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Abstract

We consider in this work the probabilistic approach to model-based dignosis when applied to electri-
cal power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian
networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay
special attention to meeting two of the main challenges � model development and real-time reasoning
� often associated with real-world application of model-based diagnosis technologies. To address the
challenge of model development, we develop a systematic approach to representing electrical power sys-
tems as Bayesian networks, supported by an easy-to-use speci�cation language. To address the real-time
reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation
supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS
speci�cation language from which Bayesian networks that can diagnose multiple simultaneous failures
are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian
networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is
a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the
NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently con-
tains 503 discrete nodes and 579 edges, we �nd high diagnostic accuracy in scenarios where one to three
faults, both in components and sensors, were inserted. The time taken to compute the most probable
explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of
0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evalua-
tion substantially outperforms joint tree propagation and variable elimination, two alternative algorithms
for diagnosis using Bayesian network inference.

1 Introduction

In this work, we apply probabilistic model-based diagnosis techniques to a real-world electrical power system
(EPS), namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) [1]. A Bayesian network (BN)
model of the ADAPT electrical power system plays a central role. This ADAPT BN represents health of
sensors and subsystem components explicitly, and is auto-generated from a high-level system model of the
ADAPT EPS. This BN is compiled, o¤-line, into an arithmetic circuit which is then evaluated on-line. We
believe that this ADAPT case study clearly demonstrates how arithmetic circuits o¤er a scalable inference
technique with potential for real-time evaluation in aircraft and spacecraft.
BNs have recently gained great popularity as an approach to representing multi-variate probability dis-

tributions [2]. BNs play a central role in a wide range of automated reasoning applications, for example in
model-based diagnosis [3, 4, 5], medical diagnosis [6, 7], natural language understanding [8], probabilistic
risk analysis [9], intelligent data analysis [10, 11], and error correction coding [12, 13].
A major point in this work is our case study on an electrical power system, ADAPT, that is representative

of those found in aerospace vehicles. One of our main contributions is the integration of di¤erent techniques,
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both existing and novel, in order to address a real world problem, thereby obtaining an approach that scales
up to handle real world challenges in probabilistic model-based diagnosis.
Several aspects of this work make it di¤erent from previous e¤orts that utilize Bayesian networks for

EPS diagnosis [4, 5]: A �rst contribution is our expression of EPS components and structure, using a
novel high-level language, coupled with auto-generation of Bayesian networks from models expressed in this
language. This approach supports the iterative development of probabilistic diagnostic models for large EPSs,
including diagnostic system models that would be extremely tedious to hand-construct even for Bayesian
network experts. The bene�t of this approach to developers and engineers that are not, or only vaguely,
familiar with Bayesian network appears to be even greater.
It is important to achieve real-time performance in many EPS health monitoring applications in aerospace

[14, 15]. As a second contribution, we would like to highlight our compilation approach to probabilistic
diagnosis, speci�cally the o¤-line compilation of Bayesian networks to arithmetic circuits [16, 17], which are
then used for on-line diagnosis. In experiments, we have here shown that this approach provides high-quality
diagnostic results on ADAPT scenarios. In addition, we have shown that performance is substantially better
than alternative probabilistic inference algorithms, speci�cally variable elimination and clique (or join) tree
propagation.
We believe that this work is signi�cant for the following reasons. Electrical power systems are of crucial

importance in aerospace as well as in numerous other areas of society [18, 1]. Our results in this work provide
an argument for the feasibility of probabilistic, model-based diagnosis of EPSs. In particular, we address two
real-world challenges of the model-based approach, especially as systems grow, namely (i) the di¢ culty of
model construction (the modelling challenge) and (ii) scalability or performance concerns due to the inherent
di¢ culty of probabilistic reasoning including diagnosis [19, 20, 21] (the real-time reasoning challenge). In the
area of model construction, we provide automated generation of a Bayesian network from an EPS schematic
and automated construction of an arithmetic circuit from the Bayesian network. This arithmetic circuit,
which typically is large but has simple a semantics, supports real-time diagnosis on-line in the following
two ways. First, it results in more predictable times. Second, it results in much faster inference. These
two bene�ts are important to us, given the real-time requirements of aircraft and spacecraft avionics [15].
More generally, our approach to integrating a diagnostic system into the real-time setting is an example of
�embedding AI into a real-time system�[14]. This addresses the scalability concerns mentioned above.
The rest of this work is structured as follows. After brie�y introducing fundamentals of Bayesian networks

and arithmetic circuits in Section 2, we discuss electrical power systems and ADAPT in particular in Section
3. We then present, using a simple EPS example, the high level speci�cation language and model in Section
4. In Section 5 we consider the high level speci�cation of a large portion of ADAPT. We then discuss
Bayesian network modelling and auto-generation (Section 6 and Section 7 respectively), and compilation
to arithmetic circuits (Section 8). We note that the latter two types of models (Bayesian networks and
arithmetic circuits) are both auto-generated in our approach, thus reducing the amount of manual e¤ort
required. Finally, we report on experimental results in Section 9, both on real-world and synthetic data,
before concluding in Section 10.

2 Preliminaries

We now brie�y present the underlying formalisms of our probabilistic model-based reasoning approach:
Bayesian networks and arithmetic circuits.

2.1 Bayesian Networks

Bayesian networks (BNs) represent multivariate probability distributions and are used for reasoning and
learning under uncertainty [2]. Probability theory and graph theory form the basis of BNs: Roughly speaking,
random variables are represented as nodes in a directed acyclic graph (DAG), while conditional dependencies
are represented as graph edges. A key point is that a BN, whose graph structure often re�ects a domain�s
causal structure, is a compact representation of a joint probability table if its graph is relatively sparse.
Both discrete and continuous random variables can be represented in BNs; our main emphasis in this work
is on BNs with discrete random variables. Each discrete random variable (or node) X has a �nite number
of states fx1; : : : xmg and is parameterized by a conditional probability table (CPT).
Let X be the BN nodes, E �X the evidence nodes, and e the evidence. Di¤erent probabilistic queries

can now be formulated (and supported by di¤erent algorithms as we will further discuss below). These
queries assume that all nodes in E are clamped to values e. Computation of most probable explanation
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(MPE) amounts to �nding a most probable explanation over the remaining nodes R =X �E, or MPE(e).
Computation of marginals (or beliefs) amounts to inferring the posterior probabilities over one or more
query nodes Q � R, speci�cally BEL(Q;e) where Q 2 Q. Marginals are used to compute most likely values
(MLVs) simply by picking, in BEL(Q;e), a most likely state. Computation of the maximum a posteriori
probability (MAP) generalizes MPE computation and �nds a most probable instantiation over nodesQ � R,
MAP(Q; e). Finally, we note that MAP can be approximated using MPE and MLV, and we will denote this
using MAPMPE(Q; e) and MAPMLV(Q; e) respectively. MAPMPE(Q; e) is the result of disregarding the
nodes in R not in Q, and MAPMLV(Q; e) is the result of aggregating MLV(Q;e) of all Q 2 Q. These two
approximations are of interest because of the greater computational complexity of MAP [21] compared to
MPE and marginals [19, 20]. .
Di¤erent BN inference algorithms can be used to perform the above computations. We distinguish

between exact and inexact algorithms. Exact algorithms include join tree propagation [22, 23, 24, 25],
conditioning [26, 27], variable elimination [28, 29, 30], and arithmetic circuit evaluation [16, 17]. Inexact
algorithms, and in particular stochastic local search algorithms, have been used to compute MPEs [31, 32,
33, 34, 35] as well as MAPs [36, 21] in Bayesian networks.
In resource-bounded systems, including real-time avionics systems, there is a strong need to align the

resource consumption of diagnostic computation with resource bounds [14, 15]. Consequently, the compila-
tion approach � join tree propagation and arithmetic circuit evaluation � is attractive in resource-bounded
systems. The main advantage of compilation is that a signi�cant amount of the work required for inference
is performed once o ine; this e¤ort is then amortized over many online queries. Online inference is typically
much faster when using a compilation approach, and the inference times often have much smaller variance.
In this work we emphasize compilation into arithmetic circuits, which we present next.

2.2 Arithmetic Circuits

Arithmetic circuits (ACs), as discussed in [37, 16], are here used to perform probabilistic inference. The
compilation from BNs to ACs is based on the following connection between BNs and multi-linear functions.
With each Bayesian network, we associate a corresponding multi-linear function (MLF) that computes the
probability of evidence. For example, the network in Figure 1� in which variables A and B are Boolean and
C has three values� induces the following MLF:

�a1�b1�c1�a1�b1�c1ja1;b1 + �a1�b1�c2�a1�b1�c2ja1;b1 + � � �
+ �a2�b2�c2�a2�b2�c2ja2;b2 + �a2�b2�c3�a2�b2�c3ja2;b2 :

The terms in the MLF are in one-to-one correspondence with the rows of the network�s joint distribution.
Assume that all indicator variables �x have value 1 and all parameter variables �xju have value Pr(xju).
Each term will then be a product of probabilities which evaluates to the probability of the corresponding
row from the joint. The MLF will add all probabilities from the joint, for a sum of 1:0. To compute the
probability Pr(e) of evidence e, we need a way to exclude certain terms from the sum. This removal of terms
is accomplished by carefully setting certain indicators to 0 instead of 1, according to the evidence.
The fact that a network�s MLF computes the probability of evidence is interesting, but the network MLF

has exponential size. However, if we can factor the MLF into something small enough to �t within memory,
then we can compute Pr(e) in time that is linear in the size of the factorization. The factorization will take
the form of an AC, which is a rooted DAG, where an internal node represents the sum or product of its
children, and a leaf represents a constant or variable. In this context, those variables will be indicator and
parameter variables. An example AC is depicted in Figure 1. We refer to this process of producing an AC
from a Bayesian network as compiling the network. While a BN is more compact than an AC, for example as
seen in Figure 1, there are in fact several advantages associated with using an AC for probabilistic inference,
as we will discuss shortly.
Once we have an AC for a network, we can compute Pr(e) for given evidence e by assigning appropriate

values to leaves and then computing a value for each internal node in bottom-up fashion. The value for
the root is then the answer to the query. We can also compute answers to many other queries (a posterior
marginal for each network variable, a posterior marginal for each network family, etc.) by performing a
second downward pass [16] analogous to the outward pass of the jointree algorithm. Hence, many queries
can be computed simultaneously in time linear in the size of the AC. MPE(e) may be computed in a
similar manner, by using maximization nodes instead of addition nodes in the AC. Another main point is
that the upward and downward passes may then be repeated for as many evidence sets as desired, without
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Figure 1: A Bayesian network (with nodes A, B, and C) and a corresponding arithmetic circuit compiled
from the Bayesian network.

recompiling. Performing inference using an AC is therefore divided into two phases, an o ine phase, which
compiles the network into an AC and is run once, and an online phase, which answers many queries each
time it is invoked, and which may be invoked multiple times.
We close this section by noting the close relationship between the jointree algorithm [22, 24] and ACs, since

the data structures involved in this algorithm embed an AC in a very precise sense [38]. Other compilation
algorithms have been developed based on tabular elimination [37], weighted model counting [39], and ADD
elimination [17]. These algorithms can have an exponential advantage over jointree by exploiting structure
in the parameters of the Bayesian network [40].

3 Electrical Power Systems

We discuss the importance of electrical power systems (EPSs) in aerospace applications and describe an EPS
testbed, ADAPT, that is the subject of this case study.

3.1 Electrical Power System Challenges in Aerospace and at NASA

Electrical power systems (EPSs) play an essential role in aerospace vehicles [18, 1]. The electrical power
system may be thought of as the circulatory system of an aerospace vehicle. In the human body, the circula-
tory system delivers the necessary nutrients to the constituent elements. Similarly, the EPS delivers energy
to subsystems in order to power required vehicle functions such as life support, propulsion, communications,
guidance, navigation, and control. Loss of electrical power to these and similar subsystems can result in
severe repercussions for the vehicle, personnel, or mission.
Unfortunately, electrical power systems have been implicated in several aerospace vehicle incidents, acci-

dents and mishaps. In one accident, the left Power Conversion and Distribution Unit (PCDU) on a Boeing
717 failed, resulting in the loss of the left AC and DC busses. The most likely cause was determined to be
the failure of a transient suppression diode, which allowed AC current to contaminate the DC circuits of the
PCDU. Shorted diodes were found on one of the circuit boards and several circuit cards showed evidence
of heavy sooting. One serious and several minor injuries were sustained by passengers using the emergency
evacuation slides after the pilot ordered the crew and passengers to evacuate the airplane subsequent to
smelling electrical smoke (see NTSB report number NYC03FA067). In another incident involving the PCDU
of a Boeing 717, a tantalum capacitor and a permanent magnet generator input transformer failed, resulting
in smoke in the cabin and an emergency landing and evacuation (NTSB report ATL04IA085).
The Electric Propulsion Space Experiment (ESEX) mission, launched and operated in early 1999, ended

prematurely when the spacecraft experienced a catastrophic battery failure. During the �rst battery charge,
a charging circuit instability occurred due to high internal impedance. After the eighth �ring, large battery
voltage �uctuations were observed over a 24 hour period, eventually stabilizing at a low voltage. The failure
was most likely the result of electrolyte leakage which caused a short circuit to the battery case. Subsequent
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Figure 2: The ADAPT electrical power system lab at the NASA Ames Research Center.
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Figure 3: Schematic of a portion of the ADAPT testbed, showing one of three power storage parts (for
Battery 1, left) and one of two load banks (Load bank 1, right). Detailed information about loads is given
in Table 2. Figure 4 shows pictures of loads as well as how they are connected to load banks.

discharging through the short circuit led to increases in battery temperature and pressure due to gasses
released from electrolyte decomposition. This resulted in a breach of the battery case, entry of super-heated
gas into the �ight unit, and eventual venting into space [41]. On January 14 2005, an Intelsat operated
communications satellite su¤ered a total loss after a sudden and unexpected electrical power system anomaly.
The failure of Intelsat 804�s high voltage power system was likely the result of a high current event in the
battery circuitry triggered by an electrostatic discharge (see http://sat-nd.com/failures/index.html/).
A battery failure also occurred on the Mars Global Surveyor, which last communicated with Earth on
November 2, 2006. In this case, a software error oriented the spacecraft to an angle that exposed it to too
much sunlight. This caused the battery to overheat and ultimately led to the depletion of both batteries
(see http://mpfwww.jpl.nasa.gov/mgs/newsroom/20070413a.html). New challenges will be presented by
advanced battery chemistries which require careful supervision.
These are just a few examples of the faults that can arise in EPSs. In addition to failures in PCDUs and

batteries, failures in wiring, electronics and electromechanical devices are also well-known. Much attention
has recently been given to wiring in commercial aircraft, with the cancellation of hundreds of �ights because
of concerns about the bundling and routing of wires. Power semiconductor electronics and electromechanical
devices will play an ever greater role as aerospace vehicles move towards all electric designs. Given the
prevalence and importance of EPSs, it is vital to develop e¤ective health management techniques for real-
time aerospace operations, including at NASA.

3.2 ADAPT: Advanced Diagnostic and Prognostic Testbed

Figure 2 shows the Advanced Diagnostics and Prognostics Testbed (ADAPT) lab; see also http://ti.arc.
nasa.gov/adapt/ and [1]. ADAPT, which has capabilities for power generation, power storage, and power
distribution, is a fully operational electrical power system that is representative of such systems in aircraft
and spacecraft. Figure 3 presents a schematic with a representative battery and load bank from ADAPT.
Figure 4 shows ADAPT loads. ADAPT is con�gured to achieve fault-tolerance, and contains three batteries
and two load banks. One battery can provide power to at most one load bank at any given time, and each
battery is wired such that it can power any one of the two load banks. In Figure 3, for example, for Battery
1 to power Load bank 1, relay EY141 must be closed. For Battery 1 to power Load bank 2, on the other
hand, relay EY144 must be closed. Relays EY141 and EY144 cannot both be closed at the same time.
Di¤erent types of components and sensors used in ADAPT are presented in Table 1. Relays, which are

commanded to close and open in order to control power, have pre�x EY (in Figure 3) and health modes
healthy, stuck or failed open, and stuck or failed closed. A position sensor, also presented in Table 1, reports
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Figure 4: The loads in ADAPT along with their sensor and connection information. For example, consider
the large fan FAN1 shown at the bottom left in the picture. FAN1�s labels say that the fan is connected to
L1B in the schematic (see Figure 3) and has one sensor ST515 (see Table 2).

on the status of a relay. As concrete examples, consider in Figure 3 relay EY170 that controls power to load
L1A; it also has a position (or touch) sensor ESH170. In our application, each of EY170 and ESH170 are
represented by random variables including health status random variables with states as represented in Table
1. For example, EY170�s health random variable has states {healthy, stuckOpen, stuckClosed}. Upstream
of relay EY170 is a current sensor IT167; the states of its health variable are {healthy, readCurrentLo,
readCurrentHi} as shown in the table. Further information regarding our probabilistic modelling of EPS
components and structure is provided in Section 6 and Section 7.
There are two load banks in ADAPT, each has an AC part and a DC part. Load bank 2 is very similar

to Load bank 1, the loads are just plugged into di¤erent locations. Each load is connected at a �xed place in
the power distribution unit. In other words, for the purposes of this work there is no ambiguity as to which
�power outlet�a load is �plugged into�. At this time, there are mostly AC loads in ADAPT; see Table 2
as well as Figure 4. We have included the possibility of DC loads (currently there are 2 DC loads, one for
each load bank). To convert DC power from the batteries into AC power used by the AC loads, ADAPT
has two inverters, one per load bank. A failed inverter breaks power transmission to the AC loads; see the
stuckOpen failure mode in Table 1.

4 High Level Models

Our approach to probabilistic model�based diagnosis involves four stages. In the �rst stage, we describe
the EPS using a high�level modeling language. The main purpose of this language is to make specifying
the EPS easy and less error�prone. In the second stage, we apply a program to automatically convert the
high�level speci�cation into a Bayesian network. Putting the model into the form of a Bayesian network
allows us to leverage a large body of existing work on Bayesian network inference techniques. In the third
stage, we compile the Bayesian network into an arithmetic circuit. This stage represents the application of a
speci�c technique (arithmetic circuits) for performing inference in Bayesian networks, which in the resource-
bounded, real-time context has signi�cant advantages over other techniques [14, 15]. All stages up to this
point have taken place o ine, before the EPS is put into actual use. The fourth stage involves applying
algorithms to the arithmetic circuit to perform inference online, when the EPS is deployed in an aircraft or
spacecraft. By this time, as much computational e¤ort as possible has been performed o ine, leaving much
less computation to be performed online. In this and the next sections, we provide more detail on each stage,
beginning in this section with the novel high-level speci�cation language.
A high-level speci�cation is a sequence of statements. The syntax of our high�level speci�cation language

is given in Table 3. In Table 3, <name> is an identi�er and <p> is a probability. Each statement de�nes
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Part Pre�x Mode (Healthy/Faulty) States
Battery BATT Healthy healthy

Voltage failure or drain stuckDisabled
Circuit ISH Healthy healthy
breaker Stuck or failed open stuckOpen

Stuck or failed closed stuckClosed
Inverter INV Healthy healthy

Switched o¤ stuckOpen
Relay EY Healthy healthy

Stuck or failed open stuckOpen
Stuck or failed closed stuckClosed

Voltage EI Healthy healthy
sensor Reading stuck low readVoltageLo

Reading stuck high readVoltageHi
Current IT Healthy healthy
sensor Reading stuck low readCurrentLo

Reading stuck high readCurrentHi
Position ISH Healthy healthy
sensor Reading stuck open stuckOpen

Reading stuck closed stuckClosed

Table 1: Di¤erent EPS parts along with their modes and the corresponding states of the health node for the
part.

ID Type Relay Description Load ID Measurements (Sensor IDs)
L1A AC EY170 3 light bulbs LGT6 Temperatures (TE500, TE501, TE502)

and Light sensor (LT500)
L1B AC EY171 Big fan FAN1 RPM (ST515)
L1C AC EY172 Small fan FAN3 None
L1D AC EY173 1 light bulb LGT8 None
L1E AC EY174 Water pump PMP2 Flow rate (FT525)
L1F AC EY175 1 light bulb LGT4 Temperature (TE511)
L1G DC EY183 Electromechanical DC1 None
L1H DC EY184 None N/A N/A

Table 2: Loads and their sensors (where applicable) for Load bank 1 of the ADAPT electrical power system.

a component, which can either be a source (battery), a basic component, a sensor, or a sink (load). For
brevity, we do not describe here some statements de�ning more complicated sensors. The general idea is that
electricity �ows from sources through basic components to sinks. Along the way, sensors attempt to monitor
what is happening, and various failures can occur at each component. For each component, we de�ne its
name, its type (e.g., source, load, breaker, relay, sensorCurrent, sensorVoltage), the probability that
the component will fail,1 and a set of neighboring components. For a source, the set of neighbors is empty; for
a basic component or a sink, we list all upstream neighbors, neighbors that lie between the component and
a source of electricity; for a sensor, we list only the component to which the sensor is attached. These sets
of neighbors serve to de�ne the topology of an EPS; in fact a directed acyclic graph is induced as discussed
in Section 7.
Figure 5 depicts a very simple example of an electrical power system, in which there is only one battery

(source) and only one load (sink). Electricity �ows from the battery batt to the load ld through a relay
rly. There is a current sensor currSens attached to the wire wire1 between the source and the relay and
a touch sensor attached to the relay itself. There is also a voltage sensor voltSens attached to the second
wire, wire2. Table 4 contains a description of this small EPS in our speci�cation language. The third line,
for example, de�nes a current sensor curSens with failure probability 0.0003 and attached to component
wire1 (which happens to be a wire de�ned in the second line); the fourth line de�nes a relay rly with failure

1As described, all failures for a given component have equal probability, but the syntax can easily be extended to assign
di¤ering probabilities to di¤erent kinds of failures.

8



<eps> ::= <component>+
<component> ::= (<source> j <basic> j <sensor> j <sink>) ";"
<source> ::= <name> ":" "source" ":" <p> ":"
<basic> ::= <name> ":" <btype> ":" <p> ":" <name>+
<sensor> ::= <name> ":" <stype> ":" <p> ":" <name>
<sink> ::= <name> ":" "sink" ":" <p> ":" <name>+
<btype> ::= "load" j "wire" j "inverter" j "breaker" j "relay"
<stype> ::= "sensorCurrent" j "sensorVoltage" j "sensorTouch"

Table 3: The syntax of our novel speci�cation language for electrical power systems.

Figure 5: A small electrical power system; it is described using our speci�cation language in Table 4.

probability 0.0003 and receiving electricity from component wire1; and the �fth line de�nes a touch (or
position) sensor touchSens with failure probability 0.0002 and attached to component rly.
The main advantage of the high�level speci�cation is ease-of-use. One can specify a model by listing

which components exist in the system, and for each, its type, failure probability, and neighbors. All of this
information can be obtained directly from schematics and hardware manuals. Consequently, the modeling
task at the speci�cation language level does not require guesswork or any knowledge of Bayesian networks
or arithmetic circuits.
Components di¤er from each other in some ways that are not represented explicitly in the speci�cation

language, because the information can be inferred from the component�s type. For example, some component
types, such as a circuit�breaker, accept a command to open or close, whereas some, such as a wire, do not.
Similarly, di¤erent components may su¤er di¤erent types of failures as presented in Table 1. For example,
a wire can only fail in a stuck�open state, whereas a circuit breaker can be stuck�open or stuck�closed.2

This information is added during the BN auto-generation stage (see Section 7), re�ecting our BN modelling
approach, which is what we discuss next.

5 High Level Model for ADAPT

Using our speci�cation language, the ADAPT EPS is described using statements for the following compo-
nents: 3 sources (batteries), 20 sinks (loads), 16 wires (we only need to describe a wire if it has a sensor
attached or if we want to model failures in wires), 2 inverters, 9 circuit breakers, 25 relays, 17 current and

2Sometimes a subtle distinction between �fail� and �stuck� is made, which we currently do not make in the BN; instead
we for simplicity call all failures �stuck�. (For example, �failed open�means that the component was closed and then opened
without any command. �Stuck open�, on the other hand, means that the component was already open, and failed to close
when commanded to do so.)

batt : source : 0.0001 ;
wire1 : wire : 0.0000 : batt ;
curSens : sensorCurrent : 0.0003 : wire1 ;
rly : relay : 0.0003 : wire1 ;
touchSens : sensorTouch : 0.0002 : rly ;
wire2 : wire : 0.0000 : rly ;
voltSens : sensorVoltage : 0.0002 : wire2 ;
ld : sink : 0.0001 : wire2 ;

Table 4: A small EPS, shown in Figure 5, described using our speci�cation language.
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load sensors, 16 voltage sensors, 33 position (touch) sensors, and 6 more advanced sensors (these advanced
sensors are not described here for sake of brevity). We now discuss the high level model of ADAPT in some
detail. In particular, we present the part that models the ADAPT schematic shown in Figure 3. ADAPT
loads are depicted in Figure 4.

5.1 Modelling of Batteries and Distribution Network

The speci�cation language follows the components and structure of an electrical power circuit very closely,
hence models like the ADAPT model we discuss next can be read directly o¤ schematics. ADAPT contains
three batteries and distribution networks. Due to their similarities, we only present the speci�cation for one
of them (Battery 1) here; see also the schematic in Figure 3:

battery1 : battery : 0.0005;

wire135 : wire : 0.0000 : battery1;

e135 : sensorVoltage : 0.0005 : wire135;

breaker_ey136_op : breaker : 0.0005 : wire135;

ish136 : sensorTouch : 0.0005 : breaker_ey136_op;

wire140 : wire : 0.0000 : breaker_ey136_op;

e140 : sensorVoltage : 0.0005 : wire140;

it140 : sensorCurrent : 0.0005 : wire140;

relay_ey141_cl : relay : 0.0005 : wire140;

esh141a : sensorTouch : 0.0005 : relay_ey141_cl;

relay_ey144_cl : relay : 0.0005 : wire140;

esh144a : sensorTouch : 0.0005 : relay_ey144_cl;

We now consider the part that connects Battery 1 with Load bank 1:
wire142 : wire : 0.0000 : relay_ey141_cl relay_ey241_cl relay_ey341_cl;

e142 : sensorVoltage : 0.0005 : wire142;

relay_ey160_cl : relay : 0.0005 : wire142;

esh160a : sensorTouch : 0.0005 : relay_ey160_cl;

wire161 : wire : 0.0000 : relay_ey160_cl;

e161 : sensorVoltage : 0.0005 : wire161;

it161 : sensorCurrent : 0.0005 : wire161;

5.2 Modelling of Load Banks and Loads

ADAPT contains two load banks with loads. Due to the similarities between loads, we only discuss the
speci�cation of loads L1A, L1B, L1C, L1E, and L1G for Load bank 1 here. First, we present the part of the
speci�cation that concerns the branch that leads to and includes the DC load L1G:

breaker_ey180_op : breaker : 0.0005 : wire161;

ish180 : sensorTouch : 0.0005 : breaker_ey180_op;

wire181 : wire : 0.0000 : breaker_ey180_op;

e181 : sensorVoltage : 0.0005 : wire181;

it181 : sensorCurrent : 0.0005 : wire181;

relay_ey183_cl : relay : 0.0005 : wire181;

esh183 : sensorTouch : 0.0005 : relay_ey183_cl;

load183 : sink : 0.0005 : relay_ey183_cl;

What follows below is the branch containing the Load bank 1 inverter:
breaker_ey162_op : breaker : 0.0005 : wire161;

ish162 : sensorTouch : 0.0005 : breaker_ey162_op;

inv1 : inverter : 0.0005 : breaker_ey162_op;

wire165 : wire : 0.0000 : inv1;

e165 : sensorVoltage : 0.0005 : wire165;

breaker_ey166_op : breaker : 0.0005 : wire165;

ish166 : sensorTouch : 0.0005 : breaker_ey166_op;

wire167 : wire : 0.0000 : breaker_ey166_op;

e167 : sensorVoltage : 0.0005 : wire167;

it167 : sensorCurrent : 0.0005 : wire167;

Here are the AC loads L1B, L1C, and L1G:
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relay_ey171_cl : relay : 0.0005 : wire167;

esh171 : sensorTouch : 0.0005 : relay_ey171_cl;

load171 : sink : 0.0005 : relay_ey171_cl;

fan1_speed_st515 : sensorCurrentThree : 0.0005 : load171;

relay_ey172_cl : relay : 0.0005 : wire167;

load172 : sink : 0.0005 : relay_ey172_cl;

esh172 : sensorTouch : 0.0005 : relay_ey172_cl;

load174 : sink : 0.0005 : relay_ey174_cl;

pump2_flow_ft525 : sensorCurrentThree : 0.0005 : load174;

relay_ey174_cl : relay : 0.0005 : wire167;

esh174 : sensorTouch : 0.0005 : relay_ey174_cl;

relay_ey170_cl : relay : 0.0005 : wire167;

We �nally consider AC load L1A.
esh170 : sensorTouch : 0.0005 : relay_ey170_cl;

load170_bulb0 : sink : 0.0005 : relay_ey170_cl;

box1_light1_temp_te500 : sensorCurrent : 0.0005 : load170_bulb0;

load170_bulb1 : sink : 0.0005 : relay_ey170_cl;

box1_light2_temp_te501 : sensorCurrent : 0.0005 : load170_bulb1;

load170_bulb2 : sink : 0.0005 : relay_ey170_cl;

box1_light3_temp_te502 : sensorCurrent : 0.0005 : load170_bulb2;

light1_level_lt500 : sensorCurrentCount : 0.0005 : load170_bulb0 load170_bulb1 load170_bulb2;

There are here three light bulbs, and this is re�ected as three loads in the speci�cation, one for each
light bulb: load170_bulb0, load170_bulb1, and load170_bulb2. There are two types of sensors: (i)
A temperature sensor, which is glued to a light bulb. There is a �current� sensor for each of these:
box1_light1_temp_te500, box1_light2_temp_te501, and box1_light3_temp_te502. Clearly, a current
sensor is not the same as a temperature sensor technically, but they both really measure current, and by
using di¤erent failure probabilities we account for their di¤erences. (ii) A light sensor, which is a few inches
away from all the light bulbs. This light sensor senses three light bulbs. This is represented by another
�current� sensor, light1_level_lt500, attached to all three bulbs. What is di¤erent from the tempera-
ture sensors, for example, is that this sensor is attached multiple components and reports the number of
components that were on. Also, there is just a single failure state. In the speci�cation language, we note
how a sensor is attached to components. Sensors are speci�ed very similarly to how normal components are
speci�ed.

6 Modelling Electrical Power Systems using Bayesian Networks

A main contribution in this work is our systematic modelling of EPSs using BNs. BNs provide a probabilistic
semantics for our high-level speci�cation language, and in addition they support e¢ cient inference including
compilation into arithmetic circuits. In order to discuss our modelling approach as well as the supporting
auto-generation algorithm and software, we partition the set of BN nodes X into subsets H, E, C, P and
R as follows:

� Health nodes (H), where H = HC[ HS and HC \HS = ?. Here, HC (component health nodes)
represent health of the EPS components and HS (sensor health nodes) represent the health of the
EPS sensors.

� Evidence nodes (E), where E = EC[ ES and EC\ ES = ?. Here, EC (command nodes) represent
the commands to the EPS, while ES (sensor nodes) represent sensor readings from the EPS.

� Connection nodes (C), where C = CU[ CS and CU\ CS = ?. Here, CU (source connection nodes)
represent connection to a source (battery) in an EPS; CS (sink connection nodes) represent connection
to a sink (load) in an EPS.

� Presence nodes (P ), where P = PC[ P V and PC\ P V = ?. Here, P V (voltage presence nodes)
represent voltage, similar to water pressure, provided by a source (battery) in an EPS. PC (current
propagation or presence nodes) represent �ow, similar to water �ow, of electrical current from a source
(battery) to a sink (load) in an EPS. In our case, there is presence of voltage i¤ there is a closed
connection to one or more batteries, therefore one may work with either CU or P V .
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Table 5: Bayesian network (top) and MPE computation using the Bayesian network (bottom) for the small
EPS speci�ed in Table 4. In the Bayesian network we show both the actual BN node names (Health_batt,
Health_ld, : : :) as well as the mathematical notation (Ch, Cd, : : :) used to describe the auto-generation
algorithm.
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� Remaining EPS nodes (R): Nodes that are not health, evidence, connection, or presence nodes. If X
is the set of all BN nodes, then R = X �H �E �C � P .

The above node partitioning is important for several reasons. It allows us to: state di¤erent probabilistic
queries of interest; discuss our EPS modelling approach using BNs (both the topology as well as the individual
nodes associated with di¤erent EPS components); and clearly present the experimental protocol.
In Section 2 we discussed, given query variables Q � X and evidence e, three probabilistic queries:

MAP(Q; e), MAPMPE(Q; e), and MAPMLV(Q; e). By introducing the above partitioning, we can put Q =
HC , Q =HS , or Q =H and obtain a total of nine di¤erent diagnostics queries. As an example, Q =HS

is of interest in sensor validation, where the main focus is on qualifying and disqualifying sensors [42],
for instance voltage sensors, current sensors, fuel sensors, or altitude sensors. In the rest of this work we
emphasize, in the interest of brevity, only Q =H and in particular MAPMPE(H; e).
A key contribution in this work is our modeling of EPSs using Bayesian networks. An EPS presents

two di¤erent but closely related problems, namely a voltage presence problem and a current �ow problem.
Voltage may propagate from a battery towards the loads. For current to �ow, there must be voltage present
and in addition the EPS circuit needs to be closed, which typically happens when an EPS load is turned
on and all other relays between the load and a battery are also closed. This bidirectional voltage-current
propagation problem is di¤erent from, and more complicated than, the unidirectional �ow problem posed by
digital circuits implementing boolean logic. Such digital electronic circuits have been extensively studied in
the model-based diagnosis and Bayesian network literature [2].
Table 5 provides a simple example of our EPS modelling approach. This BN represents the simple

electrical power system introduced in Figure 5 and in Table 4.3 Here, HC = {Health_batt, Health_ld}
and HS = {Health_curSens, Health_voltSens, Health_touchSens}; EC ={Command_relay} and ES =
{Sensor_curSens, Sensor_voltSens, Sensor_touchSens}. The topology of the ADAPT BN, which currently
contains over 500 nodes, is analogous to this BN�s topology. A key point in this example is how the
integration of voltage presence nodes (P V = {Voltage_batt, Voltage_wire1, Voltage_rly, Voltage_wire2}),
sink connection nodes (CS = {ToSink_wire1, ToSink_rly, ToSink_wire2, ToSink_ld}), and the current �ow
node (PC = {Current_wire1}) help solve the bidirectional voltage-current propagation problem. Many
nodes, including current �ow nodes, can be pruned (and indeed have been here) because they are leaf
nodes and not involved in sensors. Another key point is how sensors, for example the voltage sensor (nodes
Health_voltSens, Sensor_voltSens) and the current sensor (nodes Health_curSens, Sensor_curSens), are
integrated into the overall BN topology.
We now consider inference as illustrated in Table 5. Suppose that e ={Command_rly = cmdClose,

Sensor_curSens = readCurrentLo, Sensor_voltSens = readVoltageHi, Sensor_touchSens = readClosed} (see
Table 5). This gives MAPMPE(H; e) = {Health_batt = healthy, Health_ld = healthy, Health_curSens =
stuckCurrentLo, Health_voltSens = healthy}. In words, if the command and sensor readings, except for
Sensor_curSens = readCurrentLo, suggest that power is supplied to the load, then the MPE diagnosis
is that all components and sensors are healthy, except for the current sensor, where Health_curSens =
stuckCurrentLo. It is reassuring that there is agreement between the MPE diagnosis and common sense.
While our modelling approach can be used when manually constructing BNs for EPSs, it is even more

powerful when automated, and we now turn to how we have formalized it in the form of an auto-generation
algorithm.

7 Auto-generation of Bayesian Networks

In this section, we discuss how a BN is auto-generated from a high-level speci�cation model. This is the
second stage in our approach to probabilistic model�based diagnosis. The conversion runs in a loop, which
processes one component from the speci�cation in each iteration. Before embarking on the discussion of
the auto-generation algorithm, we note that there are fundamentally two ways to go about this: Either the
components in the speci�cation need to be traversed in a particular order, so that when the edges between a
node and its parents are created, the parent nodes are guaranteed to already exist. Alternatively, we need to
take two passes, where the �rst pass creates the nodes and the second pass adds the edges. For simplicity, we
take the former approach here, and traverse the speci�cation in a certain sequential order. Such a sequential
order is guaranteed to exist under the assumption that the underlying EPS can be described using a directed
acyclic graph (DAG). There is a clear mapping from a high-level speci�cation to a DAG: In each component

3 In fact, this BN was auto-generated, as discussed in Section 7, from the speci�cation in Table 4.
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statement (see Table 3), the �rst <name> represents a node, and the <name>+ part represents its parents
(assuming this is not a source statement in the speci�cation, which is trivial since it is a root node in the
DAG). Under the assumption that there exists such a DAG, there exists a sequential high-level speci�cation,
since it is well-known from graph theory that any DAG can be topologically (or sequentially) sorted.
The auto-generation algorithm can now be summarized as follows: We iterate over the components in

the speci�cation and for each generate a set of BN nodes and a set of BN edges. Each time the algorithm
creates a BN node for a component, it places the node into the appropriate set among HC , HS , EC , ES ,
CU , CS , PC , P V , and R, as we illustrate below. Sensors are handled di¤erently from other components,
which are fundamentally handled all the same.
The processing of a sensor is somewhat di¤erent from the processing of other components, so we treat

sensors separately, after �rst discussing other components. As an example, Figure 6(a) depicts the part of a
BN corresponding to a relay C. For the component C, the auto-generation algorithm generates six nodes in
the BN:

� Ch 2 HC , with values {healthy, stuckOpen, stuckClosed}, indicates C�s health state. Ch has a CPT
set according to C�s failure probability as de�ned in the high�level speci�cation.

� Cm 2 EC , with values {cmdOpen, cmdClose}, indicates the command being sent to the relay. This
value will always be known prior to inference, since it is set according to the command being issued to
the relay (typically, it is cmdClose). Therefore, probabilities in this CPT are not important; Cm has
a uniform CPT.

� Cd 2 R, with values {open, closed}, indicates whether C is currently closed. If Ch = healthy, then Cd
indicates closed i¤ Cm = cmdClose. Otherwise, if Ch is stuckOpen (stuckClosed), then Cd indicates
open (closed).

� Cr 2 CU , with values {open, closed}, indicates whether there is a closed path from C to a battery
(source). Cr = closed i¤ Cd = closed ^ _N [Nr = closed ] where N iterates over all of C�s upstream
neighbors4 .

� Ck 2 CS , with values {open, closed}, indicates whether there is a closed path from C to a load (sink).
Ck = closed i¤Cd = closed ^_N [Nk = closed ] where N iterates over all of C�s downstream neighbors.

� Cc 2 PC , with values {currentLo, currentHi}, indicates whether current is �owing through C. Cc =
currentHi i¤ Cr = closed and Ck = closed.

For Cr and Ck, the disjunction is cascaded to prevent the CPT from becoming too large. This same
template applies to all non�sensor components with a few minor modi�cations. For example, a source can
set Cr to be equivalent to Cd; a sink can set Ck to be equivalent to Cd; a wire, which does not accept
commands, will always set Cm to cmdClosed (or omit Cm from the model); and di¤erent component types
may have di¤erent types of failures.
Figure 6(b) depicts the part of the BN corresponding to a current sensor S, which is attached to a node

such as Cc of a component C. The auto-generation algorithm creates two nodes in the BN corresponding to
S :

� Sh 2HS , with values {healthy, stuckCurrentLo, stuckCurrentHi}, indicates S�s health state. Sh has a
CPT set according to S�s failure probability as de�ned in the high�level speci�cation.

� Ss 2 ES , with values {readCurrentLo, readCurrentHi}, indicates S�s two-state discretized sensor read-
ing. If Sh = healthy, then Ss indicates closed i¤ Cc = currentHi. Otherwise, if Sh is stuckCurrentLo
(stuckCurrentHi), then Ss indicates readCurrentLo (readCurrentHi).

This same template applies to all sensor components (except some more complicated sensors, which are
beyond the scope of this work) with a few minor modi�cations. For example, di¤erent sensors are attached
to di¤erent nodes in C: current sensors are attached to Cc, voltage sensors are attached to Cr, while touch
sensors are attached to Cd.
After the BN generation step discussed above, there is a BN pruning step. Pruning takes place based

on information about query nodes (HC and HS) as well as about evidence nodes (EC and ES). It is

4A neighbor of C is upstream of C if it is located between C and a source in the high-level speci�cation. A neighbor of C
is downstream of C if it is located between C and a sink in the high-level speci�cation.
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Figure 6: The part of the BN corresponding to (a) a relay and (b) a current sensor.

well-known that pruning can make inference in Bayesian networks more tractable. A common pruning
technique involves removing leaf nodes that are not part of the evidence (EC [ES) or the query (HC , HS ,
or HC [HS) [43]. In Table 5, some of the nodes have been pruned compared to Figure 6(a). Speci�cally,
nodes corresponding to Cr, Ck, and Cc are pruned in Table 5. In other words, for the relay shown in
Table 5 we have the following correspondence with the non-pruned nodes in Figure 6(a): Ch = Health_rly,
Cm = Command_rly, Cd = Closed_rly. How can we determine to prune Cr, Ck, and Cc (referring to
Figure 6(a)), but not prune Ss = Sensor_curSens and Sh = Health_curSens (referring to Figure 6(b) and
Table 5)? Here, Ss = Sensor_curSens is a variable for which we assert evidence, while Sh = Health_curSens
is a query variable. Evidence and query variables are never pruned. We only prune non-evidence, non-query
variables that are leaves, or which become leaves as a result of other pruning. Consequently, all of C�s nodes
are pruned except the following: Ch = Health_rly which is a query variable; Cm = Command_rly which is
an evidence variable; and Cd = Closed_rly which is neither, but it cannot be pruned in this case, because
it has descendent that is an evidence variable, namely the touch sensor variable Sensor_touchSens.

8 Compilation to Arithmetic Circuits

We now very brie�y summarize the compilation of Bayesian networks to arithmetic circuits (ACs). This
compilation is the third stage in our approach to probabilistic model�based diagnosis. Prior to compilation,
we modify the BN�s CPTs to store pointers to AC nodes rather than numbers. For example, if 0.1 is stored
in a particular slot of some CPT, then this number would be replaced with a pointer to a single AC node
(sink) labeled with 0.1. Also prior to compilation, for each BN variable, we add a new table over just that
variable representing the values of that variable. For example, variable X with values 0 and 1 would generate
a table over X where the �rst slot contains a pointer to an AC node (sink) labeled with �0 and the second
slot contains a pointer to an AC node (sink) labeled with �1.
After these two preprocessing steps, we run a slightly modi�ed version of standard variable elimination

(VE) [29, 30]. The only di¤erence occurs when the standard version wishes to add or multiply two numbers.
In each of these situations, the standard algorithm will identify two slots A and B in tables, add (multiply)
the two numbers residing there, and store the result back into some slot C of some table. When the modi�ed
algorithm looks into A and B, it �nds pointers to AC nodes � and � rather than numbers. Instead of
performing the arithmetic operation, the modi�ed algorithm creates a new AC node  labeled with �+�
or �*�, makes � and � children of , and stores a pointer to  into C. Upon completion, standard VE
yields a single table containing a single slot containing a number. The modi�ed algorithm will be the same,
except that rather than a number, we will have a pointer to an AC node, which is the root of the compiled
arithmetic circuit.
By exploiting local structure, this modi�ed VE algorithm can yield an arithmetic circuit that is much

smaller than exponential in treewidth. If one pays attention to how the CPTs of the Bayesian network
representing EPSs are auto-generated as described in Section 7, it is easy to see that many of these CPTs
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will be small and deterministic. Arithmetic circuit compilation has been shown to perform well on many
such BNs, and as we shall see, the ADAPT BN is no exception [17, 44].

9 Experimental Results

Probabilistic inference is the fourth and �nal stage in our probabilistic model�based diagnosis approach, and
the only one that needs to be performed on-line. We now discuss probabilistic inference experiments based
on an ADAPT BN with 503 discrete nodes and 579 edges. In the ADAPT BN, the number of states per node
ranges from 2 to 4 with an average of 2.23 and a median of 2. Experimental results as discussed here re�ect
that data was divided into two sets: real-world data from ADAPT and synthetic data that was automatically
generated from the ADAPT BN. The purpose of the experiments with real-world data was to characterize
the diagnostic quality of the ADAPT BN. The purpose of the experiments with synthetic data was to
understand the performance of arithmetic circuit evaluation versus alternative BN inference algorithms,
variable elimination and join tree propagation in particular. For arithmetic circuit evaluation, we used the
ACE system to compile an ADAPT BN into an arithmetic circuit and to evaluate that arithmetic circuit
(see http://reasoning.cs.ucla.edu/ace/ regarding ACE). The timing measurements reported here were
made on a PC with an Intel 4 1.83 GHz processor, 1 GB RAM, and Windows XP.

9.1 Experiments using Electrical Power System Data

9.1.1 Design

For experimentation using real-world data, EPS scenarios were generated using the ADAPT EPS at NASA
Ames. This combined hardware and software facility is unique in its capability to produce real-world EPS
data for testing diagnostic reasoners, while at the same time giving experimenters access to the gold stan-
dard (or true underlying state) for experiments. These scenarios, which are summarized in Table 7, cover
component failures, sensor failures, and both component and sensor failures. In addition, each scenario
contains one, two, or three faults. Finally, and in order to stress-test our probabilistic reasoner, we did not
restrict inserted faults to discrete faults only. We also inserted continuous faults, speci�cally faults of the
form �stuck at x�, �noise StdDev = x�, or �drift slope = x�, with x 2 R. Since our probabilistic models do
not contain continuous random variables, experiments with continuous faults cannot be diagnosed exactly,
but they are still of great interest and included in many of the experiments reported on below.
In each scenario, ADAPT�s initial state was as follows: Circuit breakers were commanded closed; the

corresponding command variables in EC were clamped to cmdClose in evidence e. Relays were commanded
open; the corresponding relay variables in EC were clamped to cmdOpen in e. In this initial state, all health
nodes H are deemed healthy when computing MAP(H), MAPMPE(H), or MAPMLV(H). Continuous
data, in particular continuous sensor readings in EC , were discretized before being used for clamping the
appropriate discrete random variables in the ADAPT model. To keep the experimental protocol consistent
across scenarios, all inserted faults were persisted until the end of the experiments. The main diagnostic
query MAPMPE(H), for which results are presented in Table 7, was also taken towards the end of a scenario.

9.1.2 Results

The results of the experiments with real-world data from ADAPT are summarized in Table 7. Each scenario is
presented in one or more rows of the table, along with faults inserted and the diagnostic results computed for
queries MAPMPE(H, e). SinceH contains 128 variables, re�ecting the health status of 128 EPS components
and sensors, we only show the variables found to be non-healthy in Table 7. Temporal progressions of sensor
readings, for a varying subset of sensors, for eight of the sixteen scenarios are presented in Table 6.

9.1.3 Discussion

Our main observations regarding these experiments are as follows. We see in Table 7 that the di¤erent
diagnostic queries correctly diagnose a majority of these component and sensor failure scenarios. In fact,
there is an exact match in 10 of the 16 scenarios. Even in cases where there is not exact agreement, the
diagnosis is either partly matching or at least reasonable as we will see in the following. We now discuss in
more detail results of experiments, in particular experiments in which an exact match was not obtained.
In Experiment 305, a single failure to open for ESH175�s feedback sensor was inserted, see Table 7. In

other words, the relay sensor (or the touch sensor) says that relay ESH175 is open while it is in fact closed.
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Table 6: Results for eight fault-injection experiments using ADAPT. Time, measured in sample number, is
shown on the x-axis, while sampled sensor values for temperature, voltage, current, rotations per minute
(RPMs), etc. are shown on the y-axis.
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ID Faults Inserted in ADAPT Computed Diagnosis Match
304 Relay EY260 failed open Health_relay_ey260_cl = stuckOpen Yes
305 Relay feedback sensor ESH175 failed open Health_relay_ey175_cl = stuckOpen Yes
306 Circuit breaker ISH262 tripped Health_breaker_ey262_op = stuckOpen Yes
308 Voltage sensor E261 failed low Health_e261 = stuckVoltageLo Yes
309 Battery BATT1 voltage low Health_battery1 = stuckDisabled Yes
310 Inverter INV1 failed o¤ Health_inv1 = stuckOpen Yes
311 Light sensor LT500 failed low Health_lt500 = stuckLow Yes
441 Relay EY160 stuck open Health_relay_ey160_cl = stuckOpen Partly

Big fan ST515 stuck at 0 RPM
442 Current sensor IT261 noise StdDev = 5 Health_it261 = stuckCurrentHi Partly

Relay feedback sensor ESH172 stuck at 0 Health_esh172 = stuckOpen
Current sensor IT140 stuck at 100

443 Current sensor IT281 drift slope = 2 Health_it281 = stuckCurrentHi Partly
Relay EY244 stuck closed Health_relay_ey244_cl = stuckClosed
Big fan ST516 stuck at -10 RPM

445 Voltage sensor E235 stuck at 0.3 Health_e235 = stuckVoltageLo Partly
Relay feedback sensor ESH344A stuck closed Health_relay_ey344_cl = stuckClosed
Inverter INV2 failed o¤ Health_inv2 = stuckOpen

447 Voltage sensor E161 failed low Health_e161 = stuckVoltageLo Yes
Current sensor IT167 failed low Health_it167 = stuckCurrentLo

449 Voltage sensor E140 failed low Health_e140 = stuckVoltageLo Yes
Voltage sensor E161 failed low Health_e161 = stuckVoltageLo

450 Inverter INV1 failed o¤ Health_inv1 = stuckOpen Partly
Big fan ST515 stuck at 600 RPM Health_fan1_speed_st515 = stuckMid

451 Relay EY171 failed open Health_relay_ey171_cl = stuckOpen Yes
Light sensor LT500 failed low Health_lt500 = stuckLow

452 Light bulb TE500 failed o¤ Health_load170_bulb1 = stuckDisabled Partly
Temperature sensor TE501 failed low

Table 7: Inserted faults versus diagnostic results � computed using the most probable diagnosis
MAPMPE(H; e) � for di¤erent fault scenarios (with IDs 304, 305, . . . ) for the electrical power systemtestbed
ADAPT.

Since this and the other relays upstream of LGT4 are closed, LGT4 is powered as indicated by temperature
sensor TE511�s increasing temperature � starting at time 90 � as shown in Table 6. ACE computed a
correct diagnosis ESH175 relay sensor failed or stuck open, see Table 7.
In Experiment 309, a single battery failure was inserted in BATT1. Speci�cally, the battery BATT1

failed with low voltage around time 150. The e¤ect of this failure is a general drop in light, temperature,
and RPMs as re�ected in Table 6. This fault is correctly diagnosed by ACE (see Table 7).
In Experiment 311, LT500�s light sensor was failed low around time 120. This is re�ected in Table 6 as

follows: The AC voltage from the inverter goes high around time 55, and the light sensor and the temperature
sensors indicate that the light bulbs are on starting at time 80. A little after time 120, LT500 goes to zero,
however. Since the temperatures appear to continue to rise (see TE500, TE501, and TE502 in Table 6), a
light sensor fault as computed by ACE is very reasonable and in fact the correct diagnosis.
In Experiment 441 in Table 7, both EY160 and ST515 were failed. However, one of these faults (namely

relay EY160 stuck open) is su¢ cient to explain all observations. The reason for this is that EY160 controls
power to all loads on load bank 1, including the fan sensed by ST515. Since EY160 is upstream of and
controls the power to ST515, see Figure 3, the stuck at 0 fault of ST515 is consistent with the single-fault
EY160 stuck open diagnosis computed by ACE, and in fact has a greater probability than the double faults
actually inserted. In other words, the ST515 failure is masked by the EY160 failure.
Experiments 442 and 443 have continuous faults inserted (change in noise StdDev and drift respectively)

that are currently beyond the scope of our discrete probabilistic model. In Experiment 442, there are no
sensors on the a¤ected load, making it di¢ cult to detect whether (i) the relay has failed open, thus turning
o¤ the load, or (ii) the relay feedback sensor has failed open. (The BN is currently not modelling the exact
current draw in the system). So, if the relay failed open and turned o¤ the attached load there would be
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a drop in current being drawn from the battery because there are fewer loads. But we are not discretizing
the current nodes in this way, sometimes making it di¢ cult to distinguish between relay failure and relay
position sensor failure.
In Experiment 443, IT281 starts drifting at time 100 and ST516 gets stuck at -10 RPM at time 130.

Both of these failure as easy to see in Table 6. Here, 2 of the 3 faulty components were correctly isolated in
spite of continuous faults being inserted. We now consider the one fault not caught: This fault was inserted
in ST516, a fan on Load bank 2, which was not commanded on during this experiment. In other words, the
fact that ST516 was neither on nor commanded to be on made the abnormally low sensor reading of -10
RPM harder to detect. Another issue was the discretization in the BN, where the faulty sensor reading of
-10 is binned with the correct sensor reading of 0. Thus, even though the diagnosis misses ST516�s failure,
a more �ne-grained discretization could have caught this.
In Experiment 445, 2 of the 3 faulty components were correctly isolated, and the only di¢ culty was due

to the continuous fault inserted, namely E235 stuck at 0.3, discretized in the AC to stuck low.
In Experiment 450, two faults were inserted: inverter INV1 failed and fan ST515 got stuck at 500RPM.

When the inverter failed, all downstream power was disrupted. So E165, E167, ST165, LT500, IT167 go
to low values. The inverter failure around time 100 is perhaps easiest to see in Table 6 if we compare the
voltage downstream of the inverter (EI165 and EI167 both show minimal voltage after around time 100)
with the voltage upstream of the inverter (EI161 shows nominal voltage). On the load side, we note that
TE500 and TE501 are increasing till around time 100, at which time they start decreasing. This behavior
is also consistent with INV1 failure at time 100; the diagnosis Health_inv1 = stuckOpen is correct. The
failure of ST515, which is powered through INV1, is clearly visible in Table 6. ST515, which should also
have gone to a low value (because the fan does not have power anymore and therefore is not spinning), was
stuck reading that its nominal value was around 600, which lead to the partly correct diagnosis stuckMid.
The diagnosis is here essentially correct, however due to the discretization the diagnosis is approximate. A
more �ne-grained discretization could have improved the approximation.
In Experiment 451, two faults EY171 failed open and LT500 failed low were inserted. The LT500 fault

manifested itself in the drop of the measured lighting level for LT500 around time 110. However, the
temperatures (as measured by TE500, TE501, and TE502) keep rising, suggesting power is still �owing.
The EY171 fault manifested itself in ST515�s dropping RPM around time 100; clearly, EY171 failed open is
an explanation of this, since EY171 controls ST515. ACE computed the correct diagnosis of LT500 sensor
failure and EY171 failed open.
In Experiment 452, two faults were inserted, for Bulb 0 (with sensor TE500) and TE501 (for Bulb 1).

Bulb 0 was failed o¤, while TE501 was failed low. Towards the end of this experiment, light sensor LT500
falls from � 43 to � 32. This lower value of � 32 strongly suggests that only two bulbs are on, in other
words that one bulb, out of the three bulbs present, had failed. Temperature sensor TE500 started falling,
indicating that the bulb associated with that sensor was o¤. Then TE501 went to 0 while the light sensor
reading remained the same, indicating that temperature sensor TE501 was likely also faulty. At the time
of the diagnosis, we have the following evidence: TE500 reads high (however, its derivative is negative
indicating that the bulb is o¤ �but that is not in the discrete model); TE501 reads low ; TE502 reads high;
and LT500�s sensor reading indicates that two bulbs are lit. Thus, based on the evidence provided to ACE,
it �nds a single fault of stuckDisabled for Bulb 1. This diagnosis of Health_load170_bulb1 = stuckDisabled
is a direct result of the TE501 and LT500 readings. However, what was inserted was two faults, for Bulb
0 and TE501. This highlights two issues. First, the discretization does not perfectly capture the signature
of a bulb being o¤ . Speci�cally, the bulb is still warm from having previously been on, leading the TE500
value to be above the threshold de�ned for on. A second issue is that temporal aspects are not captured
by taking one time slice near end of run; in this case there are temporal clues that point toward the correct
diagnosis.
We note that there are several di¤erent but related phenomena underlying the mismatches in Table 7.

Due to our knowledge of the faults inserted into ADAPT, we are in a position to discuss these di¤erent
phenomena in more detail. First, and re�ecting the challenging nature of the fault scenarios that can be
created using ADAPT, continuous faults (as inserted in experiments 441, 442, 443, 445, 448, and 450) are
simply beyond the scope of our currently discrete probabilistic model. A second phenomenon is the following.
A probabilistic model allows one to distinguish between what is possible versus impossible, and among what
is possible, compute the probabilities for di¤erent possible explanations. However, there is no guarantee
that the inserted faults are part of a unique MPE for the given evidence for E. For example, three faults
may have been inserted into ADAPT, but there may be an explanation with one or two faults that has the
same or higher joint probability, given the evidence for those faults. Experiment 441 is a good example of
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Inference MPE Marginals
Time (ms) VE ACE JTP ACE
Minimum 19.30 0.2235 9.792 0.5721
Maximum 40.21 2.5411 65.34 5.9228
Median 19.81 0.2260 10.52 0.6006
Mean 20.13 0.2625 11.01 0.7854
St. Dev. 1.554 0.2028 4.101 0.6970

Table 8: Results for di¤erent inference algorithms (VE, ACE, and CTP) when computing MPEs and mar-
ginals using synthetic data generated from the ADAPT BN.

this e¤ect. Third, there are faults that could have been detected had more �ne-grained discretizations of
random variables been used. Experiment 452 provides an example of this, since the drop in the reading
of the temperature sensor TE501 was quite dramatic and indicative of a sensor failure rather than only a
failure in the light bulb TE500. A fourth phenomenon is that there might be too few, improperly placed,
or inadequate sensors to distinguish between di¤erent faults. Many of the mismatches in these experiments
could have been detected had more appropriate sensing been used; a detailed discussion of sensor placement
is beyond the scope of this work, however.
In summary, we have observed strong performance for our probabilistic model in these controlled ex-

periments with ADAPT. We also note that a richer way of presenting diagnostic results would be helpful
but non-trivial to provide. Speci�cally, it would be useful to have access to all non-zero explanations and
their probabilities, not just the most probable explanation but explanations with lower probabilities. These
experimental results also motivate several future research directions as discussed in Section 10.

9.2 Experiments using Simulated Data

In order to understand how arithmetic circuit evaluation performs in comparison to other BN inference
algorithms in the ADAPT setting, a large number of scenarios were automatically generated and used in
experiments as discussed in the following.

9.2.1 Design

In order to better understand the performance of arithmetic circuit evaluation (ACE), we performed com-
parative experiments with variable elimination (VE) and join tree propagation (JTP). Simulated data was
created by a program that (i) generated a set of failure scenarios according to the probabilities of the ADAPT
BN�s health nodes H, and (ii) generated evidence by doing stochastic simulation for each failure scenario.
These evidence sets were then used as evidence in the three di¤erent inference systems, and inference was
performed as presented below.

9.2.2 Results

Results from the experiments are summarized in Table 8. Both MPEs and marginals were computed for 200
simulated evidence sets generated from the ADAPT BN.

9.2.3 Discussion

The main points, which are in line with previous results on a smaller version of the ADAPT BN [45], are
as follows. On average, ACE is over 76 times faster than VE when computing MPEs (see Table 8). In
addition, ACE can compute all marginals, supporting the probabilistic queries BEL(H, e) (where H 2 H)
and MAPMLV(H, e), using just slightly more than twice the time used for computing MPEs, or MAPMPE(H,
e). In other words, ACE computes probabilities over 500 random variables more than 33 times faster than
VE computes probabilities for a single random variable. The third inference system, JTP, can compute all
marginals in a manner similar to ACE. This overcomes VE�s limitation of computing probabilities for only
one random variable at a time. Compared to ACE, however, JTP is over 14 times slower and also has a
standard deviation that is more than 5 times greater.
The auto-generation approach produces, for ADAPT, a BN that all three systems perform well on. This

illustrates that the ADAPT BN was carefully generated, using our novel modelling approach and auto-
generation algorithm, in a manner that supports e¢ cient inference using three quite di¤erent exact inference
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algorithms. Our two next points consider the performance of ACE versus VE and JTP. First, the ACE
system outperforms VE for MPE computation and JTP for computation of marginals; in fact ACE is one
or two orders of magnitude more e¢ cient than these two other algorithms. Second, the standard deviation
is substantially smaller for ACE than for VE and JTP. The fast and predictable inference times of ACE
are both very important factors for electrical power system health management in the real-time setting of
aerospace.

10 Conclusion and Future Work

In this work, we have discussed an electrical power system application of the probabilistic approach to
model-based diagnosis. Speci�cally, we have discussed the use of Bayesian networks and arithmetic circuits
to perform diagnosis and health management in electrical power systems in aircraft and spacecraft. We
have emphasized two important issues that arise in engineering diagnostic applications in this area, namely
the challenges of modelling and real-time reasoning. The modelling challenge concerns how to model a
real-world EPS by means of Bayesian networks. To address this challenge, we developed a systematic way
of representing electrical power systems as Bayesian networks, supported by an easy-to-use speci�cation
language and an auto-generation algorithm. The second challenge, that of real-time reasoning, is associated
with the embedding of algorithms that solve computationally hard problems, including diagnostic reasoning,
into hard real-time systems [14, 15]. To address this challenge, we compile Bayesian networks into arithmetic
circuits, an approach that supports real-time diagnosis in two ways. First, the use of arithmetic circuits
results in more predictable diagnostic inference times. Second, it results in much faster inference.
While compilation of Bayesian networks to arithmetic circuits is well-established [37, 39, 38, 40, 17], this

work further extends the reach of the technology by introducing a high-level EPS speci�cation languages
from which Bayesian networks are auto-generated, and showing that the combined approach gives strong
results on a real-world EPS.
Future directions of work include the following. First, improved modeling of and reasoning with con-

tinuous behavior, using soft evidence, highly discretized, and/or continuous random variables, along with
representation using arithmetic circuits for purposes of compilation, would be of great interest. A second
area of interest is improved modeling of dynamic, transient, and cascading faults along with their integration
into the compilation approach. Third, it would be very useful to extend the high-level speci�cation language
to handle (i) novel components and states; (ii) continuous behavior; and (iii) dynamics such as transient
and cascading faults. Finally, it would be interesting to further investigate sensing issues, including the
questions of optimal sensor placement as well as the number and types of sensors needed to distinguish
between di¤erent faults.
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