duration of t, δ(t) 0. In particular:
 Drift per D, denoted δ(D), for the duration of one D, δ(D) 0.
 Drift per , denoted δ(), for the duration of one , δ(0.
 Drift per P, denoted δ(P), for the duration of one period P, δ(P) 0.

 The graph threshold, TS, is based on a specified graph topology and has units of real
time clock ticks.

 The guaranteed precision or simply precision of the network, denoted π, 0 ≤ π < P, has
units of real time clock ticks and is defined as the guaranteed achievable precision among
all nodes.

 The convergence time, denoted C, has units of real time clock ticks and is defined as the
bound on the maximum time it takes for the network to converge, i.e., to achieve
synchrony.

 Precision between LocalTimers of any two adjacent nodes Ni and Nj at time t is denoted
by ij(t) and has units of real time clock ticks.

 The initial synchrony is a state of the network and the earliest time when the precision
among all nodes, upon convergence, is within π. The initial synchrony occurs at time
CInit.

 The initial precision among LocalTimers of all nodes at time t is by denoted Init(t), has
units of real time clock ticks and is defined as a measure of the precision of the network
after elapse time of CInit.

 The initial guaranteed precision among LocalTimers of all nodes at time t is denoted by
InitGuaranteed(t), has units of real time clock ticks and is a measure of the precision of the

network after elapse time of C.
 The maximum number of faulty nodes is denoted as F.

3.1. How Does The Protocol Work?

In this section we provide an intuitive description of the protocol behavior. A node periodically
undergoes a resynchronization process either when its LocalTimer times out or when it receives a
Sync message. If it times out, it broadcasts a Sync message and so initiates a new round of a
resynchronization process. However, since we are assuming that there are no faults present, i.e.,
F = 0, when a node receives a Sync message, except during a predefined window, it accepts the
Sync message and undergoes the resynchronization process where it resets its LocalTimer and
relays the Sync message to others. This process continues until all nodes participate in the
resynchronization process and converge to a guaranteed precision. The predefined window
where the node ignores all incoming Sync messages, referred to as ignore window, provides a
means for the protocol to stop the vicious cycle of resynchronization processes triggered by the
follow up Sync messages.

11

To provide an insight into the behavior of network we draw analogy from a pool of water. A
pool of undisturbed water remains calm. Dropping a rock in a tranquil pool of water generates a
wave which ripples toward the outer edges of the pool with the center of the wave at the point
where the rock disturbed the still water. Assuming no other disturbance sources (including the
edges of the pool), eventually, the ripple fades away and the pool returns to tranquility. We
assume a node in a distributed network emanates a flashing light when it transmits a Sync
message. In the absence of drift, when the network is in synchrony, it remains in perfect
synchrony. As the nodes go through the resynchronization processes, they pulsate flashes of
light at regular intervals and in perfect unison. However, in the presence of drift, as the nodes go
through the resynchronization processes, the fastest node transmits a Sync message and the
associated flash of light before the other nodes. In this scenario, the fastest node disturbs the
pool of tranquility by generating a new wave that ripples through the system. We refer to this
phenomenon as the ripple effect. The ripple effect is more pronounced as the relative drift of
the nodes increases. The network returns to the tranquility state when the ripple effect wears out.
Note that there may be multiple ripples in the system originating from as many nodes.

3.2. The Graph Threshold (TS)

The graph threshold, TS, is a function of a specified graph topology, i.e., TS = f(T) and is given by
the following equation.

TS (L+2)(+ δ(

Defining TS in terms of L requires knowledge of the topology of the given network. From Table
2, L ≤ K, i.e., in the worst case, L = K. Thus, in order to generalize the expression for TS, make it
independent of the topology, and to help simplify the proof process, we express it in terms of K.
However, for a specific application, optimizing TS by expressing it in terms of L results in faster
synchrony and better performance.

3.3. Sync Message

In order to achieve synchrony, the nodes communicate by exchanging Sync messages. Since
only one message type is used for the operation of this protocol, a single bit suffices. When the
system is in synchrony, the protocol overhead is at most one message per resynchronization
period P.

3.4. Message Validity

Only one message type is required for the operation of the protocol. Assuming physical-layer
error detections are dealt with separately, receiving a Sync message is indicative of its validity in
the value domain. The protocol performs as intended when the timing requirements of the
messages from every node are satisfied. However, in the absence of faults, the reception of a
Sync message is indicative of its validity in the value and time domains [Mal 2009]. A valid

12

Sync message is discarded after it is relayed to the synchronizer and has been kept for one local
clock tick.

3.5. The Monitor

To assess the behavior of other nodes, a node employs as many monitors as the number of nodes
it is connected to with one monitor for each source of incoming message. Figure 2 depicts a
scenario for a fully connected graph where a node has (K-1) monitors. A node neither uses nor
monitors its own messages. A monitor keeps track of the activities of its corresponding source
node. Specifically, a monitor reads, evaluates, time-stamps, validates, and stores the last valid
message it receives from that node. Upon conveying the valid message to the local synchronizer,
a monitor disposes of the valid message after it has been kept for one local clock tick (Sections
3.6 and 4).

3.6. The Synchronizer

The assessment results of the monitored nodes are utilized by the node in the synchronization
process. The synchronizer describes the behavior of the node, Ni, utilizing assessment results
from its monitors, as shown in Figure 2, where Monitorj, i ≠ j, is the monitor for the
corresponding node Nj.

Node i

To other nodes
Monitori+1

Monitork

Monitori-1

Monitor1

Figure 2. The ith node, Ni, with its monitors and synchronizer.

13

4. The Protocol

In this section we enumerate protocol assumptions, properties, parameters, and describe the
protocol in pseudo-code. As we have elaborated thus far in previous sections, the general form
of the distributed synchronization problem, S, is defined by the following septuple.

S = (K, T, D, d, , P, F)

In other words, the distributed synchronization problem is a function of the number of nodes,
network topology, communication delay, communication imprecision, oscillator drift rate,
synchronization period, and number of faults, respectively. The solution to this problem is a
protocol with convergence and closure properties, at a minimum, as discussed subsequently in
this section.

4.1. Protocol Function

The functions used in the protocol are described in this section. The function ValidateMessage()
used by the monitors determines whether a received Sync message is valid. We assume physical-
layer error detections are dealt with separately. The function ConsumeMessage() used by the
monitors invalidates the stored Sync message after it has been kept for one local clock tick. The
function ValidSync() used by the synchronizer examines availability of valid Sync messages.

4.2. Protocol Assumptions

1. All nodes correctly execute the protocol.
2. All channels correctly transmit data from their sources to their destinations.
3. K 1.
4. T = strongly connected digraph.
5. A message sent by a node will be received and processed by all other nodes within ,

where = (D + d).
6. 0 ≤ << 1.
7. Absence of faults in the links and nodes, i.e., F = 0.
8. The initial values of the variables of a node are within their corresponding data-type

range, although possibly with arbitrary values. (In an implementation, it is expected that
some local mechanism exists to enforce type consistency for all variables.)

4.3. The Self-Stabilizing Distributed Clock Synchronization Problem

To simplify the presentation of this protocol, it is assumed that all time references are with
respect to an initial real time t0, where t0 = 0 when the protocol assumptions are satisfied, and for
all t > t0 the system operates within the protocol assumptions.

14

We define the following symbols:
 C denotes a bound on the maximum convergence time,
 Net(t), for real time t, is the maximum difference of values of the LocalTimers of any two

nodes (i.e., the relative clock skew) for t t0, and
 π, the synchronization precision, is the guaranteed upper bound on Net(t), for all t C.

The maximum difference in the value of LocalTimer for all pairs of nodes at time t, Net(t), is
determined by the following equation that accounts for the variations in the values of the
LocalTimer across all nodes.

Net(t)= min ((LocalTimermax(t) - LocalTimermin(t)),

 (LocalTimermax(t - r) - LocalTimermin(t - r))),
where,
 r = (W + 1) ,

LocalTimermin(x) = min (Ni.LocalTimer(x)), and

LocalTimermax(x) = max (Ni.LocalTimer(x)), for all i.

There exist C and π such that the following self-stabilization properties hold.

1. Convergence: Net(C) π, 0 π < P
2. Closure: For all t C, Net(t) π
3. Congruence: For all nodes Ni, for all t C, (Ni.LocalTimer(t) = implies Net(t) π).

15

4.4. The Self-Stabilizing Distributed Clock Synchronization Protocol For Arbitrary

Digraphs

The protocol is presented in Figure 3 and consists of a synchronizer and a set of monitors which
execute once every local clock tick. The protocol is based on the fact that the network
imprecision d is not restricted by an upper bound. If, however, we do restrict d by 0 ≤ d ≤ D,
then in statement E1 the expression D can be replaced by .

Figure 3. The self-stabilizing clock synchronization protocol for arbitrary digraphs.

Synchronizer:

E1: if (ValidSync() and (LocalTimer < D)
LocalTimer := ,

E2: elseif ((ValidSync() and (LocalTimer TS))
LocalTimer := ,
Transmit Sync,

E3: elseif (LocalTimer P) // time-out

LocalTimer := 0,
Transmit Sync,

E4: else
LocalTimer := LocalTimer + 1.

Monitor:

case (message from the corresponding node)

{Sync:
ValidateMessage()

 Other:
Do nothing.

} // case
ConsumeMessage()

16

The following is a list of protocol parameters when all links are bidirectional.
 TS (L+2)(+ δ(

P 3TS, for ρ = 0
P 3TS + δ(3TS), for L = K and ρ > 0
P max ((2K + 1) + δ((2K + 1)), 3TS + δ(3TS)), for L = f(T) and ρ > 0

The following is a list of protocol parameters for digraphs, i.e., when at least one link is
unidirectional.
 TS (K+2)(+ δ(

P KTS + δ(KTS)

Regardless of the types of links in the network, the following is a list of protocol measures.

CInit = 2P + K(+ δ()
Init(CInit) ≤ (K - 1)(+ δ()

C = CInit + Init(CInit) / P
Wd ≤ InitGuaranteed(t) ≤ W(+ δ(), for all t C

π = InitGuaranteed(t) + δ(P) 0, for all t C, and 0 ≤ π < P

A trivial solution is when P = 0. Since P > TS and the LocalTimer is reset after reaching P
(worst-case wraparound), a trivial solution is not possible.

17

5. Proof Of The Protocol

There are two general formal methods approaches for the verification of the correctness of a
protocol; theorem proving and model checking. Proof via theorem proving requires a
deductive proof of the protocol. Proof via model checking is based on specific scenarios and
generally limited to a subset of the problem space. A deductive proof of the protocol is the
subject of a subsequent report. In the mean time, we chose the model checking approach for its
ease, feasibility, and quick examination of a subset of the problem space while attempting a more
comprehensive proof via theorem proving. Details of the model checking efforts will be the
subject of a subsequent report.

What follows in this section is the model checking results of the proof of correctness of the
protocol. In particular, model checking effort encompasses the verification of correctness of a
model of the protocol by confirming that a candidate system self-stabilizes from any state. This
effort, furthermore, includes the verification of claims of determinism and linear convergence of
the model of the protocol with respect to the synchronization period.

The proof idea is depicted in Figure 4. The main theorems are enumerated here and address the
following questions. Assuming a Sync message does not get ignored and P is sufficiently large,
is it possible for a message to circulate within the network without dying out? In other words,
will E2 get executed indefinitely? Is it possible for a node to transmit Sync messages without
ever timing out? In other words, will E3 ever get executed? Also, will E4 ever get executed?

Any
State Synchrony

Figure 4. Proof approach.

Theorem Convergence – After elapse time of C, the network converges to a state where the

guaranteed network precision is π, i.e., Net(t) ≤ π.

Theorem Closure – For all t C, a synchronized network where all nodes have converged to

Net(t) ≤ π, shall remain within the synchronization precision π.

Theorem Congruence – For all nodes Ni and for all t C, (Ni.LocalTimer(t) = implies

Net(t) ≤ π).

Lemma InitialPrecision – For ρ ≥ 0, the initial precision of the network and after elapse time

of CInit is Init(CInit) ≤ (K - 1)(δ(.

18

Lemma InitGuaranteed – For ρ ≥ 0, the initial guaranteed precision of the network and after

elapse time of C is Wd ≤ InitGuaranteed(C) ≤ W(+δ(), where InitGuaranteed(C) ≤ Wd, for ρ = 0,

and InitGuaranteed(C) ≤ W(+δ(), for ρ > 0.

Lemma ConvergenceTime – For ρ ≥ 0, the convergence time is C = CInit + Init(CInit)/ P.

The Symbolic Model Verifier (SMV) was used in modeling of this protocol on a PC with 4GB of
memory running Linux [SMV]. SMV allows the designers to formally verify temporal logic
properties of finite state systems. SMV‟s language description and modeling capability provide
relatively easy translation from the pseudo-code. SMV also provides the desired capability to
introduce randomness into the initial values of the variables.

The modeling in SMV consists of a global clock, GlobalClock, and a parameterized node, Node.
The GlobalClock is used to measure the passage of time from the perspective of an external
observer. The Node consists of local variables and executes the protocol. The synchronization
properties are examined for a given network, where the network consists of a set of nodes that
are instances of the Node module and are interconnected to reflect a desired topology.

Since in the protocol we do not limit K, model checking of all possible connected graphs for all
K, even for idealized scenarios (d = 0, = 0), is simply impossible. Model checking of all
possible topologies for a given K is also a daunting task (Table 1). Given the limited resources
available and to circumvent state space explosion, we had to limit the network size.
Nevertheless, to verify our claims of the correctness of the protocol, we have model checked all
possible graphs for smaller K. Additionally, we were able to model check some topologies for
larger K. Table 3 is a list of the model checked networks with their sizes and corresponding
number of topologies while bounding the drift to 0.2. Each row corresponds to a given K
and two types of topologies considered with the number of model checked graphs of the possible
total combinations for the corresponding topology type in its column.

The Combo topology is a 7-node graph consisting of a Linear topology of two nodes (1 and 2), a
Ring topology of three nodes (2, 3, and 4), and a Star topology of four nodes (4, 5, 6, and 7) as
depicted in Figure 5. Note that there is only one possible digraph for the Linear and Star
topologies. Also, for three nodes, there are five digraphs (Table 1). However, for a Ring of three
nodes, there are four variations. Therefore, after omitting symmetry, there are four digraphs for
the Combo topology to be examined.

19

Table 3. Model checked networks.

K Topology

(all links bidirectional)
Topology

(digraphs)

2 1 of 1 1 of 1
3 2 of 2 5 of 5
4 6 of 6 83 of 83
5 21 of 21 Single Directed Ring

2 Variations of
Doubly Connected

Directed Ring
6 112 of 112 -
7 Linear* Linear*
7 Star* Star*
7 Fully Connected* Fully Connected*

7 (3×4) Fully Connected Bipartite* Fully Connected Bipartite*
7 Combo 4 of 4
7 Grid -
7 Full Grid -

9 (3×3) Grid -
15 Star* Star*
20 Star* Star*

* For Linear and Star topologies and for the network to be strongly connected (to be precise,1-
connected), the links are by necessity bidirectional. For Fully Connected (Complete) and Fully

Connected Bipartite topologies the links are by definition bidirectional.

1 2

3

4 5

6

7
Figure 5. Combo topology.

Thus far, the model checking results have verified the correctness of the protocol as they apply to
the networks with unidirectional and bidirectional links as described earlier (Section 2.3). In
addition, the results so far confirm the claims of determinism and linear convergence. As a
result, we conjecture that the protocol solves the general case of this problem for all K ≥ 1.

20

5.1. Propositions

Computational tree logic (CTL), a temporal logic, is used to express properties of a system in
this context. CTL uses atomic propositions as its building blocks to make statements about the
states of a system. CTL then combines these propositions into formulas using logical and
temporal operators with quantification over runs. In CTL formulas are composed of path

quantifiers, E and A, and temporal operators, X, F, G, and U [Cla 1981].

Symbol Meaning

E there exists an execution
X next
A for all executions
F finally (eventually)
G globally
U until

In this section the claims of convergence, closure, and congruence properties as well as the
claims of maximum convergence time and determinism of the protocol are examined. Although
in the description of the protocol convergence and closure properties are stated separately, they
are examined via one CTL proposition. Validation of this general CTL proposition requires
examination of a number of underlying propositions. In particular, since LocalTimer(t) is defined
in terms of the LocalTimer of the nodes, examination of the properties that described proper
behavior of the LocalTimer take precedence. In this section, the general propositions that verify
the convergence, closure, and congruence properties of the protocol as well as the claims of
maximum convergence time and determinism are examined followed by four supporting
propositions.

The following properties are described with respect to only one node, namely Node_1. Since all
nodes are identical, due to symmetry, the result of the propositions equally applies to other
nodes. The variable ElapsedTime is used in some of these properties and is defined here.

ElapsedTime = (GlobalClock >= ConvergenceTime) ;

The GlobalClock is a measure of elapsed time from the beginning of the operation and with
respect to the real time, i.e. external view. The ElapsedTime is indicative of the GlobalClock
reaching its target maximum value of ConvergenceTime.

21

Proposition ConvergenceAndClosure: This proposition encompasses the criteria for the
convergence and the closure properties as well as the claims of maximum convergence time and
determinism. This proposition specifies whether or not the system will converge to the predicted
precision after the elapse of convergence time, ElapsedTime, and whether or not it will remain
within that precision thereafter. The expected result for this property is a true value.

The proper value of the AllWithinPrecision is determined by measuring the difference of
maximum and minimum values of the LocalTimers of all nodes for the current tick and in
conjunction with the result from the previous (W+1) ticks. The expected difference of
LocalTimers is the predicted precision bound.

The negation of the above proposition is listed below and the expected result is a false value.
This property specifies that after the elapse of convergence time, ElapsedTime, whether or not
the system will not converge or if it converges, whether or not it drifts apart beyond the expected
precision bound.

Proposition Congruence: This property specifies the criteria for the congruence property of the
protocol. The expected result for this property is a true value.

The supporting properties follow.

Proposition 1: This property specifies whether or not time advances and the amount of time
elapsed, ElapsedTime, has advanced beyond the predicted convergence time, ConvergenceTime.
The expected result for this proposition is a true value.

AF (ElapsedTime)

AF (ElapsedTime) & -- Determinism Property

AG (ElapsedTime -> AllWithinPrecision) & -- Convergence Property

AG ((ElapsedTime & AllWithinPrecision) ->

AX (ElapsedTime & AllWithinPrecision)) -- Closure Property

AF (ElapsedTime) &

AG (ElapsedTime -> AllWithinPrecision) &

AG ((ElapsedTime & AllWithinPrecision) -> EX (!AllWithinPrecision))

AF (ElapsedTime) &

AG ((ElapsedTime & (Node_1.LocalTimer=)) ->

AX (ElapsedTime & AllWithinPrecision)) -- Congruence Property

22

Proposition 2: This property specifies whether or not the LocalTimer of a node takes on a given
value in its range infinitely often, for instance, P/2. The expected result for this proposition is a
true value.

Examining the negation of this property is expected to produce a false value. This proposition
verifies that the LocalTimer of a node cannot never reach a given value.

Proposition 3: This property specifies whether or not the LocalTimer of a node takes on all
values in its range infinitely often. In other words, it verifies that the model does not deadlock.
Furthermore, the value of the LocalTimer of a node at the next clock tick is different from its
current value and is its expected next value in the sequence of 0 to P. The expected result for
this proposition is a true value.

Examining the negation of this property is expected to produce a false value. This proposition
verifies that the next value of the LocalTimer of a node cannot be the same as its current value.
In other words, its value always advances within the expected range.

Proposition 4: This property specifies whether or not the LocalTimer of a node takes on all
values in its range infinitely often but beyond the convergence time, i.e. after ElapsedTime has
become true. The expected result for this proposition is a true value. Examining the negation of
this property is expected to produce a false value.

AF (Node_1.LocalTimer = P/2)

EG !(Node_1.LocalTimer = P/2)

AG ((Node_1.LocalTimer = i) ->

AX ((Node_1.LocaTimer= i) | (Node_1.LocalTimer = i+1))) &

AG ((Node_1.LocalTimer = P) ->

AX (Node_1.LocalTimer = 0))

EG ((Node_1.LocalTimer = i) ->

EX (Node_1.LocalTimer = i)) |

For all i = 0 .. (P-1)

AF (ElapsedTime) &

AG (((ElapsedTime) & (Node_1.LocalTimer = i)) ->

AX ((Node_1.LocalTimer= i) | (Node_1.LocalTimer = i+1))) &

AG (((ElapsedTime) & (Node_1.LocalTimer = P)) ->

AX (Node_1.LocalTimer = 0))

23

6. Discussions

From the expression for Init(t) the synchronization time, C, and precision, π, are functions of the
network topology and the drift rate, specifically, the graph‟s width and the amount of drift the
network experiences. In other words, C = f (W, δ(P)) and π = f (W, δ(P)).

From the expressions for Init(t) and InitGuaranteed(t) it follows that for networks with small W
values, InitGuaranteed(t) occurs instantaneously, but for networks with large W values

InitGuaranteed(t) is a gradual process. The general equation for Init(t) applies to the ideal (ρ = 0,
d = 0) and semi-ideal (ρ = 0, d 0) scenarios. For these scenarios, Init(t) ≤ W .

Although the initial (coarse) synchrony, Init(t), occurs within CInit, the initial guaranteed
precision, InitGuaranteed(t), takes place after a number of periods and after achieving the initial
synchrony. When ρ >> 0, i.e., δ() , the equation for InitGuaranteed(t) is the same as Init(t), i.e.,
in this case, no improvement on Init(t) is achieved after the elapse time of CInit. Recall that π is
defined as the precision of the network over the duration of P while accounting for the overall
drift in the network, i.e., π = InitGuaranteed(t) + δ(P). When ρ >> 0 and since upon
resynchronization process, InitGuaranteed(C) = Init(CInit), no further improvement on Init(t) is
achieved; therefore, no improvement on π can be guaranteed.

The general equation for π applies to the ideal (ρ = 0, d = 0) and semi-ideal (ρ = 0, d 0)
scenarios. Since InitGuaranteed(t) = f(W, δ(P)), for large values of δ(P), InitGuaranteed(C) = Init(CInit)
and no improvement on Init(t) is achievable. However, since typically 0 ≤ ρ << 1, for small
values of δ(P), InitGuaranteed(C) < Init(CInit) and improvement on InitGuaranteed(t) is possible. In
particular, for the ideal and semi-ideal scenarios, subsequent resynchronization processes beyond
the initial synchrony result in tighter precision. Specifically, for C = CInit + Init(CInit) / P, for
the ideal scenario, the result is InitGuaranteed(C) = 0 and π = 0, while for the semi-ideal scenario,

InitGuaranteed(t) = Wd and π = Wd.

Therefore, InitGuaranteed(C) is 0, Wd, and W(+ δ(), for the ideal, semi-ideal, and realizable
systems (ρ 0, d 0), respectively. After synchrony, for the ideal scenario, the nodes
periodically pulsate in perfect unison (true synchrony). For the semi-ideal scenario, even in the
absence of drift, the system‟s behavior resembles a ripple effect where the nodes remain at most
one d apart from each other with the leading node as the center and originator of the ripple.
Also, for realizable systems, due to the effects of drift, the system‟s behavior resembles a ripple
effect. However, when the nodes periodically pulsate, depending on the amount of drift, the
lights emanate at at most one apart from each other with the leading node as the center and
originator of the ripple.

In this report we have studied the system in the absence and presence of ρ. In Section 6.2 we
discuss whether or not ρ should be bounded and determine its theoretical upper bound. Recall
that π = f(W, δ() and C = f(W, δ(). Therefore, depending on the values of W and δ(, the
precision of the network and the convergence time may be quite large. So, is it possible to
achieve faster synchrony? Is it possible to achieve a desired precision? From the expression for
π it follows that for networks with small W values, synchronization occurs instantaneously with

24

optimal precision while for networks with large W values, synchronization is a gradual process
and with larger precision. For instance, for a fully connected graph, W = 1, π = d+δ() is at its
minimum with minimal dependence on the drift, and the convergence time is at its minimum
value of C = CInit, whereas for a linear graph, W = K - 1, π is at its maximum and more dependent
on the drift, and the convergence time is at its maximum value of C. Indeed, for the worst case
where drift is very high, no improvement on Init(t) is possible no matter how much time passes.
So, to achieve a desired precision, we must reduce either W or δ(P), or both.

To reduce W, we have to add new links to the graph, but where to add the new links and how
many links to add? The idea of adding a few random links and rewiring links with a certain
probability to provide shortcuts between different segments of a graph has been studied by Watts
and Strogatz [Wat 1998] and others [Gad 2000] [Bar 2002] [Hon 2002, 2004] [Li 2004] [Gom
2007]. As Arenas [Are 2008] concluded from these studies, “In general, the addition of shortcuts
to regular lattices improves synchronization.” and “The basic observation is that the network
synchronizes when the coupling strength is increased.” These studies have shown the effects of
adding new links, but they do not specify how many links and where to add them in order to
expedite synchronization. However, thus far in our report we have established that π = f(T, ρ)
and, so, π = f(W, δ(P)). Therefore, to achieve the tightest precision, i.e., π = d+δ(), we need to
add new links to the graph such that we successively halve the graph width W and, hence, double
the precision. This implies that the number of links (or edges) to be added, E, is given by
E log2

Init(t) .

To reduce the drift, more accurate oscillators are needed, but the more accurate the oscillators,
the higher the cost. What if the graph cannot or should not be modified by adding new links?
Also, there are no perfect oscillators. So, what if we cannot improve upon the drift beyond a
practical limit? Is there another way to achieve synchrony faster and with more accurate
precision? The following section addresses these issues and examines variations of this protocol.

6.1. Variations Of The Synchronization Protocol

In this section we present several variations of the synchronization protocol. But first we provide
an intuitive explanation. One of the key elements of the presented protocol is the proper setting
of the LocalTimer upon receiving a Sync message. In the protocol we set the LocalTimer to .
The rational is that when a node times-out, it resets its LocalTimer, i.e., LocalTimer = 0, and
after one , the transmitting and receiving nodes would naturally be in relative synchrony of at
most d clock ticks from each other. If we set the LocalTimer to D, the protocol behaves similarly
but with a lower precision. In fact, as we‟ll see in the following section, setting the LocalTimer
to any value less than produces lower precision than setting it to . We will not consider
setting the LocalTimer to D a variation of the protocol.

Setting the LocalTimer to other values would not produce the desired effect. On the other hand,
if a node gets interrupted, the receiving nodes have no knowledge of the transmitting node‟s
LocalTimer value (which could be either 0 or). Once again, in the protocol we chose to set the
LocalTimer to upon interrupt and we verified that it achieves the desired goal. However, upon
interrupt, the LocalTimer could be assigned to other values, but what value should be chosen?

25

An arbitrary value is not going to produce the desired synchrony, but if the value of the
transmitting node‟s LocalTimer is forwarded, then the LocalTimer of the receiving node could be
set to that value (offset by) and once again the two nodes will be in relative synchrony. In the
following sections, we analyze these variations. We believe that transmitting any value other
than the transmitting node‟s LocalTimer value does not produce the desired effect.

6.1.1. Variation #1, Reset

This variation is depicted in Figure 6 where LocalTimer is reset, i.e., LocalTimer = 0, upon
receiving a Sync message (statements E1 and E2).

Figure 6. The synchronizer for variation #1, Reset.

Thus far, the model checking results have verified the correctness of this variation of the
protocol. This variation of the protocol also synchronizes the network for ρ 0 and d 0 with
the same Init(t), i.e., Init(CInit) ≤ (K - 1)(+δ()). Also, when ρ = 0 and d = 0, unlike the original
protocol where InitGuaranteed(t) = 0, InitGuaranteed(t) = W . Setting the LocalTimer to other values
between 0 and would produce similar results as the original protocol and this variation of it
with 0 < InitGuaranteed(t) < W .

In this version, since InitGuaranteed(t) = W , even in the absence of drift, the system‟s behavior
resembles a ripple effect where the nodes remain at most one apart from each other with the
leading node as the center and originator of the ripple.

From variation #1 and the original protocol, one could conclude that upon receiving a Sync
message, setting the LocalTimer from 0 to results in improvement of the initial guaranteed
precision. An interesting question is whether setting the LocalTimer to a greater value than
would improve upon the performance even further. As argued in the opening of this section, the
next logical value beyond would be LocalTimer of the transmitting node. The following
variation of the protocol is based on this idea.

Synchronizer:

E1: if ((Message = Sync) and (LocalTimer < D))
LocalTimer := 0,

E2: elseif (((Message = Sync) and (LocalTimer TS))
LocalTimer := 0,
Transmit Sync,

E3: elseif (LocalTimer P)
LocalTimer := 0,
Transmit Sync,

E4: else
LocalTimer := LocalTimer + 1.

26

6.1.2. Variation #2, Jump Ahead

This variation is depicted in Figure 7. In this variation, the current value of the LocalTimer is
transmitted along with the Sync message and, so, upon receiving a Sync message LocalTimer is
set to the incoming value plus to compensate for the worst case message delay. If the sum
reaches or exceeds P, the LocalTimer is reset to zero (statements E1 and E2).

Figure 7. The synchronizer for variation #2, Jump Ahead.

We do not provide a detailed proof for this variation. However, thus far, partial model checking
has also confirmed the correctness of this variation of the protocol. Nevertheless, in this section
we state the lemmas and theorems that provide specific measures to this variation of the protocol.

Lemma InitGuaranteed – For all t C, the initial guaranteed precision is given by

InitGuaranteed(t) = (1+d)δ(P).

Theorem Congruence – For all nodes Ni and for all t C, (Ni.LocalTimer(t) = W implies

Net(t) ≤ π).

This variation introduces more overhead due to the transmission of LocalTimer value but
synchronizes the network for ρ 0 and d 0 with the same initial precision. In other words,

Init(Cinit) ≤ (K - 1)(+δ()). However, this variation produces tighter initial guaranteed precision
for the same convergence time, i.e., InitGuaranteed(C) = (1+d)δ(P) and C = CInit + Init(Cinit) / P.

This variation of the protocol has two drawbacks. The first drawback is that it requires greater
number of exchanges of Sync messages during the convergence process. The excess
transmission of the Sync messages is due to the burst of relays of Sync messages prior to the

Synchronizer:

E1: if ((Message = Sync) and (LocalTimer < D))
LocalTimer := LocalTimerIn + ,
if (LocalTimer P)

LocalTimer := 0,
E2: elseif (((Message = Sync) and (LocalTimer TS))

LocalTimer := LocalTimerIn + ,
if (LocalTimer P)

LocalTimer := 0,
Transmit Sync and LocalTimer,

E3: elseif (LocalTimer P)
LocalTimer := 0,
Transmit Sync and LocalTimer,

E4: else
LocalTimer := LocalTimer + 1.

27

convergence. Note that since after receiving a Sync message the LocalTimer of a node gets
incremented, all messages will eventually die out when the LocalTimer of a node reaches or
exceeds its maximum value of P. Recall that in the original protocol, by setting the LocalTimer
to , the node immediately enters the ignore window, a time interval where it ignores all
incoming Sync messages. In this variation, however, depending on the initial value of the
LocalTimer of a node, a message may not get ignored until eventually the LocalTimer of a node
reaches or exceeds its maximum value of P and then enters the ignore window.

The second drawback is that due to an interrupt, the slowest nodes may never get set to a
during a resynchronization process even when the system is in synchrony. As a result (Theorem
Congruence), for t C, the nodes are in synchrony when Ni.LocalTimer(t) = W . In the original
protocol, the following is the expected range of values of the LocalTimer of a node.

Ni.LocalTimer = [[0 ..] .. [(P - δ(P)) .. P]]

However, for this variation the following is the case.

Ni.LocalTimer = [[0 .. W] .. [(P - δ(P)) .. P]]

Where, [X1 .. X2] mean that the node can take on any value in the range of X1 to X2. Therefore,
for this variation of the protocol, the guaranteed effective interval of a node is as follows.

Ni.LocalTimer = [W .. (P - δ(P))]

6.2. Bound On The Drift Rate, ρ

Thus far, we have seen the effects of the drift rate, ρ, on the convergence time and guaranteed
precision of the network. We have seen that, in its absence, the best possible precision is
achieved in the shortest amount of time and how its presence decreases the precision and
increases the convergence time. In this section we discuss the role of ρ even further.

Generally, 0 ≤ ρ << 1. However, in the proofs we had considered 0 ≤ ρ < 1. In this section we
examine the following questions. Should the drift rate be bounded? If so, what should its upper
bound be? What are the ramifications of limiting or not limiting the drift in a network? Is there
a threshold?

Typically and in practical applications, oscillator drift rate, ρ, is bounded to 100 parts per million,
i.e., 10-4. In other words, λ = (1+) - 1/(1+) 0.0002. Recall that for bidirectional
topologies, P = f(K,). As increases so does P and δ(P). The implication of > 0 is that the
effective duration of the slowest node is P - δ(P), i.e., when the fastest node reaches P, the
slowest node is at P - δ(P). If the fastest and slowest nodes happen to be adjacent to each other,
then the slowest node gets interrupted by the fastest node and never goes beyond P - δ(P) + .
Let us restrict such that the slowest node will always be at above 50% of the fastest node, i.e.,
P - δ(P) > ½P. This implies that the value of δ(P) should not exceeds ½P, i.e., the desired
condition is for λ < ½.

28

Table 4. Various and its corresponding λ.

 λ

0.0001 0.0002
0.1 0.191
0.2 0.367
0.3 0.531
0.4 0.686
0.5 0.833
0.6 0.975
0.7 1.112

Table 4 provides a list of various values for and its corresponding λ. From this table, there is a
threshold for (at about 0.3) where λ > ½. At and beyond this threshold, as the slowest nodes
reach ½P, the fastest nodes will have reached P and timed-out.

Although the protocol works and achieves synchrony even for large , i.e., ρ < 1, for practical
applications a large value for is not realistic. In other words, for large , besides the
substantial decrease in the network precision, the slowest nodes never get to do much meaningful
work because their activity duration is substantially reduced as they are routinely timed-out by
the fastest nodes.

29

6.3. Directed Graphs And Dynamic Graphs

We have elaborated thus far in previous sections that the general form of the distributed
synchronization problem, S, is defined by the following septuple.

S = (K, T, D, d, , P, F)

In other words, the distributed synchronization problem is a function of the number of nodes,
network topology, communication delay, communication imprecision, oscillator drift rate,
synchronization period, and number of faults, respectively.

However, so far, we have considered topologies with static nodes and links. This restriction
helped to reduce the complexity of the problem to a more manageable size. We now define the
most general form of the distributed synchronization problem, S’, by the following septuple.

S’ = (K(t), T(t), D, d, , P, F)

Where, K(t) represents the dynamic node count and T(t) represents the dynamic topology for a
given K(t).

In a dynamic node count, the number of nodes comprising the network can change at any time.
Since the nodes are anonymous and do not have unique identifiers, the presented protocol and its
variations are readily applicable to this scenario, provided that the new nodes enter the network
from a reset state where they are clear of all residual effects.

The dynamic topology allows for topologies with any combination of unidirectional and
bidirectional links as described in Section 2.3, whether they are static or dynamic. In other
words, for a given K(t), the number of links can change at any time.

We have model checked a number of topologies with static nodes and various combinations of
static unidirectional and bidirectional links and, thus far, the model checking results have
verified the correctness of the protocol. We conjecture that the presented protocols are
applicable to the general case.

30

7. Conclusions

How can a distributed system solve a problem that is inherently global by executing a set of rules
locally? In this report, we have attempted to answer this question by providing a solution that
synchronizes an arbitrary digraph, ranging from fully connected to 1-connected networks of
nodes, under variety of conditions ranging from ideal to non-ideal circumstances. These
networks include grid, ring, fully connected, bipartite, and star (hub) formation, to name a few,
while allowing differences in the network elements. In our proposed solution, there is no central
control or a centrally generated signal, pulse, or message. Nodes are anonymous, i.e., they do
not have unique identities. We discussed the complexity of the problem and defined the
parameters constituting the distributed synchronization problem.

We provided an intuitive description of the behavior of the protocol. We also provided an
outline of a deductive proof of the protocol followed by the model checking results that have
verified the correctness of the protocol as they apply to the networks with unidirectional and
bidirectional links. In addition, the model checking results so far have confirmed the claims of
determinism and linear convergence. We also provided variations of the protocol and presented
model checking results of those variations. We also discussed generalization of the protocol to
include dynamic node count and dynamic topology. Details of the deductive proof and details of
the model checking efforts of this protocol, and its variations, are the subject of subsequent
reports.

We elaborated on the effects of the oscillator drift rate on the convergence time and network
precision and discussed whether or not it should have an upper bound.

The proposed self-stabilizing protocol is expected to have many practical applications as well as
many theoretical implications. Embedded systems, power grid, distributed process control,
synchronization, computer networks, the Internet, Internet applications, security, safety,
automotive, aircraft, distributed air traffic management systems, swarm systems, wired and
wireless telecommunications, graph theoretic problems, leader election, time division multiple
access (TDMA), and the SPIDER2 project [Tor 2005A, 2005B] at NASA-LaRC are a few
examples. These are some of the many areas of distributed systems that can use synchronization
in order to design more robust distributed systems.

There does not seem to be a consensus on the definition of either emergent behavior or emergent
systems [Cor 2002]. However, in the context of self-organization systems Goldstein defines
emergence as: "the arising of novel and coherent structures, patterns and properties during the
process of self-organization in complex systems" [Gol 1999]. Emergent systems tend to display
a collective behavior that is greater than the sum of their parts. An emergent behavior or
emergent property surfaces in systems as a result of the interactions at an elemental level. In
other words, an emergent property of a system is one that is not a property of any component of
that system, but is still a feature of the system as a whole. The family of clock synchronization
protocols presented in this report is an emergent system. In these protocols all nodes operate
asynchronously while the system operates synchronously. The local physical oscillators of the

2 Scalable Processor-Independent Design for Enhanced Reliability (SPIDER).

31

nodes are and remain asynchronous while the system synchronizes at a higher level. These
protocols are designed to be deterministic and analyzable.

Finally, we believe this protocol can be used as a basis for modeling and studying mass
synchrony as exhibited in biological and social systems. For instance, based on personal
observations, we believe the first variation of the protocol (Reset) is closer to the observed
behavior of frogs and fireflies.

32

References
[Are 2008] Arenas, A.; Diaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C.: “Synchronization in

complex networks,” PACS: 05.45.Xt, 89.75.Fb, 89.75.Hc, December 2008.
[Bar 2002] Barahona, M.; Pecora, L.M.: “Synchronization in Small-World Systems,” Phys.

Rev. Lett. 89 (2002) 054101, 2002.
[Bre 2008] Brede, M.: “Locals vs. global synchronization in networks of non-identical

kuramoto oscillators,” Europ. Phys. J. B 62 (2008) 87–94.
[But 2008] Butler, R.: “A primer on architectural level fault tolerance,” NASA/TM-2008-

215108, February 2008.
[Cor 2002] Corning, P.A.: “The Re-Emergence of “Emergence”: a Venerable Concept in

Search of a Theory,” Complexity 7(6): pp. 18-30, 2002.
[Cla 1981] Clarke, E.M.; Emerson, E.A.: Design and synthesis of synchronization skeletons

using branching time temporal logic. In Logic of Programs: Workshop, Yorktown

Heights, NY, May 1981, LNCS 131. Springer, 1981.
[Dal 2003] Daliot, A.; Dolev, D.; Parnas, H.: “Linear Time Byzantine Self-Stabilizing Clock

Synchronization,” Proceedings of 7th International Conference on Principles of
Distributed Systems (OPODIS-2003), La Martinique, France, December 2003.

[Dav 1978] Davies, D.; Wakerly, J.F.: “Synchronization and matching in redundant systems,”
IEEE Transactions on Computers, 27(6), pp. 531-539, June 1978.

[Dij 1974] Dijkstra, E.W.: “Self stabilizing systems in spite of distributed control,” Commun.
ACM 17, pp. 643-644, 1974.

[Dol 2004] Dolev, S.; Welch, J.L.: “Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults,” Journal of the ACM, Vol.51, No. 5, pp. 780-799, September
2004.

[Ear 2003] Earl, M.G.; Strogatz, S.H.: “Synchronization in Oscillator Networks With Delayed
Coupling: A Stability Criterion,” The American Physical Society, 2003.

[Gad 2000] Gade, P.M.; Hu, C.K.: “Synchronous chaos in coupled map lattices with small-
world interactions,” Phys. Rev. E 62 (2000) 6409–6413, 2000.

[Gir 2005] Girault, A.; Rutten, E.: “Modeling Fault-tolerant Distributed Systems for Discrete
Controller Synthesis,” Electronic Notes in Theoretical Computer Science, vol. 133,
pp. 81-100, 2005.

[Gle 2006] Gleiser, P.M.; Zanette, D.H.: “Synchronization and structure in an adaptive
oscillator network,” Europ. Phys. J. B 53 (2006) 233–238.

[Gol 1999] Goldstein, j: “Emergence as a Construct: History and Issues,” Emergence 11, pp.
49-72, 1999.

[Gom 2007] G´omez-Garde˜nes, J.; Moreno, Y.; Arenas, A.: “Paths to Synchronization on
Complex Networks,” Phys. Rev. Lett. 98 (2007), 034101, 2007.

[Hon 2002] Hong H.; Choi, M.Y.; Kim, B.J.: “Synchronization on small-world networks,”
Phys. Rev. E 65 (2002) 026139, 2002.

[Hon 2004] Hong H.; Kim, B.J.; Choi, M.Y.; Park, H.: “Factors that predict better
synchronizability on complex networks,” Phys. Rev. E 69 (2004) 067105, 2004.

[Hud 1918] George H. Hudson, Science 48, pp. 573-575, 1918.
[Kop 1997] Kopetz, H: “Real-Time Systems, Design Principles for Distributed Embedded

Applications,” Kluwar Academic Publishers, ISBN 0-7923-9894-7, 1997.

33

[Lam 1982] Lamport, L.; Shostak, R.; Pease, M.: “The Byzantine General Problem,” ACM
Transactions on Programming Languages and Systems, 4(3), pp. 382-401, July
1982.

[Lam 1985] Lamport, L; Melliar-Smith, P.M.: “Synchronizing clocks in the presence of faults,”
J. ACM, vol. 32, no. 1, pp. 52-78, 1985.

[Li 2004] Li, C.; Chen, G.: “Phase synchronization in small-world networks of chaotic
oscillators,” Physica A 341 (2004) 73–79, 2004.

[Lis 1970] Liskovets, V.A.: “number of strongly connected directed graphs,” Matmaticheskie
Zameki, Vol. 8, No. 6, pp. 721-732, December 1970.

[Mal 2006A]Malekpour, M.R.; Siminiceanu, R.: “Comments on the „Byzantine Self-Stabilizing
Pulse Synchronization‟ Protocol: Counterexamples.” NASA/TM-2006-213951,
February 2006.

[Mal 2006B] Malekpour, M.R.: “A Byzantine-Fault Tolerant Self-Stabilizing Protocol for
Distributed Clock Synchronization Systems.” Eighth International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS06), November
2006.

[Mal 2008] Malekpour, M.R.: “Verification of a Byzantine-Fault-Tolerant Self-Stabilizing
Protocol for Clock Synchronization.” IEEE Aerospace Conference, March 2008.

[Mal 2009] Malekpour, M.R.: “A Self-Stabilizing Byzantine-Fault-Tolerant Clock
Synchronization Protocol,” NASA/TM-2009-215758, June 2009.

[Min 2002] Miner, P.S. ; Malekpour, M.R.; Torres, W.: “A Conceptual Design For a Reliable
Optical Bus (ROBUS)”, Presented at the 21st Digital Avionics Systems Conference
(DASC), Irvine, California, October 27-31, 2002.

[Mir 1990] Mirollo, R.E.; Strogatz, S.H.: “Synchronization of Pulse-Coupled Biological
Oscillators,” SIAM Journal on Applied Mathematics, Vol. 50, No. 6, pp. 1645-
1662, December 1990.

[Nis 2006A] Nishikawa, T.; Motter, A.E.: “Maximum performance at minimum cost in network
synchronization,” Physica D 224 (2006) 77–89.

[Nis 2006B] Nishikawa, T.; Motter, A.E.: “Synchronization is optimal in nondiagonalizable
networks,” Phys. Rev. E 73 (2006) 065106.

[Pes 1975] Peskin C.: “Mathematical Aspects of Heart Physiology”, 1975.
http://www.math.nyu.edu/faculty/peskin/heartnotes/index.html
http://www.math.nyu.edu/faculty/peskin/heartnotes/CLN-Peskin1975-7.pdf

[Sloane] Sloane, N.J.A.: Sequence A001349. The On-Line Encyclopedia of Integer
Sequences.
http://www.research.att.com/projects/OEIS?Anum=A001349,
http://mathworld.wolfram.com/ConnectedGraph.html.

[SMV] http://www-2.cs.cmu.edu/~modelcheck/smv.html
[Sri 1987] Srikanth, T.K.; Toueg, S.: “Optimal clock synchronization,” Journal of the ACM,

34(3), pp. 626–645, July 1987.
[Str 2003] Strogatz, S.H.: “SYNC, How Order Emerges From Chaos in the Universe, Nature,

and Daily Life,” ISBN 978-0-7868-8721-7, 2003.
[Tor 2005A] Torres-Pomales, W.; Malekpour, M.R.; Miner, P.S.: “ROBUS-2: A Fault-Tolerant

Broadcast Communication System,” NASA/TM-2005-213540, March 2005.

http://www.math.nyu.edu/faculty/peskin/heartnotes/index.html
http://www.math.nyu.edu/faculty/peskin/heartnotes/CLN-Peskin1975-7.pdf
http://www.research.att.com/projects/OEIS?Anum=A001349
http://mathworld.wolfram.com/ConnectedGraph.html
http://www-2.cs.cmu.edu/~modelcheck/smv.html

34

[Tor 2005B] Torres-Pomales, W.; Malekpour, M.R.; Miner, P.S.: “Design of the Protocol
Processor for the ROBUS-2 Communication System,” NASA/TM-2005-213934,
pp. 252, November 2005.

[Wat 1998] Watts, D.J.; and Strogatz, S.H.: “Collective dynamics of ‟small-world‟ networks,”
Nature (London) 393, 440, 1998.

[Wel 1988] Welch, J.L.; Lynch, N.: “A New Fault-Tolerant Algorithm for Clock
Synchronization,” Information and Computation volume 77, number 1, pp.1-36,
April 1988.

35

Appendix A. Symbols

The symbols used in the protocol are described in detail in [Malekpour 2010] and are listed here
for reference.

Symbols Descriptions

K sum of all nodes
T network topology
D event-response delay
d network imprecision

 bounded drift rate with respect to real time
P self-stabilization/synchronization period
F sum of all faulty nodes

Ni the ith node
Mi the ith monitor of a node
 communication latency

L the largest loop in the graph
W the width or diameter of the graph

TS graph threshold
π the guaranteed self-stabilization/synchronization precision
C convergence time
CInit time of initial synchrony
LocalTimer node‟s local logical clock

ij(t) precision between LocalTimers of any two adjacent nodes Ni and Nj at time t
Init(t) initial precision among LocalTimers of all nodes at time t
InitGuaranteed(t) initial guaranteed precision among LocalTimers of all nodes at time t

δ(t) drift per t
Sync self-stabilization/synchronization message

Net(t) precision among LocalTimers of all nodes at time t

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

A Self-Stabilizing Distributed Clock Synchronization Protocol for
Arbitrary Digraphs

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Malekpour, Mahyar R.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19976

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This report presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock
synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the
network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central
clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on
the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined
links and interfaces. We present an outline of a deductive proof of the correctness of the protocol. A model of the protocol was mechanically verified using the
Symbolic Model Verifier (SMV) for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model
checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results
confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present
several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

15. SUBJECT TERMS

Algorithm; Clock Synchronization; Communication Network; Digraphs; Distributed Systems; Protocol; Self-Stabilizing

18. NUMBER
 OF
 PAGES

42

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

534723.02.02.07.30

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2011-217054

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

02 - 201101-

