UHTC Research at NASA Ames

Sylvia M. Johnson Sylvia.m.johnson@nasa.gov

Sharp Leading Edge Technology

- •! For enhanced aerodynamic performance
- •! Materials for sharp leading edges can be reusable but need different properties because of geometry and very high temperatures
- •! Require materials with significantly higher temperature capabilities, but for short duration
 - –! Current shuttle RCC leading edge materials: T~1650°C
 - –! Materials for vehicles with sharp leading edges: T>2000°C

High Temperature at Tip Steep Temperature Gradient

Passive cooling is simplest option to manage the intense heating on sharp leading edges.

UHTCs are candidate materials

Some UHTC Development History

- •! Hf and ZrB₂ materials investigated in early 1950s as nuclear reactor material
- •! Extensive work in 1960s & 1970s (by ManLabs for Air Force) showed potential for HfB₂ and ZrB₂ for use as nosecones and leading edge materials (Clougherty, Kaufman, Kalish, Hill, Peters, Rhodes et al.)
- •! Gap in sustained development during 1980s and most of 1990s
 - -! AFRL considered UHTCs for long-life, man-rated turbine engines
- •! During late 1990s, NASA Ames revived interest in HfB₂/SiC, ZrB₂/SiC ceramics for sharp leading edges
- •! Ballistic flight experiments: Ames teamed with Sandia National Laboratories New Mexico, Air Force Space Command, and TRW
 - –! SHARP*-B1 (1997) UHTC nosetip & SHARP-B2 (2000) UHTC strake assembly
- •! Space Launch Initiative (SLI) ,NGLT, UEET programs: 2001-5
- •! NASA's Fundamental Aeronautics Program funded research until 2009
- •! Substantial current ongoing effort at universities, government agencies, & international laboratories

Flight Hardware

SHARP-B1 May 21, 1997

SHARP-B2 Sept. 28, 2000

SHARP-B2

- •! Flight test designed to evaluate three different compositions of UHTCs in strake (fin) configuration exposed to ballistic reentry environment.
- •! Strakes exposed as vehicle reentered atmosphere, then retracted into protective housing.
- •! Material recovered. Led to new effort in UHTCs / decision to bring development in-house and improve processing.

Recovered UHTC Strakes

- •! Post-flight recovery showed that all four HfB₂-SiC aft-strake segments suffered similar, multiple fractures.
- •! No evidence of severe heating damage (for example, ablation, spallation, or burning) was observed.
- •! Defects inherent in material lot are present on fracture surfaces.
- •! Actual material properties exhibit wider scatter and greater temperature dependence than those assumed in design.

Processing Defects on Fracture Surface of Aft-Segment, Strake 2

SiC agglomerate

Processing Defects in HfB₂-SiC Flexure Specimens

Grafoil[™] agglomerate

A Cautionary Tale

- Materials did not have expected fracture toughness, strength, or • reliability (Weibull modulus).
- •! Unexpected fractures were due to poor materials processing by external vendor.

HfB₂20v%SiC

•! SHARP B-2 underlined importance of controlling materials development, processing methodologies, and resulting material properties if we are to get the maximum value from an experiment.

Large HfB₂ agglomerate

Poorly processed

Large SiC-rich agglomerate

Sharp Leading Edge Energy Balance

Insulators and UHTCs manage energy in different ways:

- •! Insulators store energy until it can be eliminated in the same way as it entered
- •! UHTCs conduct energy through the material and reradiate it through cooler surfaces

Dean Kontinos, Ken Gee and Dinesh Prabhu. "Temperature Constraints at the Sharp Leading Edge of a Crew Transfer Vehicle." AIAA 2001-2886 35th AIAA Thermophysics Conference, 11-14 June 2001, Anaheim CA

Thermal Conductivity Comparison

HfB₂/SiC materials have relatively high thermal conductivity

- •! HfB₂/SiC thermal conductivity was measured on material from the SHARP-B2 program.
- •! Thermal Diffusivity and Heat Capacity of HfB₂/SiC were measured using Laser Flash.

HfB₂-SiC

•! HfB₂ has a narrow range of stoichiometry with a melting temperature of 3380°C

Density = 11.2 g/cm³

- •! Silicon carbide is added to boride powders
 - -! Promotes refinement of microstructure
 - -! Decreases thermal conductivity of HfB₂
 - -! 20v% may not be optimal but is common amount added
 - -! SiC will oxidize either passively or actively, depending upon the environment

Density = 3.2 g/cm³

UHTC Material Properties

Sharp leading edges require :

- •! High thermal conductivity (directional)
- •! High fracture toughness/mechanical strength/hardness
- •! Oxidation resistance (in reentry conditions)

Property		HfB ₂ /20vol%SiC	ZrB ₂ /20vol%SiC
Density (g/cc)		9.57	5.57
Strength (MPa) 21	C	356±97*	552±73*
140	0°C	137±15*	240±79*
Modulus (GPa) 21°	С	524±45	518±20
140	0°C	178±22	280±33
Coefficient of Therma Expansion (x10 ⁻⁵ /K)	al RT	5.9	7.6
Thermal Conductivity	' (W/mK) [#] RT	80	99

Source: ManLabs and Southern Research Institute

* Flexural Strength

R. P. Tye and E. V. Clougherty, "The Thermal and Electrical Conductivities of Some Electrically Conducting Compounds." Proceedings of the Fifth Symposium on Thermophysical Properties, The American Society of Mechanical Engineers, Sept 30 – Oct 2 1970. Editor C. F. Bonilla, pp 396-401.

Improving Processing and Microstructure

- •! Initial focus on improving material microstructure and strength
- •! HfB₂/20vol%SiC selected as baseline material for project constraints
- •! Major issue was poor mixing/processing of powders with different densities
 - -! Used freeze-drying to make homogenous powder granules
 - -! Developed appropriate hot pressing schedules

Granulated HfB₂/SiC Powder

Early Progress in Processing of HfB₂ - 20% SiC Materials

•!Early and SHARP materials made by an outside vendor

•!Improvements in powder handling provide a more uniform microstructure

Weibull Modulus of Ames HfB₂/SiC Improved Compared to Previous Materials

- •! Arc jet testing is the best **ground-based method** of evaluating a material's oxidation/ablation response in reentry environments
- •! A material's oxidation behavior when heated in static or flowing air at ambient pressures is likely to be significantly different than in a re-entry environment.
- •! In a re-entry environment:
 - -! Oxygen and nitrogen may be dissociated
 - •! Catalycity of the material plays an important role
 - •! Recombination of O and N atoms adds to surface heating
 - -! Stagnation pressures may be less than 1 atm.
 - •! Influence of active to passive transitions in oxidation behavior of materials
 - –! SiC materials show such a transition when the protective SiO₂ layer is removed as SiO

Arc Jet Schematic

Simulates reentry conditions in a ground-based facility

Method: Heat a test gas (air) to plasma temperatures by an electric arc, then accelerate into a vacuum chamber and onto a stationary test article

Stine, H.A.; Sheppard, C.E.; Watson, V.R. Electric Arc Apparatus. U.S. Patent 3,360,988, January 2, 1968.

UHTC Cone After 9 Arc Jet Exposures (89 minutes total run time)

Increasing heat flux

Reducing Oxide Formation

* Post-test arc jet nosecone model after a total of 80 minutes of exposure. Total exposure the sum of multiple 5 and 10 minute exposures at heat fluxes from 200W/cm²

- •! In baseline material:
 - -!SiC depleted during arc jet testing
 - -!Surface oxide is porous
- •! Potential solution: Reduce amount of SiC below the percolation threshold while maintaining mechanical performance

*Arc jet test data from Space Launch Initiative program

Controlling Microstructure & Composition

- •! Goal for UHTCs for TPS has been to improve:
 - -! Fracture toughness
 - -! Strength
 - -! Thermal conductivity
 - -! Oxidation resistance arcjet performance
- •! Properties controlled by processing, microstructure, and composition
 - -! Grain Size
 - •! Additives (Ir additions)
 - •! Processing by field-assisted sintering (FAS)
 - -! Grain Shape
 - •! Addition of preceramic polymers
 - •! Particle coatings (Fluidized Bed CVD)
 - -! Purity (grain boundaries)
 - •! Addition of preceramic polymers
 - •! Processing (FB CVD)
 - •! Self-propagating reactions
 - -! Oxide formation
 - •! Increase oxide stability / emissivity (additives)
 - •! Reduce amount of SiC

Control of Grain Size

HfB₂/20v%SiC Hot Pressed (long process) HfB₂/20v%SiC Hot Pressed (short process) HfB₂/20v%SiC Spark Plasma Sintered

Third-Phase Additions

•! Explore effect of additional refractory phases (Ir and TaSi₂) on microstructure and oxidation behavior of baseline material (HfB₂-20 vol% SiC)

 HfB_2 -SiC

HfB₂-SiC-TaSi₂

HfB₂/SiC/TaSi₂ clearly has a higher post-test emissivity than HfB₂/SiC and demonstrated lower surface temperatures

Opila, E. and Levine, S., "Oxidation of ZrB₂- and HfB₂-based ultra-high temperature ceramics: Effect of Ta additions," *Journal of Materials Science* 39 (2004) 5969–5977

Effect of Additives on Microstructure

Physical Characterization: Microstructure

Hot Pressed

HfB₂-SiC **Baseline**

> HfB₂-SiC-TaSi₂

HfB₂-SiC-TaSi₂-Ir

Arc Jet Characterization: Additives & Influence of Microstructure

Hot Pressed

HfB₂-SiC Baseline

HfB₂-SiC-

TaSi₂

Spark Plasma Sintered

HfB₂-SiC-TaSi₂-Ir

Both oxide scale and depletion zone can be reduced.

Preceramic Polymers Can Control Grain Shape

- •! Conventional source of SiC is powder.
- •! SiC from a preceramic polymer source:
 - -! Will affect densification and morphology.
 - -! May achieve better distribution of SiC source through HfB_{2.}
 - –! Previous work shows that preceramic polymers can enhance growth of acicular particles (for fracture toughness).
- •! Potential to improve mechanical properties with reduced amount of SiC and also potentially improve oxidation behavior.

Growth of Elongated SiC Grains

5%* SiC

10%* SiC — Rod diameter $\sim 2\mu m$

15%* SiC — Rod diameter ~5μm

SiC Preceramic Polymer Promotes Growth of Acicular Grains

- •! Samples processed with 5 to >20 volume % SiC
- •! Can adjust volume of SiC in the UHTC without losing the high I/d architecture
- •! Amount of SiC affects number and thickness (but not length) of rods length constant (~20–30μm)
- •! Possible to obtain dense samples with high-aspect-ratio phase
- •! Hardness of high-aspect-ratio materials comparable to baseline material Precursor added in amounts sufficient to yield nominal amounts of SiC

In Situ Composite for Improved Fracture Toughness

20 µm				
	SiC Content	Fracture Toughness (MPam ^{1/2})	-1-1	5
	5%	3.61	1 × 10	
	10%	4.06		
	15%	4.47	Oak Ridge Nati	onal Laboratory
	Baseline UHTC (20%)	4.33		
20.000				

Evidence of crack growth along HfB₂-SiC interface, with possible SiC grain bridging

With Continuous Ultra High Temperature Continuous Fiber Composites

- •!Image at top right shows dense UHTC matrix with indications of high aspect ratio SiC.
- •!Image at bottom right shows the presence of C fibers after processing.

1. Fracture toughness

Composite approach is required

- •! Integrate understanding gained from monolithic materials
- •! Need high temperature fibers

2. Oxidation resistance in reentry environments

Promising approaches but challenge is active oxidation of materials containing SiC

3. Modeling is critical

Shorten development time, improve properties, design

Some Recent Research Efforts in UHTCs: Materials and Properties

ZrB ₂ Based Ceramics	Catalytic Properties of UHTCs
Missouri University of Science & Technology	PROMES-CNRS Laboratory, France
US Air Force Research Lab (AFRL)	CNR-ISTEC
NASA Ames & NASA Glenn Research Centers	CIRA, Capua, Italy
University of Illinois at Urbana-Champaign	SRI International, California
Harbin Institute of Technology, China	Imaging and Analysis (Modeling)
Naval Surface Warfare Center (NSWC)	University of Connecticut
NIMS, Tsukuba, Japan	AFRL
Imperial College, London, UK	NASA Ames Research Center
Korea Institute of Materials Science	Teledyne (NHSC-Materials and Structures)
CNR-ISTEC	Ovidation of UHTCs
HfB ₂ Based Ceramics	AFRL
HfB ₂ Based Ceramics NASA Ames Research Center	AFRL NASA Glenn Research Center
HfB ₂ Based Ceramics NASA Ames Research Center NSWC—Carderock Division	AFRL NASA Glenn Research Center Georgia Institute of Technology
HfB2 Based Ceramics NASA Ames Research Center NSWC—Carderock Division Universidad de Extramdura, Badajoz, Spain	AFRL NASA Glenn Research Center Georgia Institute of Technology Missouri University of Science & Technology
HfB2 Based Ceramics NASA Ames Research Center NSWC—Carderock Division Universidad de Extramdura, Badajoz, Spain CNR-ISTEC, Italy	AFRL NASA Glenn Research Center Georgia Institute of Technology Missouri University of Science & Technology Texas A & M University
HfB2 Based Ceramics NASA Ames Research Center NSWC—Carderock Division Universidad de Extramdura, Badajoz, Spain CNR-ISTEC, Italy Fiber Reinforced UHTCs	AFRLNASA Glenn Research CenterGeorgia Institute of TechnologyMissouri University of Science & TechnologyTexas A & M UniversityCNR-ISTEC, Italy
HfB2 Based Ceramics NASA Ames Research Center NSWC—Carderock Division Universidad de Extramdura, Badajoz, Spain CNR-ISTEC, Italy Fiber Reinforced UHTCs Chinese Academy of Sciences, Shenyang	AFRLNASA Glenn Research CenterGeorgia Institute of TechnologyMissouri University of Science & TechnologyTexas A & M UniversityCNR-ISTEC, ItalyUniversity of Michigan, Ann Arbor, Michigan
HfB2 Based CeramicsNASA Ames Research CenterNSWC—Carderock DivisionUniversidad de Extramdura, Badajoz, SpainCNR-ISTEC, ItalyFiber Reinforced UHTCsChinese Academy of Sciences, ShenyangUniversity of Arizona	AFRLNASA Glenn Research CenterGeorgia Institute of TechnologyMissouri University of Science & TechnologyTexas A & M UniversityCNR-ISTEC, ItalyUniversity of Michigan, Ann Arbor, MichiganNSWC—Carderock
HfB2 Based CeramicsNASA Ames Research CenterNSWC—Carderock DivisionUniversidad de Extramdura, Badajoz, SpainCNR-ISTEC, ItalyFiber Reinforced UHTCsChinese Academy of Sciences, ShenyangUniversity of ArizonaMATECH/GSM Inc., California	AFRLNASA Glenn Research CenterGeorgia Institute of TechnologyMissouri University of Science & TechnologyTexas A & M UniversityCNR-ISTEC, ItalyUniversity of Michigan, Ann Arbor, MichiganNSWC—CarderockHarbin Institute of Technology, China

Some Recent Research Efforts in UHTCs: Processing

Field Assisted Sintering	UHTC Polymeric Precursors	
University of California, Davis	SRI International, California	
Air Force Research Laboratory (AFRL)	University of Pennsylvania	
CNR-ISTEC, Italy	Missouri University of Science & Technology	
Stockholm University, Sweden	MATECH/GSM Inc., California	
NIMS, Tsukuba, Japan	Teledyne (NHSC)	
Pressureless Sintering	Technische Universität Darmstadt, Germany	
Missouri University of Science & Technology	Nano & Sol Gel Synthesis of UHTCs	
Politecnico di Torino, Italy	Loughborough University, U.K.	
Reactive Hot-Pressing	IGIC, Russian Academy of Science	
Shanghai Institute of Ceramics, China	University of Erlangen-Nürnberg, Germany	
NASA Ames Research Center	Korea Institute of Materials Science	
National Aerospace Laboratories, India	Iran University of Science and Technology	
Sandia National Laboratories, New Mexico		
McGill University, Montreal, Canada		
University of Erlangen-Nürnberg, Germany		