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ABSTRACT

A new method for spectral-spatial classification of hyper-
spectral images is proposed. The method is based on the
integration of probabilistic classification within the hierarchi-
cal best merge region growing algorithm. For this purpose,
preliminary probabilistic support vector machines classifica-
tion is performed. Then, hierarchical step-wise optimization
algorithm is applied, by iteratively merging regions with
the smallest Dissimilarity Criterion (DC). The main novelty
of this method consists in defining a DC between regions
as a function of region statistical and geometrical features
along with classification probabilities. Experimental results
are presented on a 200-band AVIRIS image of the North-
western Indiana’s vegetation area and compared with those
obtained by recently proposed spectral-spatial classification
techniques. The proposed method improves classification
accuracies when compared to other classification approaches.

Index Terms— Hyperspectral images, classification, seg-
mentation, region growing, support vector machines.

1. INTRODUCTION

Hyperspectral imaging [1], which acquires hundreds of spec-
tral channels for each pixel, opens new perspectives in clas-
sification of remote sensing images. While pixelwise clas-
sification methods process each pixel independently without
considering the correlations between spatially adjacent pix-
els [2, 3], recent studies have shown the advantage of in-
cluding information from a spatial neighborhood for accu-
rate classification, i.e., performing spectral-spatial classifica-
tion [4, 5].

In previous works, we have proposed to perform a seg-
mentation of the input image and then use the identified
segments as pixels’ neighborhoods [6]. However, automatic
segmentation of hyperspectral images is a challenging task,
since its performance strongly depends on the chosen mea-
sure of region homogeneity. Hierarchical multilevel defini-
tion of regions (achieved by performing iterative best merge
region growing) mitigates this dependence [7], but this ap-
proach is not completely automated (the user is required to
set the parameter defining the multilevel segmentation) and

computationally expensive. An alternative spectral-spatial
classification method consists in performing probabilistic
classification for selecting the most reliably classified pixels
as markers for segmentation [5]. In this case, the choice of
markers strongly depends on the performance of the selected
classifier.

For both approaches, segmentation and classification
techniques were applied one after another, and their outputs
were combined in some way. In this work, we aim to inter-
lace these procedures and develop a new methodology, where
segmentation and classification are performed concurrently
for obtaining an accurate thematic map. For this purpose,
a new Hierarchical Segmentation with integrated Classifi-
cation (HSwC) method for hyperspectral data is proposed.
First, preliminary probabilistic classification of each pixel
is performed. Then, best merge region growing is applied,
where at each iteration two “closest regions” are merged, and
classification probabilities for a new region are recomputed.
The main idea behind this new method consists in defining
a Dissimilarity Criterion (DC) between regions as a function
of region statistical features, classification probabilities and
geometrical features. The algorithm is converged when all
the pixels get a definite classification label. The output of
the proposed HSwC method is a thematic map, where every
region is assigned to one of the classes of interest.

The paper is organized as follows. In the next section, a
new HSwC approach is presented. Experimental results are
discussed in Section 3. Finally, conclusions are drawn in Sec-
tion 4.

2. PROPOSED CLASSIFICATION APPROACH

The flowchart of the proposed HSwC classification method is
shown in Fig. 1. An input B-band hyperspectral image can
be considered as a set of n pixel vectors X = {xj ∈ RB , j =
1, 2, ..., n}. The objective is to compute a classification map
L = {Lj , j = 1, 2, ..., n}, where each pixel xj is assigned to
one of K information classes (i.e., has a class label Lj). The
following procedure is proposed for this purpose:



 

    Spectral-spatial 
classification map 

Hyperspectral image 

Preliminary 
probabilistic 
classification 

While 
all pixels are 

definitely classified 

Assign a region 
label for each pixel 

Find min(DC) between 
all pairs of spatially 

adjacent regions (SAR) 

Merge all pairs of SAR 
with DC = min(DC). 
Classify new regions 

Fig. 1. Flowchart of the proposed HSwC classification
method. “DC” means Dissimilarity Criterion.

2.1. Preliminary probabilistic classification

The first step consists in performing a preliminary probabilis-
tic classification of the hyperspectral image. We propose to
use a Support Vector Machines (SVM) classifier for this pur-
pose which has shown a good performance for classifying hy-
perspectral data [3]. The standard SVM classifier does not
provide probability estimates for the individual clases. In or-
der to estimate these estimates, pairwise coupling of binary
probabilistic estimates is applied [5]. This step results in a
classification map L′ = {L′j , j = 1, 2, ..., n}, where each
pixel has a unique class label, and n vectors of class prob-
abilities for each pixel {P (Lj = k|xj), k = 1, ...,K}, j =
1, 2, ..., n.

2.2. Hierarchical segmentation with integrated classifica-
tion

At the next step, Hierarchical Step-Wise Optimization seg-
mentation (HSWO) [8] with integrated classification is per-
formed as follows:

1) Initialize the algorithm by assigning a new region la-
bel for each pixel. Each one-pixel region Ri gets a prelim-
inary class label L(Ri) and a vector of class probabilities
{Pk(Ri) = P (L(Ri) = k|Ri), k = 1, ...,K}.
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Fig. 2. Flowchart of computing a dissimilarity criterion be-
tween two regions Ri and Rj .

2) Calculate the DC between all pairs of spatially adjacent
regions. We propose to compute a DC between two regions
Ri andRj as a function of region statistical (mean vector) and
geometrical (number of pixels) features along with classifica-
tion probabilities (see Fig. 2):

• Compute the Spectral Angle Mapper (SAM) measure
between the region mean vectors ui = (ui1, ..., uiB)

T

and uj = (uj1, ..., ujB)
T as
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• If the regions have equal class labelsL(Ri) = L(Rj) =
k′,

DC(Ri, Rj) = (2−max(Pk′(Ri), Pk′(Rj)))SAM(ui,uj).
(2)

• Otherwise (i.e., if L(Ri) 6= L(Rj)), if a number of pix-
els in each region is larger than M , DC(Ri, Rj) = ∞
(in practice, the upper maximum value of float). This
condition is included for favoring merging small re-
gions. We propose to set M = 20.

• Otherwise,

DC(Ri, Rj) =

(2−min(PL(Rj)(Ri), PL(Ri)(Rj)))SAM(ui,uj). (3)

3) Find the smallest DC value DCmin.



4) Merge all pairs of spatially adjacent regions with
DC = DCmin. For each new region Rnew created by
merging two regions Ri and Rj , recompute:

• A vector of new class probabilities as

Pk(Rnew) =
Pk(Ri)card(Ri) + Pk(Rj)card(Rj)

card(Rnew)
, (4)

k = 1, ...,K, where card(R) is a number of pixels in the
region R, card(Rnew) = card(Ri) + card(Rj).

• Class label as

L(Rnew) = argmax
k
{Pk(Rnew)}. (5)

All the pixels in the new region Rnew get a definite class
label (i.e., if Ri and/or Rj were composed of one pixel with a
preliminary classification label, the corresponding pixels get
a definite label of the class).

5) Stop if all the pixels (n pixels) get a definite classifi-
cation label. If the considered image may have one-pixel re-
gions of interest, the algorithm is converged when P ·n pixels
(0 < P < 1) are definitely classified. If the algorithm is not
converged, recalculate the DC values for the new regions and
all regions spatially adjacent to them, and return to step 3.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We applied the proposed method to the Indian Pines image
recorded by the AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) sensor over the vegetation area in Northwest-
ern Indiana. The image is of 145 by 145 pixels, with a spatial
resolution of 20 m/pixel. Twenty water absorption bands have
been removed, and a 200-band image was used for experi-
ments. Sixteen classes of interest are considered, which are
detailed in Table 1, with a number of training and test samples
for each class. Training samples have been randomly selected
from the reference data. More information about the image
and reference data can be found in [6].

A probabilistic one-versus-one SVM classification with
the Gaussian Radial Basis Function (RBF) kernel was per-
formed. The optimal parameters were chosen by fivefold
cross validation: penalty during the SVM optimization
C = 128, spread of the RBF kernel γ = 2−6. Classifi-
cation map is shown in Fig. 3(a). Then, the proposed HSwC
method was applied (the algorithm was implemented using
the Hierarchical SEGmentation (HSeg) software [9]). The
algorithm has been converged when: a) 99% of pixels were
classified (P = 0.99); b) all pixels were classified (P = 1).

Table 1 summarizes global (overall, average accuracies
and kappa coefficient [6]) and class-specific accuracies of
the SVM classification and the proposed HSwC technique
(with P = 0.99 and P = 1). In order to compare the ef-
ficiency of the proposed method with previously proposed
techniques, we have included results of the ECHO classifica-
tion [10], a classification using the construction of a minimum

(a) (b)

Fig. 3. Indian Pines image. (a) SVM classification map. (b)
HSwC classification map (P = 1).

spanning forest from the probabilistic SVM-derived markers
(SVMMSF) [5] and a classification by majority voting within
neighborhoods defined by HSeg segmentation (HSeg+MV,
with the parameter Swght = 0.0, which is equivalent to
HSWO, and the SAM DC) [6].

As can be seen from Table 1, accuracies are significantly
improved when including spatial information into the classi-
fication. The proposed HSwC method, with P = 1, yields the
best average accuracy (which is improved by 8.2 percentage
points when compared to the SVM classification) and most of
the class-specific accuracies. Fig. 3(b) shows the correspond-
ing classification map, which is much less noisy than a pixel-
wise classification map. The HSwC algorithm with P = 0.99
yields lower classification accuracies. Therefore, unless there
are one-pixel regions of interest in the image under consider-
ation, we recommend to run the algorithm until all the pixels
get a definite classification label (i.e., P = 1).

The best overall accuracy is obtained using the HSeg+MV
technique. However, in this method a segmentation map at an
appropriate level of segmentation detail was chosen by quan-
titatively evaluating classification accuracies at several hierar-
chical levels versus the test data and retaining the best results.
The test data are not available in most cases for classifying a
new data set. Furthermore, the HSwC approach proposed in
this paper requires less parameters to tune when compared to
the ECHO and SVMMSF techniques. The only parameters to
be tuned are C and γ for the SVM classification, a parameter
M for favoring merging small regions (which is intuitive to
tune), and a parameter P if required.

4. CONCLUSIONS

Hyperspectral imagery is a well-suited technology for accu-
rate image classification, which is an important task in many
application sectors (such as precision agriculture, monitoring
and management of the environment, etc.). A new HSwC
method for spectral-spatial classification of hyperspectral data
was presented in this paper. In this method, a preliminary
probabilistic classification is first applied, using an SVM clas-



Table 1. Information Classes, Number of Labeled Samples (No. of Samp.) and Classification Accuracies in Percentage for the
Indian Pines Image.

No. of Samp.
SVM ECHO

SVM HSeg HSwC
Train Test MSF +MV P = 0.99 P = 1

Overall Accuracy - - 78.17 82.64 88.41 90.86 87.95 89.24
Average Accuracy - - 85.97 83.75 91.57 93.96 92.91 94.18
Kappa Coefficient κ - - 75.33 80.38 86.71 89.56 86.31 87.76
Corn-no till 50 1384 78.18 83.45 90.97 90.46 92.20 93.06
Corn-min till 50 784 69.64 75.13 69.52 83.04 81.63 82.53
Corn 50 184 91.85 92.39 95.65 95.65 95.65 97.28
Soybeans-no till 50 918 82.03 90.10 98.04 92.06 94.44 95.10
Soybeans-min till 50 2418 58.95 64.14 81.97 84.04 72.54 74.36
Soybeans-clean till 50 564 87.94 89.89 85.99 95.39 93.62 96.10
Alfalfa 15 39 74.36 48.72 94.87 92.31 92.31 97.44
Grass/pasture 50 447 92.17 94.18 94.63 94.41 91.28 93.96
Grass/trees 50 697 91.68 96.27 92.40 97.56 97.85 97.85
Grass/pasture-mowed 15 11 100 36.36 100 100 100 100
Hay-windrowed 50 439 97.72 97.72 99.77 99.54 98.86 98.86
Oats 15 5 100 100 100 100 100 100
Wheat 50 162 98.77 98.15 99.38 98.15 99.38 99.38
Woods 50 1244 93.01 94.21 97.59 98.63 98.39 99.52
Bldg-Grass-Tree-Drives 50 330 61.52 81.52 68.79 82.12 78.48 81.52
Stone-steel towers 50 45 97.78 97.78 95.56 100 100 100

sifier. Then, iterative best merge region growing with in-
tegrated classification is performed. The main contribution
consists in defining a DC between adjacent regions as a func-
tion of region statistical and geometrical features and classi-
fication probabilities. Experimental results did show that the
proposed approach improves classification accuracies, when
compared to previously proposed classification techniques,
and provides classification maps with more homogeneous re-
gions. Similar results are obtained for other datasets acquired
by the ROSIS (Reflective Optics System Imaging Spectrom-
eter) sensor.

In conclusion, the proposed approach succeeded in taking
advantage of the spatial and spectral information simultane-
ously for accurate hyperspectral data classification.
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