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ABSTRACT

Model-based prognostics captures system knowl-
edge in the form of physics-based models of com-
ponents, and how they fail, in order to obtain ac-
curate predictions of end of life (EOL). EOL is
predicted based on the estimated current state dis-
tribution of a component and expected profiles
of future usage. In general, this requires sim-
ulations of the component using the underlying
models. In this paper, we develop a simulation-
based prediction methodology that achieves com-
putational efficiency by performing only the min-
imal number of simulations needed in order to
accurately approximate the mean and variance of
the complete EOL distribution. This is performed
through the use of the unscented transform, which
predicts the means and covariances of a distribu-
tion passed through a nonlinear transformation.
In this case, the EOL simulation acts as that non-
linear transformation. In this paper, we review the
unscented transform, and describe how this con-
cept is applied to efficient EOL prediction. As a
case study, we develop a physics-based model of
a solenoid valve, and perform simulation experi-
ments to demonstrate improved computational ef-
ficiency without sacrificing prediction accuracy.

1 INTRODUCTION

Prognostics is an essential technology for improving
system safety, reliability, and availability. Prognos-
tics deals with determining the health state of compo-
nents, and projecting the evolution of the health into
the future to make end of life (EOL) and remaining
useful life (RUL) predictions. Model-based prognos-
tics approaches perform these tasks with the aid of a
model that captures knowledge about the system, its
components, and their failures, typically in the form of
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a physics-based model that is derived from first prin-
ciples (Roemer er al., 2005; Byington et al., 2004,
Saha and Goebel, 2009; Daigle and Goebel, 2010).

The expression of confidence in a prediction pro-
vides important information to a decision maker. It
is therefore critical to properly represent and process
various sources of uncertainty. EOL and RUL can
then be, for example, embodied as probability distri-
butions. These distributions are often dominated by
the uncertainty of future usage. For the system con-
sidered here, we assume a single trajectory of future
usage, which, for a given fault mode, makes the distri-
bution unimodal (but not necessarily Gaussian). In this
case, the means and variances of these distributions
are the most important and useful pieces of informa-
tion, as they provide information on both the accuracy
and spread of the prediction. Often, the EOL distribu-
tion is obtained starting with a distribution describing
the current state of the system, and propagating that
distribution forward to EOL. If the representation of
the distribution is sample-based, as with particle fil-
ters, then this is straightforward, otherwise, in general,
a sample-based representation is needed, as often an
analytical solution is unavailable or intractable. Pre-
diction is then performed by simulating each sample
forward to EOL. However, this task can be computa-
tionally prohibitive due to the large number of samples
often needed to accurately represent the state distribu-
tion.

In this paper, we develop a novel method to increase
the efficiency of the prediction step. We do this using
the unscented transform (Julier and Uhlmann, 1997),
which is a method to predict the mean and covariance
of a distribution that undergoes a nonlinear transforma-
tion. In this case, the nonlinear transformation is the
simulation to EOL. The unscented transform approxi-
mates the given distribution with deterministically se-
lected samples, which are then transformed, and the
mean and covariance of the EOL distribution may be
computed from the transformed samples. Effectively,
only the minimal amount of simulations are being per-
formed, and the samples are chosen in such a way that
the predicted mean and covariance closely approxi-
mate the mean and covariance obtained by transform-
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Figure 1: Prognostics architecture.

ing the entire distribution, thus achieving the same re-
sult at a fraction of the computational cost, both in
time and memory. Since prediction is the main goal of
prognostics, computationally efficient prediction is of
utmost importance. Efficient prediction methods take
less time, so, therefore, more predictions can be made
at a faster rate.

We review the common forms of the unscented
transform, and develop the new prediction method-
ology as part of our model-based prognostics frame-
work (Daigle and Goebel, 2009; 2010). As a case
study, we construct a detailed physics-based model
of a solenoid valve that includes models of different
damage mechanisms and their progression. Solenoid
valves have application in many domains, and reliable
performance of these valves is crucial to many com-
plex systems (Tansel et al., 2005). We run a set of
simulation-based prognostics experiments, using the
solenoid valve model, to demonstrate the application
of the new prediction methodology and compare it to
the baseline approach.

The paper is organized as follows. Section 2 de-
scribes the prognostics approach. Section 3 presents
the modeling methodology and develops the model of
the solenoid valve. Section 4 discusses the damage es-
timation approach. Section 5 overviews the unscented
transform and develops the new prediction procedure.
Section 6 presents comprehensive simulation experi-
ments applying the framework to the solenoid valve
case study. Section 7 concludes the paper.

2 PROGNOSTICS APPROACH

The problem of prognostics is to predict the EOL
and/or the RUL of a component. In this section, we
first formally define the problem of model-based prog-
nostics. We then describe a general model-based ar-
chitecture within which a prognostics solution may be
implemented.

2.1 Problem Formulation

In a general model-based prognostics approach, the
system model may be given by

x(t) = f£(t,x(1),0(t),u(t),v(t))
y(#) h(t,x(t), 6(), u(t),n(t)),

where x(t) € R"= is the state vector, O(t) € R"? is
the parameter vector, u(t) € R™ is the input vector,
v(t) € R™ is the process noise vector, f is the state
equation, y(t) € R™ is the output vector, n(t) € R"»
is the measurement noise vector, and h is the output
equation. The parameters 0(t) evolve by some un-
known process, but, in practice, are typically consid-
ered to be constant.

Our goal is to predict EOL at a given time point ¢ p
using the discrete sequence of observations up to time

tp, denoted as yo.¢,,. EOL is defined as the time point
at which the component no longer meets a functional
requirement (e.g., a valve does not open in the required
amount of time). This point is often linked to a damage
threshold, beyond which the component fails to func-
tion properly. In general, we may express this thresh-
old as a function of the system state and parameters,
Tror(x(t), 8(t)), which determines whether EOL has
been reached, where

1, if EOL is reached
Tror(x(1),0(t)) = { 0, otherwise.

Using this function, we can formally define EOL with

EOL(tp) £ argmin Tror (x(t),0(t)) = 1,

t>tp
and RUL with
RUL(tp) £ EOL(tp) — tp.

Due to the many sources of uncertainty that ex-
ist in the prediction problem, it is much more useful
to compute a probability distribution of the EOL or
RUL, rather than a single prediction point. The goal,
then, is to compute, at time tp, p(EOL(t,)|yo:t,) or

p(RUL(tP) |YO:tP )

2.2 Prognostics Architecture

We adopt a model-based approach, wherein we de-
velop detailed physics-based models of components
and systems that include descriptions of how fault pa-
rameters evolve in time. These models depend on
unknown and possibly time-varying wear parameters,
0(t). Therefore, our solution to the prognostics prob-
lem takes the perspective of joint state-parameter es-
timation. In discrete time k, we estimate x; and 0,
and use these estimates to predict EOL and RUL at
desired time points. Using p(Xgp, @k, |yo:xp) at pre-
diction time kp, we compute p(EOLyg, |yo.x,) and

P(RU Lk |yo:kp)-

We employ the prognostics architecture in Fig. 1
(Daigle and Goebel, 2010). The system is provided
with inputs uj and provides measured outputs yg.
The fault detection, isolation, and identification (FDII)
module determines a fault set F', which is used by the
damage estimation module to determine estimates of
the states and unknown parameters, represented as a
probability distribution p(xg, 8|yo.x). The prediction
module uses this distribution, along with hypothesized
future inputs, to compute EOL and RUL as probability
distributions p(EOLy,, |yo:x,) and p(RU Ly . |Yo:kp )-
In this paper, we focus on the damage estimation and
prediction modules, and assume a solution to FDII.
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Figure 2: Three-way two-position solenoid valve.

3 SOLENOID VALVE MODELING

We apply our prognostics approach to a solenoid valve,
and develop a physics-based model of its nominal and
faulty behavior. A typical three-way, two-position
solenoid valve for controlling gas flow is shown in
Fig. 2. The valve is held in its de-energized position
by the return spring, as shown in the figure. In this
position, gas is allowed to pass between the normally
open port and the cylinder port. To energize the valve,
a voltage is applied to the solenoid, which produces
an electromagnetic force that moves the valve stem to-
wards its energized position until it contacts the seat.
In this position, gas is allowed to pass between the nor-
mally closed port and the cylinder port. We refer to the
de-energized position as the closed position, and the
energized position as the open position.
The state x of the solenoid valve is given by

where z(t) is the valve position, v(¢) is the valve ve-
locity, and i(¢) is the solenoid current. We define
x = 0 as the position of the valve when in the closed
(de-energized) position, and x = L as the position of
the valve when in the open (energized) position, where
L, is the length of the valve stroke.

The position derivative is given by v(¢), and the ve-
locity derivative is determined from the forces acting
on the stem:

dzlit) _ % (Fo(t) = k(a(t) — o) — ro(t) — Fu(t))

where F,(t) is the electromagnetic force, k is the re-
turn spring constant and z, is the amount of spring
compression when the valve is in the closed position
(where we lump the armature and return spring into a
single spring), r is the kinetic friction coefficient, and
F,(t) is the contact force with the seat, which may be
described by

ke(—x), ifx <0,
F.(t) =10, if0<z<L,,
—ke(x — Lg), ifx > Ly,

where k. is the (large) spring constant associated with
the flexible seats. In general, we may also consider

forces from the gas flowing through the valve, how-
ever, here, we assume a balanced design in which the
pressure forces always cancel.

The solenoid force is given by

1., .,0L(x)

Fut) = 5i0* =52,
where L(z) is the inductance of the solenoid (Ly-
shevski et al., 1999; Rahman et al., 1996). The force
acts to decrease the reluctance of the magnetic circuit
by decreasing the air gap, which is a function of z,
thus acting to open the valve. The solenoid current is

described by
diz(tt) _ ﬁ (u(t) — Ri(t) —i(t) agf%(o) :

where u(t) is the applied voltage, and R is the coil re-
sistance (Lyshevski et al., 1999; Rahman et al., 1996;
Szente and Vad, 2001). The voltage u(t) is the only
external input considered here, i.e.,

u(t) = [u(?)].
The inductance of a solenoid is given by
N2
L = —
@)= 7y
where N is the number of wire turns in the coil, and

'R is the reluctance of the magnetic circuit. In general,
reluctance is given by

l
pA’
where [ is the length of the magnetic circuit, A is the
cross-sectional area of the circuit, and y is the mag-
netic permeability of the material. If we define the
maximum air gap as go, then the actual air gap is given
by go — x. The reluctance depends on the geometry
of the solenoid. We may assume a typical geometry in
which reluctance is described by

R =

_ lc go— &
/~LcAc NOAg ’
where the ¢ subscript denotes lumped parameters for

the core and armature, g is the permeability of air,
and A, is the effective cross-sectional area of the air

gap (Lyshevski et al., 1999). Therefore, the inductance
is given by
i
foAgle + peAc(go — )
and its derivative with respect to x is
OL(x) _ N?poAgpz AZ
9r (oAl + peAe(go — 2))°
We select our complete measurement vector as
x(t)
vty = | b |,

open(t)
closed(t)
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Figure 3: Nominal solenoid valve operation

The open(t) and closed(t) measurements are discrete
sensors which output 1 if the valve is in the fully
opened or fully closed state:

(1, ifa(t) > L,
open(t) = {O, otherwise
(1, ifz() <0
closed(t) = {O, otherwise.

Fig. 3 shows a nominal valve cycle. The valve is
commanded to open at 0 s. The current and mag-
netic field build up in the solenoid, and soon, enough
force is produced to overcome friction and the return

dL(z)
p)

begins to dominate, causing the current to decrease.
When the valve opens against the seat and stops mov-
ing, the current increases again, resulting in the cusp
observed in the current just before 0.05 s. The current
then increases to its steady state, determined by the ap-
plied voltage and the coil resistance. At 0.25 seconds,
the valve is commanded to close by removing the ap-
plied voltage. The current drains out of the solenoid,
and soon, the electromagnetic force is no longer strong
enough to keep the valve in place. The valve begins to

L(z)

dominate, the current increases briefly until the valve
fully closes and v(t) becomes 0, resulting in another
cusp. The current then decreases smoothly to 0.

spring. As the valve moves, the i(¢)

v(t) term

close, and, as the i(t) v(t) term again comes to

3.1 Damage Modeling

In our modeling methodology, the nominal model is
extended with damage models. These models describe

how parameters associated with the degree of valve
damage progress in time, and allow us to make predic-
tions of damage progression. From valve documenta-
tion and historical maintenance records, we have iden-
tified the most relevant faults for prognostics. The set
of faults includes friction damage, spring damage, and
the accumulation of debris on the valve seats.

A common damage mechanism present in valves is
sliding wear (Daigle and Goebel, 2009). The equation
for sliding wear takes on the following form:

V(t) = wlF(t)o(t)],

where V' (t) is the wear volume, w is the wear coef-
ficient (which depends on material properties such as
hardness), F'(t) is the sliding force, and v(t) is the slid-
ing velocity (Hutchings, 1992). Friction will increase
linearly with sliding wear, because the contact area be-
tween the sliding bodies becomes greater as surface
asperities wear down (Hutchings, 1992). We charac-
terize friction damage by a change in the friction co-
efficient, and model the damage progression in a form
similar to sliding wear (Daigle and Goebel, 2009):

7(t) = wr | Fy(t)v(t)]

where w, is the wear coefficient, and F'y(¢) is the fric-
tion force defined previously. The friction parameter
only grows when the valve is moving, so, the friction
parameter evolves in a step-wise fashion, with damage
only occurring during the valve’s opening and clos-
ing motions. As the friction parameter increases, the
friction force increases, further increasing the rate at
which the friction parameter grows, resulting in a dam-
age progression similar to an exponential when viewed
at large time scales. We define r as the largest value
of the friction coefficient at which the valve still actu-
ates in the required time. So, Tror (x(t), 0(t)) = L if
r(t) > rt.

We assume a similar equation form for spring dam-
age (Daigle and Goebel, 2009):

k(t) = —wi|Fs(t)o(t)],

where wy, is the spring wear coefficient and Fs(¢) is the
spring force. The more the spring is used, the weaker
it becomes, characterized by the change in the spring
constant. As with friction damage, the spring constant
only decreases when the valve moves. As the spring
becomes damaged, the spring force will decrease, and
so the rate at which spring damage occurs will also
decrease. We define £~ as the smallest value of the
spring constant at which the valve still closes in the
required time. So, Tror(x(t),0(t)) = 1if k(t) <
k~.

Another failure relates to the accumulation of partic-
ulate matter and other forms of debris at the seats. As
debris builds up, it impedes the valve’s travel and pre-
vents the valve from fully opening or closing, which, in
turn, causes leaks through the valve. We assume that
the accumulation of debris is due to sliding wear. It
results in a change in the boundary conditions of the
valve motion. We define L. as the boundary when
the valve is in the closed position (nominally 0, where
L. > 0), and Ly — L, as the boundary when in the



open position (nominally L,, where L, > 0). We as-
sume that the rates of change of the offsets L. and L,
grow proportionally to sliding wear:

Le(t) = wel Fy (t)o(t)]
Lo(t) = wo| Fy (t)u(1)].

We define L} and L as the largest allowable values
of the offsets. So, Tror(x(t),0(t)) = 1if L.(t) >
L}t or L,(t) > L.

4 DAMAGE ESTIMATION

In the model-based paradigm, damage estimation re-
duces to joint state-parameter estimation, i.e., compu-
tation of p(xy,@k|yo.x). A general solution to this
problem is the particle filter, which may be directly
applied to nonlinear systems with non-Gaussian noise
terms. Particle filters offer approximate (suboptimal)
solutions for systems where optimal solutions are un-
available or intractable (Arulampalam et al., 2002;
Cappe et al., 2007). In particle filters, the state dis-
tribution is approximated by a set of discrete weighted
samples, called particles. As the number of particles is
increased, performance increases and the optimal solu-
tion is approached.

With particle filters, the particle approximation to
the state distribution is given by

{(X;cv 02), w;c}i\ila
where IV denotes the number of particles, and for par-

ticle 1, XZ denotes the state vector estimate, 0}; de-

notes the parameter vector estimate, and w’ denotes
the weight. The posterior density is approximated by

N
P(Xk, Orlyo:x) ~ Z wid(xivei) (dxrdBy),
i=1

where §(y: gi(dxxdB);) denotes the Dirac delta func-

tion located at (x},, 8},).

We employ the sampling importance resampling
(SIR) particle filter, and implement the resampling step
using systematic resampling (Kitagawa, 1996). The
pseudocode for a single step of the SIR filter is shown
as Algorithm 1. Each particle is propagated forward
to time k by first sampling new parameter values and
sampling new states. The particle weight is assigned
using y;. The weights are then normalized, followed
by the resampling step'.

Here, the parameters 6 evolve by some unknown
process that is independent of the state x;. However,
we need to assign some type of evolution to the pa-
rameters. The typical solution is to use a random walk,
i.e., for parameter 0, 0 = 0,1 + &1, where 1 is
typically Gaussian noise. With this type of evolution,
the particles generated with parameter values closest to
the true values should be assigned higher weight, thus
allowing the particle filter to converge to the true val-
ues. The selected variance of the random walk noise

"Pseudocode for the systematic resampling algorithm is
provided in (Arulampalam et al., 2002).

Algorithm 1 SIR Filter

Inputs: {(x5_1,0% 1), wi 1} 1, up_1.6, ¥k
Outputs: {(x5,0%), wi} Y,
for i = 1to N do
0} ~ p(0:10} 1)
X;c_ ~ p(xk‘xi'—ho;c—huk*l)
wy, < (Y |Xk, O, uk)
end forN

W «— Zwi
i=1
fori =1to N do
wy, — wy, /W
end for _ o _
{(X;mg?c%wz}f\]:l — Resample({(x?{70}c)7wi}£\;l)

determines both the rate of this convergence and the
estimation performance once convergence is achieved.
Note that in a particle filter, a certain amount of
sensor noise must be assumed, but, in practice, the
discrete position sensors (open and closed) have no
noise, therefore, a small amount of noise must be as-
sumed within the particle filter for those sensors.

5 PREDICTION

Prediction is initiated at a given time kp. Us-
ing the current joint state-parameter estimate,
P(Xkp, Okp|Yo:kp), which represents the most up-to-
date knowledge of the system at time kp, the goal is
to compute p(EOLkP ‘YO:k:p) and p(RULkP |y0:kP)'
As discussed in Section 4, the particle filter computes

N
PXkps Okp|yoikp) = Z wich 5(x§cp ,Gzp)(dxkpdekP)'
i=1

We can approximate a prediction distribution n steps
forward as (Doucet et al., 2000)

p(xkp-‘,-?’u 0kp+n|y0:kp) ~
N

7
Z W p 5(x’,"€P+n,6};P+") (dxkp+7ld0kp+7z)-

i=1

So, for a particle ¢ propagated n steps forward without
new data, we may take its weight as wj . Similarly,
we can approximate the EOL as

N
p(EOLkp|y0:kP) ~ szP(sEOL;;P (dEOLkP)

i=1

To compute EOL, then, we propagate each particle for-
ward to its own EOL and use that particle’s weight at
kp for the weight of its EOL prediction.

If an analytical solution exists for the prediction, this
may be directly used to obtain the prediction from the
state-parameter distribution. An analytical solution is
rarely available, so the general approach to solving the
prediction problem is through simulation. Each parti-
cle is simulated forward to EOL to obtain the complete
EOL distribution. The pseudocode for the baseline
prediction procedure is given as Algorithm 2 (Daigle



Algorithm 2 EOL Prediction

Inputs: {(x},,,0},.), i, }i
Outputs: {EOL};P,wip N
fori =1to N do

k—kp

Xp — Xpp

0 — OZP

while TEOL (X?C, 92) =0do
Predict g )
%H Np(0k+l|0;§) )
Xp1 ~ P(Xk41 X, O, k)
E—k+1
x?_v — x?cﬂ
0}, — 92-&-1

end while

EOLy, «— k

end for

and Goebel, 2010). Each particle 4 is propagated for-

ward until Tror,(x},, 0},) evaluates to 1; at this point
EOL has been reached for this particle.

Note that, in general, we may sample new parame-
ter values @, however, the noise considered here should
typically be considerably less than the noise used for
the random walk during the estimation phase, as we
usually assume these parameters are either constant or
only exhibit very small deviations. Note also that pre-
diction requires hypothesizing future inputs of the sys-
tem, Uy, because damage progression is rarely inde-
pendent of the system inputs. For this reason the inputs
must be chosen carefully. Here, we assume only a sin-
gle future input trajectory, i.e., iy, is defined uniquely
for all values of k. This is a practical assumption for
the solenoid valve, because the valve is always fully
opened or fully closed, and a single voltage value u(t)
is consistently applied for opening the valve. Since
damage occurs only when the valve is moving, then
for the purposes of prediction, we may produce an in-
put sequence that represents a full valve cycle (e.g.,
that of Fig. 3) repeated indefinitely, and, using this, we
may obtain EOL and RUL predictions in the number
of valve cycles.

5.1 Computationally Efficient Prediction

The computational complexity of the prediction proce-
dure presented as Algorithm 2 is linear in the number
of particles, however, each particle may take a variable
amount of time to simulate to EOL. Particles that pre-
dict quickly progressing wear will complete quickly,
while particles that predict slowly progressing wear
will complete slowly, because many more simulation
steps will be needed to reach EOL. This problem is
exacerbated with models that require very small sam-
pling periods. In fact, particles with very poor wear
parameter estimates, i.e., close to 0, which correspond
to very large EOL predictions, may take an exceed-
ingly long time. Also, these particles may correspond
to outliers, and, as such, contribute little to the predic-
tion distribution.

The only way to reduce the computational effort is
to reduce the number of particles that are used in the
prediction step. One approach is to randomly select

an arbitrary number of particles from the original dis-
tribution, but the statistics of the original distribution
may not be preserved. A better approach is to sample
from the distribution in such a way that the important
statistical information is preserved, and the EOL distri-
bution computed from this limited sample set closely
approximates the statistical properties of the EOL dis-
tribution computed from the complete set of samples.

The unscented transform solves this problem. It
takes a random variable x € R"=, with mean X and
covariance P, which is related to a second random
variable y by some nonlinear function y = g(x),
and computes the mean y and covariance P, us-
ing a (small) set of deterministically selected weighted
samples, called sigma points (Julier and Uhlmann,
1997). For the task of EOL prediction, x is simply
the joint state-parameter distribution represented by
{(x},,05,), wj,, }/ . g is the function that computes
EOL (i.e., simulates a particle to EOL), and y is the
EOL. The required mean X and covariance P,, may
be computed from the particle distributions using the
formulas for weighted mean and weighted covariance.

The statistics of y are computed by selecting a set of
weighted sigma points from x, where X'; denotes the
ith point and w; denotes its weight. The sigma points
are always chosen such that the mean and covariance
match those of the original distribution, X and P, .
Each sigma point is passed through g to obtain new
sigma points Y, i.e.,

with mean and covariance calculated as

y=> wd

The underlying idea of the unscented transform is that
it is easier to approximate the distribution x than to
approximate the nonlinear function g. This is the
idea behind the unscented Kalman filter, where the un-
scented transform is exploited for nonlinear state es-
timation (Julier and Uhlmann, 1997; 2004). At each
step, the unscented transform is applied to the state
estimate and is used for a single step prediction. In
contrast, here, we apply the transform to the state-
parameter distribution at given single time point kp,
and use this for multi-step predictions to EOL.

Several methods exist for selecting sigma points. In
the following sections, we briefly review three com-
mon unscented transforms, and compare their fidelity
on an example EOL prediction problem. Detailed per-
formance results will be presented in Section 6 for
fault prognosis of the solenoid valve.

Symmetric Unscented Transform

In the symmetric unscented transform, 2n, + 1 sigma
points are selected symmetrically about the mean in
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the following way (Julier and Uhlmann, 2004):

K
, =0
w; = (nm—:"l_ﬁ)
— i=1,...,2n,
2(ng + k)
X i=0

X, = )’(—l—( (TLI—I-H)PII)‘,i:l,..an
—( (nm—l—ﬁ)Pm)wiznm—|—1,...,2ngﬂ

3

bl

where ( (ne + H)sz) _refers to the ith column of

the matrix square root of (n, + k)P, (e.g., computed
using the Cholesky decomposition). The number « is a
free parameter that can be used to tune the higher order
moments of the distribution. If x is assumed Gaussian,
then selecting k = 3 — n,, is recommended (Julier and
Uhlmann, 1997). A smaller value of x will bring the
sigma points closer together. Note that the sigma point
weights do not directly represent probabilities, so are
not restricted to the interval [0, 1].

Minimal Skew Simplex Unscented Transform

The symmetric unscented transform uses 2n, + 1
sigma points, however, it is possible to reduce the
number of points to n, + 2, while still capturing the
first two moments of the distribution, thus reducing
the amount of computation. The minimal skew sigma
points are such a set, and satisfy an additional con-
straint in which the skew (third moment) is minimized,
which reduces the average error for a symmetric distri-
bution (Julier and Uhlmann, 2002).

The minimal skew sigma points are selected in a
constructive manner, first by choosing the set of points
for n, = 1, and then increasing n, by one until the
full dimension is reached. The procedure for selecting
sigma points for dimension n,, for a distribution with
mean 0 and P, = I, where I is the identity matrix,
is as follows (Julier and Uhlmann, 2002). First, the
weight of the Oth sigma point is selected freely as

wo € [O, 1]

The remaining weights are computed using

1-— Wo
ons
21‘—21017

i=1,2
i=3,... . +1

w; =

For the initial dimension size 7 = 1, where X f refers
to the ith sigma point for the jth dimensional space,
the sigma points are initialized as

X;=0
1
Xl =-
211.)1
1
X} =
2 le

Expanding up to higher dimensions j = 2, ..., n,, the
higher-dimensional sigma points are recursively de-
fined as

.
X% } i=0

Xt
X’ = _Z1 , 1=1,...,7
v L 1/211)]' ’

0;
I , 1=7+1
_\/211)]'

where 0; is a vector of j zeros. The points form a
simplex (a generalization of the triangle to arbitrary
dimensions) centered about the origin, with an addi-
tional point located at the origin (X).

The sigma points may then be transformed to those
for mean X and covariance P, using

X =%+ /P X,

where /P, is the matrix square root of P,,. The
transformed sigma points Y and its statistics are com-
puted as in the basic unscented transform, using .




Spherical Simplex Unscented Transform
The problem identified with the skew simplex set of
sigma points is that the weights vary by a factor of 2"
and the point coordinates vary by a factor of 27+/2,
so with large values of n,, numerical problems may
arise (Julier, 2003). The spherical simplex points still
use only n, + 2 points, but overcome this issue, plac-
ing the sigma points on a hypersphere centered at the
origin, with the Oth sigma point located at the origin.
These points are constructed in a similar fashion to the
minimal skew sigma points as follows (Julier, 2003).
First, the weight of the Oth sigma point is selected
freely as

wo € [0,1].
The remaining weights are computed using
wi — 1 —wy
on+1

The sigma points for dimensional space 7 = 1 are ini-
tialized again as

X;=0
1
Xi=-
211)1
1
X5 = —
wy
Expanding up to higher dimensions j = 2,...,n,, the

higher-dimensional sigma points are recursively de-
fined as
F i1
X% , i—0
L -
_ X ‘ .
X! = _ 1 , 1:1,...,]7
| ViG+Duw
0;
R
L ViG+D)ws
where 0, is a vector of j zeros. These points may then
be transformed for mean X and covariance P, as be-
fore.

Fig. 4 compares the location and weights for a two-
dimensional random variable for the three different
transforms. The mean of the random variable is 0, and
the covariance is 1.

i=j+1

Improved Prediction Procedure
The improved prediction procedure uses Algorithm 2,
only instead of the inputs being the particles and their
weights, the inputs become the sigma points and their
weights computed from the particle distribution at time
kp, with a suitable sigma point selection algorithm.
Fig. 5 shows an example output of the prediction pro-
cedure for spring damage, using the full particle distri-
bution (/N = 100). Each particle creates a predicted
trajectory, and determines a single EOL prediction.
These individual predictions then form the complete
prediction distribution.

The predicted EOLs based on simulating the sigma
points for the different selection algorithms reviewed
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Figure 5: Predicted trajectories and EOL distribution
for spring damage.
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Figure 6: EOL predictions based on sigma points.

here are shown in Fig. 6. The free parameters were
selected by hand in this particular example. The pre-
dicted EOL means and variances are shown in the fig-
ure. Recall that the aim is to approximate the full
state-parameter distribution using a small set of sam-
ples, such that, when transformed to EOL, accurately
predict the mean and variance of the EOL distribu-
tion computed using the full distribution. An under-
or overapproximation of either statistic is undesirable,
as it misrepresents the EOL corresponding to the cur-
rent belief state. For this example, in each case, the
mean EOL predicted with the sigma points matches
the mean from the full distribution within 0.2% error.
The variances are less accurate, with around 6% er-
ror for the symmetric and simplex sigma points, and
around 16% error for the spherical sigma points. The



Table 1: Prognostics Performance Results for N = 500 and M = {z, 4, open, closed}

Fault PRMSE RSD,, RA RSDrurL Tepu

Full Sym. Skew Sph. Full Sym. Skew Sph. Max Sym. Skew Sph.
r 3.72 26.09 94.39 94.49 93.90 94.48 19.89 18.40 21.35 18.48 72.98 57.39 53.91 60.21
k 3.90 14.74 96.19 96.20 96.12 96.17 15.21 14.27 15.35 1442  61.46 58.05 55.85 58.06
L. 501 18.01 93.62 93.85 93.82 93.77  22.65 20.18 22.35 21.63 77.22 63.32 61.38 61.41
L, 3.05 17.89 95.48 95.59 95.12 95.36 16.95 16.20 19.30 18.61 67.93 56.70 52.69 53.56

error in predicted variance may be improved with bet-
ter selection of the free parameters. An improvement
in computation time of 18-24% was observed for the
sigma point method. In this case n, = 5, so the sym-
metric set has 11 sigma points and the simplex meth-
ods have 7 points, so there is also a very significant
improvement in memory requirements for prediction.

6 RESULTS

In this section, we evaluate the prognostics perfor-
mance for the different prediction methods. In each
case, we predict using the full particle distribution, the
symmetric sigma points, the minimal skew simplex
sigma points, and the spherical simplex sigma points,
in order to compare the accuracy, precision, and com-
putational cost of the prediction.

Estimation accuracy is evaluated using percentage
root mean square error (PRMSE), which expresses rel-
ative estimation accuracy as a percentage:

. 2
Wy, — w,j)
* )
Wy,

where Wy, denotes the estimated wear parameter value
at time k, w;, denotes the true wear parameter value at
k, and Mean;, denotes the mean over all values of k.
Estimation spread is calculated using relative standard
deviation (RSD), computed for the wear parameter dis-
tribution at each prediction point (every 10 cycles), and
averaged over all prediction points. The average is de-

noted as RSD. In computing both PRMSE and RSD,
we ignore the initial time period associated with esti-
mation convergence. Convergence of the wear param-
eter estimate, C,,,, is computed based on the definition
of the convergence metric described in (Saxena ef al.,
2008), where the convergence of a curve is expressed
as the distance from the origin to the centroid under the
curve (a shorter distance is better). We use the absolute
error of the hidden parameter estimate as the curve.
For a given prediction point kp, we compute mea-
sures of accuracy and spread. For accuracy, we use the
relative accuracy (RA) metric (Saxena et al., 2009):

|RUL;, — Meani(RULZPH)

PRMSE = 100, | Meany, [(

RAk, =100 (1 RUL;
We calculate prediction spread using RSD, which we
denote as RSDgyr.. Both RA and RSD are averaged
over all prediction points starting from the prediction
at which a prognostics horizon (RA within a speci-
fied bound) is first reached (denoted using RA and

RSDRry1).

In order to measure the computational performance,
at each prediction point we measure the time taken
for the prediction to be completed, t.p,(kp). For a
given prediction method, we then compute the percent
improvement over the time for the full distribution,
t({;‘il (kp), defined as
|thy! (kpP) — tepu(kp)]

1 :
tzﬁu (kP)
This metric is then averaged over all kp, denoted as

T .pu, to summarize percent improvement over the en-
tire experiment. We characterize the maximum possi-

ble performance increase by computing T'c,,, for the
prediction using a single point representing the mean
of the state-parameter distribution. This performance
can be achieved with the sigma point method by se-
lecting a small enough value of x or wq such that all
the sigma points are concentrated on the mean, how-
ever, this would result in a vast underapproximation to
the variance.

We consider the case where only a single damage
mode is actively progressing. Table 1 shows the per-
formance for each fault for N = 500, and taking
the complete measurement set M. The random walk
variances were chosen as fixed values assuming that
the orders of magnitude of the wear parameters were
known. Overall, the unknown wear parameter can be
estimated well. The desired outcome is that the com-
puted RA and RSDpgy;1 using the sigma point meth-
ods closely approximate those produced using the full
distribution. In the case of RA, the sigma point meth-
ods are within 0.5% of the RA calculated using the
full distribution, meaning that the means of the dis-
tribution (from which RA is calculated) are predicted
well. Larger differences are observed when compar-
ing RSDry 1, as in most cases the sigma point meth-
ods underapproximate the variance, with a worst-case
error of 6-14%. The accuracy of variance prediction
depends on the selected values of the free parameters
of the unscented transforms, as correctly selected val-
ues will lead to better approximations. In this case,
we selected the suggested value of « for the symmet-
ric sigma points, and this seemed to work well in all
cases. For the minimal skew simplex sigma points, we

Topu = 100

chose wg = —1 for r, L., and L,, and wy = 0.1 for
k. For the spherical simplex sigma points, we chose
wg = 0.1 for k, L., and L,, and wg = —1 for r.

These values were selected manually.

Over 50% improvement in computation time was
observed in all cases, coming within 75-90% of the
maximum possible improvement. Further, only a frac-
tion of the samples are used in the sigma point meth-



Table 2: Damage Estimation Performance for Spring
Damage

M N

PRMSE RSD,, Cy

{z, i, 0pen, closed} 100 4.62 14.81 32.90
{z,1, open, closed} 500 3.90 14.74 32.31
{z,4} 100 5.83 1458 33.79
{z,i} 500 3.87 14.93 34.37
{z} 100 3.99 16.44 38.13
{z} 500 3.10 16.83 35.39
{i} 100 5.16 15.74 40.72
{i} 500 4.61 1645 34.90
{open, closed} 100 3.47 21.47 4255
{open, closed} 500 3.00 21.89 42.35

ods, saving significantly on memory. At the selected
prediction points, the valve is in a closed state, and the
effective n, is only 3 (i.e., only 3 of the states have
different values between particles). Therefore, for the
symmetric unscented transform only 2n, + 1 = 7
sigma points are required, and only n, + 2 = 5 are
required for the minimal skew simplex and spherical
simplex sigma points. For N = 500 this is an im-
provement of over 98% in memory usage.

To explore further, we focus on the case of spring
damage, and vary the number of particles and the mea-
surement set. Table 2 shows the estimation results.
Overall, the unknown wear parameter can be estimated
well with both N = 100 and N = 500. This is also
true when the measurement set is varied, in fact, us-
ing only the open and closed indicators, prognostics
can still be performed, but at the cost of a wider vari-
ance in the prediction and slower convergence. With
more particles, PRMSE improves and RSD generally
increases slightly. Convergence is somewhat better
with fewer particles as the filter tends to be more ag-
gressive, whereas additional particles smooth the be-
havior. Of course, with too few particles, convergence
may not occur, therefore a reasonably large N must
usually be chosen.

Table 3 shows the prediction performance. RA is
estimated within similar error bounds as in Table 1.
Again, the sigma point methods usually underapproxi-
mate RSD gy, With fewer particles, the gain in com-
putational efficiency is smaller, as expected, but gains
of 20-40% are still observed with N = 100, coming
within 30-90% of the maximum possible increase, and
the memory usage improves by at least 93% (i.e., 100
particles compared to at most 7 sigma points). Notice
also that for the cases where RSD . is larger, such
as with M = {open, closed}, the savings are even
greater, i.e., the wider the full particle distribution, the
more of a savings the sigma point methods can offer.

Overall, these results demonstrate that prediction
can be achieved much more efficiently with limited
deviations in prediction performance. The symmetric
sigma points seemed to provide the largest improve-
ment in time efficiency, but underapproximated the
variance the most. These two effects are interrelated.
The smallest values of the wear parameter in the full
distribution contribute most to the time cost, so sigma
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Figure 7: Prognostics performance for different values
of wy for the minimal skew simplex sigma points, for
k with N = 500 and M = {z,1, open, closed}.

points concentrated more towards the mean take less
time to simulate. The minimal skew simplex sigma
points came closest to the variance of the true distribu-
tion, but usually with the smallest time improvement.

The biggest practical difficulty in applying this
method is the selection of the free parameters, as this
relates to performance. Using the symmetric sigma
points with the suggested value of x seemed to al-
ways work well, requiring no further tuning. There
is no heuristic available in the literature for the mini-
mal skew simplex and spherical simplex sigma points.
In order to examine the sensitivity of the selected
value of the free parameter on performance, we varied
the value of wy for the minimal skew simplex sigma
points for the case of spring damage with N = 500
and M = {z,i,o0pen,closed}. According to Ta-
ble 1, the full distribution achieves RA = 96.19%
and RSDgyr, = 15.21 cycles. Fig. 7 illustrates how
these metrics vary over the selected range of wg. In
general, a large value of wg will spread out the sigma
points, and therefore increase the predicted variance.
For wy € [-1.0,0.5], RA and RSD have little devia-
tion from the desired values produced by the full dis-
tribution, so any value within this range will result in
an acceptable approximation. But, for wy € (0.5,0.9],
the approximated RSD begins to increase significantly,
and RA decreases with it at a much smaller rate.

7 CONCLUSIONS

In this paper, we developed a computationally efficient
prediction scheme for model-based prognostics based
on the unscented transform. The unscented transform
allows the statistics of a distribution passed through a
nonlinear transformation to be predicted using a min-
imal set of deterministically selected samples. Ap-
plying this to the prognostics problem, we are able to
predict the mean and variance of the EOL accurately,
and with improved computational efficiency and sig-
nificantly reduced memory costs.

Particle filtering approaches have become a popular
choice for model-based prognostics (e.g., (Saha and



Table 3: Comparison of Prognostics Prediction Methods for Spring Damage

M N RA RSDruL Tepu

Full Sym. Skew Sph. Full Sym. Skew Sph. Max Sym. Skew Sph.
{z, i, 0pen, closed} 100 94.59 94.64 94.59 94.56 15.01 13.88 14.96 14.03 48.08 42.98 23.81 29.98
{z, i, open, closed} 500 96.19 96.20 96.12 96.17 15.21 14.27 15.35 14.42 61.46 58.05 55.85 58.06
{z,i} 100 93.96 94.00 93.88 94.00 15.53 14.73 15.81 14.90 45.49 38.98 2249 26.02
{z,} 500 97.16 97.18 97.16 97.22 15.39 14.30 15.46 14.48 62.39 58.97 56.40 58.81
{z} 100 93.68 93.82 93.65 93.74 18.17 16.58 17.83 16.79 50.89 42.83 27.79 31.37
{z} 500 94.85 95.02 94.72 94.99 18.25 16.68 18.13 16.93 67.39 62.92 60.81 63.09
{i} 100 93.34 93.34 93.13 93.31 16.65 15.51 17.23 16.22 47.01 37.62 22.19 25.65
{i} 500 94.61 94.77 94.49 94.77 18.32 16.83 18.34 17.14 65.25 60.80 57.84 60.52
{open, closed} 100 94.46 94.74 94.28 94.65 22.84 20.13 22.83 21.48 48.95 38.53 16.73 36.78
{open, closed} 500 94.20 94.58 94.14 94.40 23.62 20.50 23.25 21.55 74.61 69.16 66.20 68.29

Goebel, 2009; Abbas er al., 2007)). The most sig-
nificant disadvantage is the computational complex-
ity, as usually a large number of particles are needed
for accurate estimation, and, subsequently, prediction.
A related approach to efficient prediction is described
in (Orchard et al., 2008), however, in this approach,
random sampling with a smaller number of particles is
advocated. As described in Section 5, a large number
of randomly selected particles are needed to correctly
approximate the statistics of the prediction based on
the full particle set, so a significant number of parti-
cles would still be needed. However, the method de-
scribed in this paper selects only the minimal number
of points necessary to capture those statistics. This
number is dependent only on the dimension of the state
space. This approach is also applicable when a tech-
nique other than particle filters is used for the estima-
tion task, as long as the method provides a state distri-
bution which is to be propagated forward to EOL. Note
that if the unscented Kalman filter is used, the sigma
points are already available for prediction.

The unscented transform is not limited to Gaussian
distributions, but the prediction method based on it is
useful only when the mean and variance of the EOL
distribution are meaningful statistics. For example, for
a multi-modal distribution, a single mean and variance
are not meaningful. This could be the case when mul-
tiple future input trajectories are considered. In this
case, each mode is associated with one of these trajec-
tories, and each may be defined by a mean and vari-
ance. Therefore, the method could be applied to each
case individually to obtain the means and variances of
the different modes.

As part of future work, it is important to determine
strategies for selecting the free parameters of the dif-
ferent unscented transforms, as this is the main hurdle
to practical implementation. As discussed in Section 6,
the suggested heuristic for selecting « for the symmet-
ric sigma points worked well. For the remaining meth-
ods, selection of wy may be difficult, although a value
between —1 and 0.1 worked well here. Further, scaling
of the sigma points can also be performed, which intro-
duces additional free parameters (Julier, 2002). Bring-
ing the sigma points closer together will speed up com-
putation, but it should be ensured that the variance es-
timate remains accurate. A detailed analysis over this

parameter space is necessary to suggest useful heuris-
tics in the context of prognostics. One may then envi-
sion automatic methods to tune the free parameters to
achieve the desired spread in sigma points to correctly
approximate EOL mean and variance. Extensions of
the unscented transform to prediction of higher-order
moments such as skew and kurtosis may also be useful
for prognostics.
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