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The Next Generation (NextGen) transport aircraft configurations being
investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project
have more control surfaces, or control effectors, than existing transport
aircraft configurations. Conventional flight control is achieved through two
symmetric elevators, two antisymmetric ailerons, and a rudder. The five
effectors, reduced to three command variables, produce moments along the
three main axes of the aircraft and enable the pilot to control the attitude and
flight path of the aircraft. The NextGen aircraft will have additional
redundant control effectors to control the three moments, creating a
situation where the aircraft is over-actuated and where a simple relationship
does not exist anymore between the required effector deflections and the
desired moments. NextGen flight controllers will incorporate control
allocation algorithms to determine the optimal effector commands and attain
the desired moments, taking into account the effector limits. Approaches to
solving the problem using linear programming and quadratic programming
algorithms have been proposed and tested. It is of great interest to
understand their relative advantages and disadvantages and how design
parameters may affect their properties. In this paper, we investigate the
sensitivity of the effector commands with respect to the desired moments and
show on some examples that the solutions provided using the l2 norm of
quadratic programming are less sensitive than those using the l1 norm of
linear programming.
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I. Introduction

C
oncern for the environmental and operational impacts of civil aviation is prompting
significant changes in civil aviation. The NASA Aeronautics Subsonic Fixed Wing Project,

together with industry, universities, and other government organizations, is researching advanced
technologies and exploring novel civil transport configurations to achieve the desired reduction
in noise, emissions, fuel consumption, and field length for Next Generation (NextGen) aircraft 1-2 .
Potential NextGen transport airplanes include the Cruise Efficient Short Take-Off and Landing
(CESTOL) and the Hybrid Wing-Body (HWB) aircraft. See Ref. 2 for detailed information on
these new NextGen architectures and their control challenges.

The advanced configurations and associated technologies for NextGen aircraft elevate the
complexity of the vehicle and its operation. Flight control will be particularly challenging, in part
because of the added demands on the control allocation schemes. Unlike conventional control
allocation schemes that control three body-fixed rates primarily with three control variables,
NextGen control allocation schemes will need to control the three body-fixed rates with a variety
of redundant and multi-objective control surfac es 3 . The control allocation of over-actuated
aircraft has been formulated as a constrained optimization problem by some researchers 4 .
Ultimately, a real-time solution to the control allocation problem is desirable to enable the
system to run on an aircraft during flight. This has prompted the search for numerical
optimization methods that have good convergence properties and acceptable computational
requirements.

Several methods to solve the control allocation problem have been evaluated, including direct
allocation, linear programming, quadratic programming, weighted pseudo-inverse, cascaded
generalized inverse, and a mixed optimization approach. 4,5 Control allocation research has also
extended the control solution to include coupling or interaction effects between control effectors,
creating a nonlinear optimization problem which can often be transformed into a linear
problem6,7 . While the interaction effects will be important to study for control allocation in
NextGen aircraft, we focus in this paper on solutions that assume a linear relationship between
the effectors and the moments.

Two optimization methods that have been shown to be effective and implementable in real-
time are the linear programming (LP) and the quadratic programming (QP) methods 4-5 . Previous
studies, however, have not addressed the issue of the sensitivity of the solution to the data. In
particular, the sensitivity of the solution with respect to the desired moments determines how
rapidly the control effectors have to move if the moments are to match the desired moments. The
sensitivity of two control allocation algorithms, one using an LP method and the other using a
QP method, are evaluated in this paper by examining their application in two examples of over-
actuated aircraft.

II. Control Allocation in Flight Control Systems

Control allocation is the stage in the stability and control augmentation process that is
responsible for achieving a commanded moment vector by allocating commands to individual
control effectors. NextGen flight control algorithms will control q body-fixed angular
accelerations or moments of the aircraft with n control effectors, where n > .

In its simplest practical form, the control allocation scheme will consider the rate and
magnitude limits of the control effectors. The control allocation problem can be posed in state
space form as follows: find the m x control vector, u,,nd , such that
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(1)

subject to

(2)

where B is the q x m linear control effectiveness matrix, - is the	 commanded angular
acceleration vector, mand is the commanded moment vector, u,,,;n and u. are the vectors
of the control effectors’ minimum and maximum magnitude limits, respectively, and - is the
vector of control effectors’ maximum rate limits. In this paper, we set aside the rate limits and
focus on the moments that are achievable, without considering the previous deflections that may
have been applied.

The control allocation algorithm should optimally allocate the available control effectors to
solve Eq. (1), while limiting unachievable commands. The attainable moment set for a given
operating point of an aircraft is the set of acceleration moments that can be achieved by the
control effectors without violating their saturation limits. If the solution to Eq. (2) is not unique,
additional objectives, such as control minimization, can be added to the optimization problem to
yield a preferred solution.

A. Mixed Optimization Approach to Control Allocation
The mixed optimization approach, as proposed by Bodson5, combines the error minimization

and the control minimization into one problem by minimizing the cost function:

J = Bu
cn,d 

úx 
cn,d 1 + £ u

cn,d — 
u
mf

1 	
(3)

subject to

(4)

where	 and u. are the vectors of the control effectors’ minimum and maximum magnitude
limits, 0:5 E:5 1 is a control minimization weight, and upref is a preferred control vector. If the

value of the parameter s is small, priority will be given to error minimization over control
minimization, as desired. Note that the optimization criterion is based on the 4 norm, which is
the sum of the absolute values of the component of the vector.

The mixed optimization approach expands upon work performed by Buffington 9, who
suggested that control allocation could be solved using a sequential optimization approach in
which the error minimization problem is first solved followed by solution of the control
minimization problem. The specific choice of 4 norm enabled Buffington to solve the control
allocation problem with linear programming techniques9, providing guaranteed convergence to a
solution in an acceptable period of time.

The mixed optimization approach, as implemented by Bodson 5, combined the two
optimization steps into one, and was shown to be the most effective LP optimization method in
an evaluation of different approaches used in simulations of a C-17 aircraft model and a tailless
aircraft model. The algorithm was based on the revised simplex method 10 with additional
refinements as described in detail in Ref. 5, which enabled computations to be performed

3
American Institute of Aeronautics and Astronautics



extremely fast, and well within the capabilities of modern computers. This paper uses the same
code for the LP optimization method in the comparison studies that follow.

B. Active Set Methods for Solving Quadratic Control Allocation
Quadratic programming or Least-Squares (LS) methods make use of the 12 norm and have

been used extensively in the control allocation p roblem4" 1 - 1 3 . Harkegard11 suggested the use of
active set methods 8 for quadratic solutions to the control allocation problem. Active set methods
can be shown to find an optimal solution in a finite number of steps 9 . A comparison of
constrained quadratic programming techniques for control allocation found that the weighted
least-squares (WLS) form of the active set method performed favorably for control allocation of
over-actuated aircraft that resemble NextGen aircraft configurations 12 . The active set algorithm
is to quadratic programming what the simplex algorithm is to linear programming. The steps of
the algorithm are very comparable, and the solutions can be computed very fast with both
methods.

The general problem formulation for the quadratic solution to the mixed optimization control
allocation problem is to minimize the cost function:

r	 l 2

J = y We \Bucmd
— xcmd / 2 

+ W
c ( u

cmd — 
u

prej^

2

	
(5)

2

subject to

(6)

where	 and u. are the vectors of the control effectors’ minimum and maximum magnitude
limits, WQ is the (q x q) acceleration error weighting matrix, W, is the (n x n) control error
weighting matrix, y is a control error weight scalar, and is a preferred control vector. Note

that the optimization criterion in Eq. (5) is essentially identical to the criterion in Eq. (3), except
for the choice of l2 norm instead of l1 norm. This leaves open the question of whether the choice
of norm makes any difference in the solutions obtained. The point of this paper is to show that it
does. The WLS algorithm 1 1,13 was used as the QP method for analysis in this paper. See Ref. 13
for the source code and documentation on the WLS algorithm.

III. Computational Results

Computations were performed on a model of a C17 transport aircraft with 16 control effectors
and a model based on Lockheed Martin’s ICE (innovative control effectors) tailless aircraft 15

with 11 control effectors, using the data of Ref. 5. The parameters used in the simulations were
as follows. In the LP control allocation scheme,	 . In the QP control allocation scheme,

.
Figures 1-4 compare the results of computations for the C17 with a pure yaw acceleration

command given as the desired moment, e.g., the pitch and roll acceleration components were
identically zero. The simulation input had the yaw moment start at 0 and step up to 8.72
degrees/sec2 which is less than the m aximum attainable yaw moment of 8.7232 degrees/sec 2 for
the C17 model. There were 100 points in the interval. Figure 5 shows the commanded effector
deflections for the C17 model using the QP algorithm with the input being a pure roll
acceleration starting at 0 and stepping up to 61.07 degrees/sec 2 , which is less than the attainable
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roll moment of 61.0741 degrees/sec2 . There were 100 points in the simulation interval and the
desired pitch and yaw accelerations were identically zero. Figures 6-9 compare the results of
computations of the ICE with a pure roll acceleration command given as the desired moment,
e.g., the pitch and yaw acceleration components were identically zero. The computation had the
roll moment start at 0 and step up to 212.0 degrees/sec 2 which is less than the maximum
attainable roll moment of 212.062 degrees/sec 2 for the ICE model. There were 100 points in the
simulation interval.

Comparison of fig. 1 with fig. 2 reveals that the allocation of the control effectors is more
distributed in the QP solution. Also, the changes in the control effector deflections are generally
more progressive in the QP solution. In fig. 1, the commanded deflections from the LP control
allocation algorithm sometimes proceed in a non-monotonic manner. This feature is not
necessarily problematic, but it is not desirable either.

Figure 3 shows that the errors between the accelerations commanded by the flight controller
and the accelerations achieved by using the commanded deflections were larger for the QP
method. Interestingly, a difference between the l1 and l2 solutions is that, for 8 small, the l1

solution does not constitute a trade-off between performance (error) and cost (control), but rather
produces results similar to a two-step optimization procedure where error is minimized first, and
control is minimized within this solution as a secondary objective. This feature may be part of
the reason for the increased sensitivity. Nevertheless the QP error is small and could be made
smaller by changing .

An interesting observation in the plots is that both methods show increased sensitivity when
the commanded accelerations approach the achievable acceleration limit. Figures 1 and 5 provide
good examples of this “terminal” sensitivity for the LP and the QP methods, respectively. The
terminal sensitivity is a problematic feature for both methods that will be further investigated,
together with methods to reduce it.

In order to quantify the sensitivity, a sensitivity measure was computed as the 12 norm of the
difference between the commanded deflections for a given yaw moment and the commanded
deflections of the same yaw moment with a small constant added to it. The constant was 0.01
times the maximum attainable yaw moment for the aircraft at that operating point. Figure 4
shows the sensitivity measure for the LP and the QP methods when only a pure yaw moment is
used for the commanded acceleration. As expected, the sensitivity measure is greater for the LP
algorithm. As mentioned earlier, both algorithms seemed to have their sensitivities increase once
one of the control effectors became saturated. Figures 6-9 tell a similar story as fig. 1-4, they also
demonstrate that similar results are obtained for another aircraft with a different configuration of
control effectors.

5
American Institute of Aeronautics and Astronautics



LP Algorithm: Commanded Deflections for C17
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Figure 1. Commanded deflections from LP control allocation algorithm for C17 with
pure commanded yaw acceleration.
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QP Algorithm: Commanded Deflections for C17
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Figure 2. Commanded deflections from QP control allocation algorithm for C17
with pure commanded yaw acceleration.
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Figure 3. a) Acceleration errors for LP control allocation algorithms for C17 with
pure commanded yaw acceleration, b) Acceleration errors for QP algorithm.

8
American Institute of Aeronautics and Astronautics



Sensitivity of LP & QP Algorithms for C17

3

Z'
	

t+. ++

rn 2
	

+	 +

Q
	 O QP

U3	 + .. LP	
O

1	 ........	 x

0
0
	

10	 20	 30	 40	 50	 60
Desired RollAcceleration, degrees/sec 2

Difference between Sensitivity of LP & QP Algorithms
2

1.5

^N

W 
1

SQD
0.5

0 	 1	 1	 1	 1	 1

0	 10	 20	 30	 40	 50	 60
Commanded Roll Acceleration, degrees/sec2

Figure 4. a) Sensitivity of LP & QP control allocation algorithms for C17 with pure
commanded yaw acceleration, b) difference between LP & QP sensitivities.
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QP Algorithm: Commanded Deflections for C17
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Figure 5. Commanded deflections from QP control allocation algorithm for C17 with
pure commanded roll acceleration.
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Figure 6. Commanded deflections from LP control allocation algorithm for ICE
with pure commanded roll acceleration.
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QP Algorithm: Commanded Deflections for ICE
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Figure 7. Commanded deflections from QP control allocation algorithm
for ICE with pure commanded roll acceleration.
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Figure 8. a) Acceleration errors for LP control allocation algorithms for ICE with
pure commanded roll acceleration, b) acceleration errors for QP algorithm.
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Figure 9. a) Sensitivity of LP & QP control allocation algorithms for ICE with pure
commanded roll acceleration, b) difference between LP & QP sensitivities.

IV. Conclusion

Comparisons were made between control allocation schemes using an LP algorithm and a QP
algorithm for minimizing an 11 and an 12 cost function, respectively. It was observed that the
allocation of the control effectors appears to be more distributed in the QP control allocation
computation. Also, the changes in the control effector deflections are generally smoother in the
QP computations. The final paper will present sensitivity resu lts based on statistical sampling of
vectors from inside and outside the attainable moment set for the application. The preliminary
results suggest that designers, especially those working on NextGen aircraft, would be wise to
examine the sensitivity of the chosen control allocation algorithm for their application.
Additional research will also be directed towards understanding the sensitivity at the boundary of
the attainable set for both the LP and the QP algorithms.
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